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ABSTRACT

The quality of generative models depends on the quality of the data they are trained on. Creat-
ing large-scale, high-quality datasets is often expensive and sometimes impossible, e.g. in certain
scientific applications where there is no access to clean data due to physical or instrumentation con-
straints. Ambient Diffusion and related frameworks train diffusion models with solely corrupted
data (which are usually cheaper to acquire) but ambient models significantly underperform models
trained on clean data. We study this phenomenon at scale by training more than 80 models on data
with different corruption levels across three datasets ranging from 30, 000 to ≈ 1.3M samples. We
show that it is impossible, at these sample sizes, to match the performance of models trained on clean
data when only training on noisy data. Yet, a combination of a small set of clean data (e.g. 10% of
the total dataset) and a large set of highly noisy data suffices to reach the performance of models
trained solely on similar-size datasets of clean data, and in particular to achieve near state-of-the-art
performance. We provide theoretical evidence for our findings by developing novel sample com-
plexity bounds for learning from Gaussian Mixtures with heterogeneous variances. Our theoretical
model suggests that, for large enough datasets, the effective marginal utility of a noisy sample is
exponentially worse that of a clean sample. Providing a small set of clean samples can significantly
reduce the sample size requirements for noisy data, as we also observe in our experiments.

1 INTRODUCTION

A key factor behind the remarkable success of modern generative models, from image Diffusion Models (DMs) to
Large Language Models (LLMs), is the curation of large scale datasets (Gadre et al., 2023; Li et al., 2024). However,
in certain applications, access to high-quality data is scarce, expensive, or impossible. For example, in Magnetic
Resonance Imaging (MRI) the quality of the data is proportional to the time spent in the scanner (Jalal et al., 2021)
and, in black-hole imaging, it is never possible to get full measurements from the object of interest (Lin et al., 2024).
Constructing a (copyright-free) large-scale dataset of high-quality general domain images is also an expensive and
complex process. Enterprise text-to-image image DMs rely on proprietary datasets, often acquired from third-party
vendors at significant cost (Betker et al., 2023; Imagen-Team-Google et al., 2024). State-of-the-art open-source DMs
are typically trained by crawling a large pool of images from the Web and filtering them for quality with a pipeline
that deems each sample as suitable or non-suitable for training (Gadre et al., 2023). However, this binary treatment of
samples is problematic because often low-quality images still contain useful information. For example, a blurry image
might get dismissed from the filtering pipeline to avoid blurry generations at inference time, yet the image might still
contain important information about the world, such as the type of objects present at the scene.

Recently, there has been a growing interest in developing frameworks for training generative models using corrupted
data, e.g. from blurry or noisy images (Bora et al., 2018; Daras et al., 2023b; Kawar et al., 2023; Aali et al., 2023;
Daras et al., 2024; Bai et al., 2024; Rozet et al., 2024; Wang et al., 2024; Kelkar et al., 2023). Most frameworks that are
applicable to diffusion models introduce training or sampling approximations, which significantly hurt performance.
A recent work, Consistent Diffusion Meets Tweedie (Daras et al., 2024), proposes a method that guarantees exact
sampling, at least asymptotically as the number of noisy samples tends to infinity. For realistic sample sizes, however,
models trained on noisy data using this method (or any other proposed method) are significantly inferior to models
trained on clean data. How do we overcome this challenge?
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Performance is almost constant despite having less clean data
as long as noisy data is available

Imagenet FID
p% clean
p% clean and (1-p)% noisy (Sigma: 0.2)
p% clean and (1-p)% noisy (Sigma: 0.1)
p% clean and (1-p)% noisy (Sigma: 0.05)

Figure 1: ImageNet FID performance (lower
is better) for models trained with different
amounts of clean and noisy data. Perfor-
mance of models trained with only clean data
(red curve) reduces as we decrease the amount of
data used. Training with purely noisy data (right-
most points) also gives poor performance – even
if 100% of the dataset is available. Training with
a mix of noisy and clean data strikes an inter-
esting balance: a model trained with 90% noisy
and 10% clean data is almost as good as a model
trained with 100% clean data.

A fundamental limitation facing existing approaches for leveraging corrupted data is that, so far, they have been studied
under the assumption that no access to clean samples is available. As we show in this work, it is theoretically and
experimentally impossible to compensate for the lack of clean data without a significant hit (that is exponential in the
number of classes in our theoretical analysis) in the number of noisy datapoints. On the other hand, we show that a
combination of a small set of clean images (e.g. 10% of the total dataset) and a large set of noisy images (e.g. 90% of
the total dataset) suffices to maintain state-of-the-art performance. Models trained on this data mixture significantly
outperform two natural baselines: i) training only on the small set of clean images; and ii) training only on the large
set of noisy images (see also Figure 1 and Table 1). We validate our finding by training more than 80 models across
various noise scales and corruption ratios on ImageNet, CelebA-HQ, and CIFAR-10.

Available Data CIFAR-10 CelebA ImageNet
100% clean 1.99±0.02 2.40±0.07 1.41±0.03

100% noisy 11.93±0.09 12.97±0.11 5.32±0.08

10% clean (smaller dataset) 17.30±0.14 11.92±0.05 10.57±0.06

90% noisy + 10% clean 2.81±0.02 2.75±0.02 1.68±0.02

Table 1: FID scores for models trained on datasets with different per-
centages of noisy and clean data. Training with a mix of 90% noisy and
10% clean data achieves much better performance than training the same num-
ber of purely noisy samples, or just the clean samples.

Theoretically, we consider a novel variant
of the classical problem of learning Gaus-
sian Mixture Models (GMMs) with hetero-
geneous noise levels. In contrast to the clas-
sical setting, each sample is generated with
a (potentially) different noise level reflec-
tive of how clean or noisy the data point is.
We derive minimax optimal estimation rates,
which showcase the differing utility of clean
and noisy data. Concretely, having lots of
noisy data enables identification of the right
low-dimensional structure for learning the
mixture components, while a more moderate number of clean data allows fine-grained differentiation of the com-
ponents in low dimensions. In particular, effective learning is possible even when the number of clean samples is
substantially smaller than the dimension. At the same time, relying solely on noisy data requires exponentially (in
the number of components) noisy samples than clean ones. This theoretical result could justify why training on a
mixture of clean and noisy data significantly outperforms training solely on either one of the clean or the noisy sets.
In summary, our contributions are as follows:

• We train more than 80 models at different datasets, noise levels and corruption ratios.
• We show that as long as a few clean images are available, models trained with corrupted data perform on par

with models trained on clean data. We further show that training on a combination of a small set of clean
images and a large set of noisy images significantly outperforms training solely on either one of these sets.

• We provide a theoretical explanation for this phenomenon by developing novel sample complexity bounds
for the case of GMMs with heterogeneous variances. Our minimax rates show that the availability of noisy
data removes the polynomial dependence on dimension in the number of clean samples while simultaneously
showing exponentially more noisy samples are required to compensate for the lack of clean data.

• Through our theoretical analysis and our experimental validation, we pinpoint the price of noisy images for
different datasets and noise levels. These insights can potentially guide budget allocation for dataset curation.
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2 BACKGROUND AND RELATED WORK

2.1 DIFFUSION MODELING

The dominant paradigm for learning distributions is diffusion models. A diffusion model is trained to denoise images
at different levels of additive Gaussian noise (Ho et al., 2020; Song & Ermon, 2019; Song et al., 2020b). To establish
some notation, we will use t ∈ [0, T ] for the diffusion time and σt for the associated standard deviation of the added
noise. Let X0 ∼ p0 be a sample from the distribution of interest and let Xt ∼ pt a sample of the noisy distribution at
time t, where it holds that Xt = X0 + σtZ,Z ∼ N (0, I). At training time, the goal is to learn E[X0|Xt = xt] for
all levels t. Diffusion models are trained to approximate this quantity using the following objective1 (Vincent, 2011):

JDSM(θ) = Ex0∼p0
Et∼U [0,T ]Ext∼pt(xt|X0=x0) ∥hθ(xt, t)− x0∥2 . (1)

Once trained, the model is used for sampling following a discretized version of the update rule (Song et al., 2020b;a):

dxt = −dσt
hθ(xt, t)− xt

σt
, (2)

that is guaranteed to sample from p0 given that it is initialized from pT and hθ(xt, t) = E[X0|Xt = xt]. In practice,
there are errors due to initialization, discretization, and improper learning of the score (Chen et al., 2022; 2023).

2.2 LEARNING DIFFUSION MODELS FROM NOISY DATA

The training objective of Equation 1 requires access to data from the distribution p0. We will refer to this data as clean
for the rest of this paper. As explained in the Introduction, in many applications access to clean data is scarce and
hence methods for training diffusion models from corrupted data have been developed.

Ambient Diffusion (Daras et al., 2023b) proposes a framework to train diffusion models from linear measurements.
An alternative framework to Ambient Diffusion leverages Stein’s Unbiased Risk Estimate (SURE) (Kawar et al., 2023;
Aali et al., 2023). These works extend classical results for training restoration models from corrupted data (Moran
et al., 2020; Stein, 1981; Xu et al., 2020; Pang et al., 2021; Krull et al., 2019; Batson & Royer, 2019) to the setting
of learning generative models under corruption. Unfortunately, these methods induce sampling approximations that
significantly hurt the performance. A different thread of papers on this topic relies on the Expectation-Maximization
(EM) algorithm (Bai et al., 2024; Rozet et al., 2024; Wang et al., 2024). The convergence of these models to the true
distribution depends on the convergence of the EM algorithm, which might get stuck in a local minimum.

Consistent Diffusion Meets Tweedie (Daras et al., 2023a; 2024) generalized Ambient Diffusion to handle additive
Gaussian noise and became the first framework with provably exact sampling given infinite (noisy) data. In what
follows, we give a brief description of the method, since we are going to use this in the rest of this paper.

Problem Setting. Assume that we are given samples at a specific noise level tn (nature noise level). The question
becomes how we can leverage these samples to learn the optimal denoiser E[X0|Xt = xt] for all noise levels t.

Learning the optimal denoiser for high noise levels. The first task is to learn the optimal denoiser for t > tn. To
perform this goal, one can leverage the following Lemma:
Lemma 2.1 ((Daras et al., 2024)). Let Xtn = X0 + σtnZ1 and Xt = X0 + σtZ2, Z1,Z2 ∼ N (0, I) i.i.d. Then,
for any σt > σtn , we have that:

E[X0|Xt = xt]︸ ︷︷ ︸
removes all the noise

=
σ2
t

σ2
t − σ2

tn

E[Xtn |Xt = xt]︸ ︷︷ ︸
removes additional noise

−
σ2
tn

σ2
t − σ2

tn

xt. (3)

This Lemma states that to remove all the noise there is, it suffices to remove the noise that we added on top of the
dataset noisy samples from the R.V. Xtn . One can train the denoiser E[Xtn |Xt = xt] with supervised learning, as in
Equation 1. The following loss will train the network to estimate E[X0|Xt = xt] directly:

JAmbient DSM(θ) = Extn∼ptn
Et∼U(tn,T ]Ext∼pt(xt|Xtn=xtn )

∥∥∥∥σ2
t − σ2

tn

σ2
t

hθ(xt, t) +
σ2
tn

σ2
t

xt − xtn

∥∥∥∥2 . (4)

1In practice, a non-uniform distribution for t and a loss weighting w(t) are often used (Karras et al., 2022).
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This idea is closely related to Noisier2Noise (Moran et al., 2020). We underline that there are also alternative ways to
learn the optimal denoiser in this regime, such as SURE (Stein, 1981). However, SURE-based methods usually bring
a computational overhead, as one needs to compute (or approximate) a Jacobian Vector Product.

Learning the optimal denoiser for low noise levels. Learning the optimal denoiser for t < tn is a significantly
harder problem since there is no available data in this regime. Most of the prior works did not even attempt to solve
this problem. At training time, a denoiser hθ(xt, t) is trained for all t ⩾ tn. At sampling time, one can: i) also
use hθ for times t < tn, even though the model was not trained in this regime, hoping that the neural network will
extrapolate in a meaningful way, or ii) truncate the sampling at time tn, by predicting x̂0 = hθ(xtn , tn). In Algorithm
2 of the Appendix, we provide a reference implementation of the truncated sampling idea. A more principled attempt
was introduced by Daras et al. (2024) where the authors attempt to learn the optimal denoiser for low noise levels by
enforcing a consistency loss. Specifically, for t < tn, the network is trained with the following objective:

JC(θ) = Et,t′,t′′∼U(tn,T ],U(ϵ,t),U(t′−ϵ,t′)ExtExt′ |xt
[
∣∣∣∣hθ(xt′ , t

′)− Ext′′∼pθ(xt′′ ,t
′′|xt′ ,t

′) [hθ(xt′′ , t
′′)]
∣∣∣∣2 ], (5)

where pθ is the distribution induced by the SDE version of Equation 2 (we refer the interested reader to the works of
Song et al. (2020b), Daras et al. (2023a)). Assuming that the network has been perfectly trained to predict E[X0|Xt =
xt] for all times t ⩾ tn, the minimizer of this loss will be E[X0|Xt = xt] also for times t ⩽ tn. There are a few
important drawbacks though. First, the consistency loss adds a significant training overhead since at each training step:
i) expectations need to be computed and ii) sampling steps need to be performed. Second, the theoretical guarantees
only hold given perfect learning of the conditional expectation for t ⩾ tn and it is unclear how errors propagate.
Finally, even for slight corruption, the method leads to a significant performance deterioration (Daras et al., 2024).

3 METHOD

Problem Setting. The need for consistency or sampling approximations arises from the fact that we do not have
samples to train the network in the regime t ∈ (tn, 0]. We relax this assumption by considering the setting where a
small set of clean and a large set of noisy images are available. To establish the notation, let’s use Sclean to denote the
clean set and Snoisy to denote the noisy set. The clean samples are realizations of the R.V. X0 ∼ p0 and the noisy
samples realizations of the R.V. Xtn = X0 + σtnZ for some fixed noise level tn.

Training algorithm. Our training algorithm leverages samples from both sets. For times t ∈ [tn, 0], we will rely
solely on clean samples. On the other hand, for t ∈ [T, tn), we will leverage both the clean and the noisy samples. The
clean samples will be used as usual, following the Denoising Score Matching objective, defined in Equation 1. The
noisy samples in this regime will utilize Equation 4 to learn a denoiser by relating it to the quantity E[Xtn |Xt = xt]
through the use of Lemma 2.1 (see Algorithm 1).

Method Discussion. In prior work (Daras et al., 2024), the optimal denoiser for times t < tn was learned through
the (expensive) consistency loss. In our setting, we assume access to a small set of clean images that we are using to
learn the optimal denoiser for these times. The question then becomes: “does a small set of clean images suffice to
learn the optimal denoiser for low-noise levels?” As we show in this paper, the answer to this question is affirmative,
i.e. we only need a handful of uncorrupted images to learn the optimal denoiser for low corruption.

The intuition is as follows. To learn the distribution, we need to be able to generate accurately both structural infor-
mation (low-frequencies) and texture (high-frequencies). Clean samples have both low-frequency and high-frequency
content. The addition of noise corrupts the high-frequency content faster (for a discussion, see Dieleman (2024)).
Hence, noisy images are mostly useful to learn the low-frequency content of the distribution, i.e. they are useful to
learn to generate structure. Humans, and metrics that are trying to model human preferences (such as FID), are more
perceptible to errors in structural information than errors in the high-entropy image texture. So even though it might
be impossible to perfectly generate high-frequency content using only a few clean images, metrics, such as FID, are
going to penalize these errors less, given that the model can accurately generate the low-frequency content.

The method we developed in Algorithm 1 can be trivially extended to more than two sets of points. In fact, each point
xi in the training set can have its own noise level ti. In that case, our algorithm would use each point xi to learn the
optimal denoiser for t ⩾ ti. For the ease of presentation, we stick to two noise levels for the rest of this paper. Further,
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Algorithm 1 Algorithm for training using both clean and noisy samples.

Input: untrained network hθ, set of clean samples Sclean, set of noisy samples Snoisy, std of the noise σtn , batch size
B, diffusion time T , noisy diffusion start time tn

1: while not converged do
2: Form a batch B of size B uniformly sampled from Sclean ∪ Snoisy

3: loss← 0 ▷ Initialize loss.
4: for each sample x ∈ B do
5: ϵ ∼ N (0, I) ▷ Sample noise.
6: if x ∈ Snoisy then
7: xtn ← x ▷ We are dealing with a noisy sample.
8: t ∼ U(tn, T ) ▷ Sample diffusion time for noisy sample.

9: xt = xtn +
√

σ2
t − σ2

tnϵ ▷ Add additional noise.

10: loss← loss +
∥∥∥σ2

t−σ2
tn

σ2
t

hθ(xt, t) +
σ2
tn

σ2
t
xt − xtn

∥∥∥2 ▷ Ambient Denoising Score Matching loss.
11: else
12: x0 ← x ▷ We are dealing with a clean sample.
13: t ∼ U(0, T ) ▷ Sample diffusion time for clean sample.
14: xt = x0 + σtϵ ▷ Add additional noise.
15: loss← loss + ∥hθ(xt, t)− x0∥2 ▷ Regular Denoising Score Matching loss.
16: end if
17: end for
18: loss← loss

B ▷ Compute mean loss.
19: θ ← θ − η∇θloss ▷ Update network parameters via backpropagation.
20: end while

if the noise level σtn is not known, it can be estimated by computing the difference of the variances between the sets
Sclean and Snoisy.

4 THEORETICAL RESULTS

Before presenting our experiments, we establish theoretical results that will support our experimental findings. We
note that most theoretical works on distribution learning operate under the assumption of i.i.d samples from a fixed
distribution. In contrast, the goal of our paper is to understand the effects that heterogeneity in sample quality has on
estimation error. This setting is quite niche and creates space for interesting theory to be developed.

We develop our results for the Gaussian Mixture Model that is commonly used in diffusion theory (Shah et al., 2023;
Gatmiry et al., 2024; Gu et al., 2024; Chidambaram et al., 2024; Li & Chen, 2024; Cui et al., 2023; Chen et al., 2024).
We examine the following adaptation of the classical estimation problem to the heterogeneous setting:
Definition 4.1. We are given X1, . . . , Xn independently drawn from the following distribution:

Xi ∼ D ∗ N (0, σ2
i I), where D =

k∑
i=1

wiδµi

where δµ denotes the Dirac distribution at µ and ∗ the convolution operator. The goal is to output D̂ minimizing:

W1(D, D̂) := min
C(D,D̂)

E(X,X′)∼C [∥X −X ′∥]

where C(D, D̂) is a coupling of D, D̂ with marginals equal to D and D̂.

Note now that variance in sample quality can now be naturally expressed in terms of the noise level, σi, of the
individual observations with the larger σi denoting lower-quality samples and vice-versa.

4.1 MAIN THEORETICAL RESULTS AND DISCUSSION

Overview of Theoretical Results. Theorems 4.2 and 4.4 and Corollary 4.3 establish tight bounds on the sample
complexity of learning a heterogeneous mixture-of-Gaussians model which precisely characterize the utilities of high
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and low-quality samples. These theoretical results match the intuition from Section 3 where noisy data is useful
for learning low-frequency information while clean data helps in resolving high-frequency details. Concretely, the
low-dimensional subspace spanned by the means of the GMM model corresponds to the low-frequency information
estimated from the noisy samples while the resolution of the mixture components in the lower-dimensional space
corresponds to the high-frequency information extracted from the clean samples. Hence, the heterogeneous mixture of
Gaussians model provides a concrete instantiations of the intuition previously presented. These results further define
the notion of the effective number of samples which captures how much actual information is in our dataset accounting
for the per-sample corruption. This notion motivates the data pricing questions asked in Subsection 5.3.

Theorem 4.2 (Upper bound). Let n , d , k ∈ N, R > 0,

# samples

and δ ∈ (0, 1/2). Suppose D =
∑k

i=1 wiδµi is a

k-atomic distribution over Rd with ∥µi∥ ⩽ R.

dimension # classes

Then, there is a procedure (Algorithm 8) which when given n
independent samples X1, . . . , Xn such that Xi ∼ D ∗ N (0, σ2

i I) with σi ⩾ 1 satisfying:

max
i

1

σ4
i

⩽
c1

(d+ log(1/δ))

n∑
i=1

1

σ4
i

, max
i

1

σ4k−2
i

⩽
c2

log(1/δ) + k log(k)

n∑
i=1

1

σ4k−2
i

# effective samples

and δ > 0, returns an estimate D̂ with:

W1(D, D̂) ⩽ C

 k

(
d+ log(1/δ)∑n

i=1 1/σ
4
i

)1/4

+ k3

(
k log k + log(1/δ)∑n

i=1 1/σ
4k−2
i

)1/(4k−2)
 ,

dimensionality reduction error low-dim estimation error

with probability at least 1− δ. Furthermore, the runtime of the algorithm is Õk(nd).

Discussion. The full proof of this result is given in Appendix C. We adopt a two-stage procedure where in the
first stage we reduce the dimensionality of the problem, from the dimension d, to the number of components, k, by
estimating the sub-space containing the means, µi, and projecting all our data points onto that subspace. Next, we run a
low-dimensional estimation procedure on the k-dimensional projected data (Algorithm 7) to estimate the means within
the subspace. The two terms in the error bound reflect the contributions of each of these steps. The first corresponds to
the error in estimating the low-dimensional sub-space and the second corresponds to the error of the low-dimensional
estimation procedure. The two conditions (on max 1/σ4

i and max 1/σ4k−2
i ) lower bound the effective number of

samples for the dimensionality-reduction and low-dimensional estimation steps respectively. The first requires at least
d (effective) samples for dimensionality reduction while at least k are available for low-dimensional estimation.

Observing the two terms of the bound, we see that, compared to the high-quality points, the low-quality points have
relatively more utility in the dimensionality-reduction step versus the lower-dimensional estimation step. This obser-
vation is made clearer in the following corollary in the simplified setting with 2 noise levels.

Corollary 4.3. Assume the setting of Theorem 4.2. Furthermore, suppose that for p ∈ [0, 1], we additionally have
that σ1, . . . , σpn = 1 and σpn+1, . . . , σn = σ ⩾ 1. Then, the guarantees of Theorem 4.2 reduce to:

Percentage of “clean” points

W1(D, D̂) ⩽ C

k

 d+ log(1/δ)

n(p+ (1− p)/σ4 )

1/4

+ k3

 k log k + log(1/δ)

n
(
p+ (1− p)/σ4k−2

)
1/(4k−2)

 .

Factor for dim. reduction Factor for fine-grained estimation

We see that the noisy samples are downweighted only by 1/σ4 for the dimensionality-reduction step whereas for the
fine-grained estimation procedure, its discounting is much more substantial at 1/σ4k−2. Next, we present a matching
lower bound establishing that the rate achieved by Theorem 4.2 is optimal for learning with heterogenous samples.

Theorem 4.4 (Lower bound). Let k ∈ N. Let n, k, d ∈ N, δ ∈ (0, 1/4], and {σi}ni=1 ⩾ 1 be such that d ⩾ 3 and:
n∑

i=1

1

σ4k−2
i

⩾ (Ck)
2k−1

log(1/δ) and
n∑

i=1

1

σ4
i

⩾ C(d+ log(1/δ))
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For any estimator T̂ , there exists a k-atomic distribution D supported on B1 such that for X ∼
∏n

i=1D ∗N (0, σ2
i I):

PX

W1(T̂ (X,D)) ⩾ cmax


(
d+ log(1/δ)∑n

i=1 1/σ
4
i

)1/4

,
1

k

(
1

log(1/δ)
·

n∑
i=1

1

σ4k−2
i

)−1/(4k−2)

 ⩾ δ.

In the remainder of the section, we present a proof of the upper bound (Theorem 4.2) in the simplified setting of d = 1.

4.2 PROOF: ONE-DIMENSIONAL SETTING

We draw upon the approach of Wu & Yang (2020) for the homogeneous setting. We start by recalling some notation
from Wu & Yang (2020). For l ∈ N and distribution, D, over R:

ml(D) := EX∼D[X
l] and ml(D) := [m0(D),m1(D), . . . ,ml(D)].

The estimator of Wu & Yang (2020) utilizes the Hermite polynomials defined as: Hr(x) = r!
∑⌊r/2⌋

j=0
(−1/2)j

j!(r−2j)!x
r−2j .

These polynomials satisfy the following crucial denoising property: EX∼N (µ,1)[Hr(X)] = µr. Linearity of expecta-
tion now allows for denoising general convolutions with Gaussians:

γr,σ(x) := σrHr(x/σ) = r!

⌊r/2⌋∑
j=0

(−1/2)j

j!(r − 2j)!
σ2jxr−2j satisfies EX∼D∗N (µ,σ2)[γr,σ(X)] = EX∼D[X

r].

Hence, they allow approximate recovery of the moments of the k-atomic distribution that was convolved with a Gaus-
sian to produce the final mixture. The main issue with this approach is that the moments are only recovered approxi-
mately. The following technical result, implicit in Wu & Yang (2020) and proved in Appendix B, shows that error in
estimating the moments can be directly translated to an error in Wasserstein distance in an estimation procedure.

Lemma 4.1. (Wu & Yang (2020)). Let k ∈ N, δ ∈ [0, 1]. Let D be a k-atomic distribution supported on [−1, 1] and
m̃1, . . . , m̃2k−1 be estimates satisfying |m̃i −mi(D)| ⩽ δ for all i ∈ [2k − 1]. Then there is a procedure running in
time Ok(1), which on input {m̃i}2k−1

i=1 , returns distribution D̂ satisfying:

W1(D, D̂) ⩽ O(kδ
1

2k−1 ).

Finally, the error in the moment estimates can be bounded by the variance of the Hermite polynomials.

Lemma 4.5 (Wu & Yang (2020)). Let M > 0 and X ∼ D ∗ N (0, σ2) with D supported on [−M,M ]. Then,

∀r ∈ N : Var(γr,σ(X)) ⩽ (O(M + σ
√
r))2r.

Lemma 4.5 and Lemma 4.1 now reduce the problem of estimating the parameters of the mixture to that of estimating
its first 2k−1 moments. Our algorithm is presented in Algorithm 3. The key step in the algorithm is the addition of the
weights, αi, which down-weight samples with large variance. These weights are chosen to minimize the variance of
obtained moment estimates. Intuitively, samples with large variance are less reliable and their contributions discounted.
Interestingly, the degree of down weighting also scales with the complexity of the distribution, measured by k. Next,
we formally establish the correctness of Algorithm 3 through the following simplified theorem.

Theorem 4.6. Let M > 1 be a constant and k, n ∈ N. Suppose D is a k-atomic distribution supported on [−M,M ]
and that X = {Xi}ni=1 are generated as Xi ∼ D ∗ N (0, σ2

i ) with σi ⩾ 1. Then, Algorithm 3 given as input X and
{σi}i∈[n] returns with probability at least 3/4 a k-atomic distribution D̂ satisfying:

W1(D, D̂) ⩽ Ck2 ·

(
n∑

i=1

1

σ4k−2
i

)−1/(4k−2)

Proof. We start by rescaling the distribution so that M = 1. Next, we get from Lemma 4.5 that for all r ∈ [2k − 1]:

Var(m̃r) =

n∑
i=1

α2
iVar (γr,σi

(Xi)) ⩽
n∑

i=1

α2
i (C
√
kσi)

4k−2 = (C
√
k)4k−2 ·

(
n∑

i=1

1

σ4k−2
i

)−1

=: σ2
m.
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Therefore, we get by a consequence of Chebyshev’s inequality for any r ∈ [2k − 1]:

|m̃r −mr| ⩽ 4
√
kσm

with probability at least 1− 1/16k. Hence, we get by the union bound:

∀r ∈ [2k − 1] : |m̃r −mr| ⩽ 4
√
kσm

with probability at least 3/4. Conditioned on this event, Lemma 4.1 concludes the proof of the theorem.

The proof of the high-dimensional setting is presented in Appendix C. Algorithmically, the high-dimensional setting
uses two different weighting schemes; one for computing the appropriate low-dimensional subspace that is indepen-
dent of k and another for an exhaustive search algorithm similar to Doss et al. (2023). Furthermore, our algorithm
and analysis diverge from and refine the results of Doss et al. (2023). Consequently, the dependence on the failure
probability improved from

√
log(1/δ) to the optimal (log(1/δ))1/(4k−2) dependence. Our key technical improvement

is due to a robustness analysis on the approximation of the high-dimensional Wasserstein distance by one-dimensional
projections (see Appendix C.2). This allows bypassing the chaining-based arguments of Doss et al. (2023) and instead
employing a median-of-means based approach with a simple covering number argument.

5 EXPERIMENTS

5.1 TRAINING ONLY WITH CORRUPTED DATA

We start our experimental section by presenting results in the setting of prior work (Daras et al., 2024; 2023b), i.e.
using only noisy data. We train models at three different levels of corruption: i) σ = 0.05, ii) σ = 0.1, iii) σ = 0.2,
across three different datasets of different sizes: CIFAR-10 (60K samples), CelebA-HQ (30K samples) and ImageNet
(≈ 1.3M images). We underline that prior work (Daras et al., 2024) only finetuned with noisy data. Instead, we opt
for training from scratch which allows us to measure different quantities of interest in a more controlled setting.

For reference, we visualize the corruption levels in Figure 3. We train models with and without consistency. For our
experiments, training with consistency was 2−3x slower and used 2x GPUs. The full experimental results are provided
in Appendix F. For the models without consistency, we report results for both truncated (see Algorithm 2) and full
sampling. For the models trained with consistency, we report results for the full sampling algorithm, as consistency is
supposed to help mostly with times t < tn. The results of this experiment are summarized in Table 2. The findings are

Dataset Noise Level Full Sampling Truncated Sampling Consistency + Full Sampling

CIFAR-10

0.00 1.99±0.02 NA NA
0.05 8.78±0.02 4.53±0.08 2.82±0.02

0.10 25.55±0.10 7.55±0.07 3.63±0.03

0.20 60.73±0.21 12.12±0.03 11.93±0.09

CelebA-HQ

0.00 2.40±0.07 NA NA
0.05 12.77±0.02 6.73±0.02 5.50±0.03

0.10 45.90±0.08 10.27±0.01 9.38±0.02

0.20 61.14±0.14 13.90±0.01 12.97±0.11

ImageNet

0.00 1.41±0.03 NA NA
0.05 2.39±0.01 2.53±0.01 2.26±0.01

0.10 6.23±0.01 3.67±0.01 2.99±0.05

0.20 18.08±0.05 6.03±0.02 5.32±0.08

Table 2: FID comparisons between models trained on solely noisy data across datasets and noise levels. In the first two
columns, we report results without consistency training, with and without sampling truncation. Training with consistency (third
col.) significantly improves the results, but the performance is still poor compared to the clean data training for high corruption.

the following: i) the results are very poor for a model trained without consistency when the full-sampling algorithm is
used, i.e. the model cannot extrapolate to times t < tn, if it was only trained for times t ⩾ tn, ii) Truncated Sampling
helps, but still, even for low corruptions, (e.g. for σ = 0.05) the performance is relatively weak, and, iii) training
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with consistency is beneficial, particularly for σ = 0.05 and σ = 0.1, but as the corruption increases the benefits of it
are shrinking. Another interesting observation is that the performance deteriorates less (for the same corruption level)
compared to the clean performance as the dataset size grows. This is expected: in the limit of infinite data, models
trained with solely noisy data can still, in theory, perfectly recover the distribution (Daras et al., 2024). That said,
even for ImageNet level datasets, at high corruption the best performance, obtained by training with the expensive
consistency loss, is significantly inferior to the performance obtained by training with clean data.

5.2 TRAINING WITH A MIXTURE OF CLEAN AND NOISY DATA

The previous experiments showed that training with solely highly noisy data leads to a significant performance deteri-
oration, at least for datasets with sizes up to ImageNet, and this also comes at a significant computational cost because
of the consistency loss. But what if a small set of clean images is available? Arguably, this setting is fairly realistic
since in the dataset design process one can spend some initial effort (measured in money, computation, or otherwise)
to collect some high-quality data points and then rely on cheaper noisy points for the rest of the dataset. To the best of
our knowledge, this setting has not been explored by prior work. To study this, we fix the dataset size and we change
the percentage p% of clean data. For every value of p ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}, we train models with: i) p%
clean data, and, ii) with p% clean data and (1− p)% of noisy data at different levels of noise. To train with both clean
and noisy data we used the method described in Section 3 and in Algorithm 1. We underline that for these experiments
we do not use consistency loss and hence the training cost stays the same as training with clean data.

We report our results in Table 3 and we highlight a subset of the results in Table 1. The results show that even when
we have 90% noisy data and high-corruption, i.e. σ = 0.2, the performance stays near the state-of-the-art as long as a
small set (10%) of clean data is available. In fact, the obtained performance is far superior to the performance obtained
by training only with clean data and the performance obtained by training with only noisy data, indicating that the
benefit comes from the mixture of the two. The difference is quite dramatic: i) 10% clean ImageNet samples⇒ 10.57
FID, ii) 100% noisy samples (at σ = 0.2)⇒ 5.32 FID, iii) 90% noisy samples and 10% clean samples⇒ 1.68 FID.
This phenomenon is further illustrated in Figure 1.

Table 3: FID comparisons as we change the mix of clean and noisy data. Data availability is reported as percentage of the
total dataset size: 60K for CIFAR, 30K for CelebA-HQ and ≈ 1.3M for ImageNet. Training with a mix of clean and noisy data is
significantly better than training purely on a few clean data points or purely on the full noisy dataset.

Dataset Available Data Noise
Level p% of clean data

100% 90% 70% 50% 30% 10% 0%

C
IF

A
R

-1
0 p% clean N/A

1.99±0.02

2.07±0.01 2.20±0.03 2.40±0.02 3.99±0.01 17.30±0.14 N/A

p% clean, (1-p)% noisy
0.05 2.04±0.02 2.04±0.03 2.06±0.00 2.11±0.02 2.17±0.04 8.78±0.02

0.10 2.06±0.03 2.14±0.03 2.15±0.01 2.24±0.02 2.34±0.03 25.55±0.10

0.20 2.06±0.03 2.14±0.02 2.24±0.01 2.42±0.03 2.81±0.02 60.73±0.21

C
el

eb
A

-H
Q p% clean N/A

2.40±0.07

2.50±0.01 2.68±0.00 2.83±0.01 3.72±0.01 11.92±0.05 N/A

p% clean, (1-p)% noisy
0.05 2.40±0.01 2.45±0.01 2.45±0.02 2.50±0.01 2.50±0.02 12.77±0.02

0.10 2.40±0.01 2.48±0.02 2.51±0.04 2.51±0.01 2.67±0.01 45.90±0.10

0.20 2.50±0.00 2.51±0.11 2.52±0.01 2.67±0.02 2.75±0.02 61.14±0.14

Im
ag

eN
et p% clean N/A

1.41±0.03

1.50±0.02 1.65±0.01 2.15±0.01 4.34±0.06 10.57±0.06 N/A

p% clean, (1-p)% noisy
0.05 1.46±0.02 1.46±0.02 1.46±0.02 1.47±0.02 1.51±0.02 2.40±0.02

0.10 1.48±0.01 1.48±0.02 1.49±0.01 1.49±0.01 1.57±0.02 6.23±0.01

0.20 1.50±0.02 1.51±0.02 1.51±0.02 1.59±0.03 1.68±0.02 18.08±0.05

We test the limits of our method by evaluating it in extreme corruption, either in terms of number of clean samples or
in terms of the amount of noise. For computational reasons, we only present these results for CIFAR-10.

Higher corruption. We use 90% noisy and 10% clean data and we increase the corruption to σ = 0.4. The FID
becomes 3.56± 0.03, which is still much better than the performance (17.30) obtained by using 10% of clean data.

Less clean data. We fix σ = 0.2 and we severely decrease the number of clean data. Specifically, we evaluate perfor-
mance when 1% of clean data and 99% of noisy data are available. The performance of this model is 3.53±0.03. For
reference, the performance of the model trained with 100% noisy data at this noise level is 60.73 without Truncated
Sampling and 11.93 with consistency training. Hence, 1% of clean data has a tremendous effect in performance.
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5.3 HOW MUCH IS A NOISY IMAGE WORTH?

How much exactly is a noisy image worth? In what follows, we address the question of data pricing. Given finite
resources for data curation, how should we allocate them to obtain the best performance? On the flip side, what is a
fair pricing scheme that reflects data utility? We approach this through the notion of effective sample size suggested
by our theoretical model. Let:

nd =

∑n
i=1 1/σ

4
i

maxi 1/σ4
i

nl =

∑n
i=1 1/σ

4k−2
i

maxi 1/σ
4k−2
i

,

be the two terms that appear in the bound of Theorem 4.2. Assume that we operate in the asymptotic setting with large
n and with the fraction of clean and noisy data bounded away from 0 by a constant independent of n. In this regime,
the dominant term in Theorem 4.2 is the second due to its slower rate of convergence. Therefore, the effective sample
size for low-dimensional estimation, nl, is the main determinant of the error.

This implies that we can use a fixed pricing scheme, largely independent of the sample size n. To validate this
theoretical prediction, let’s price clean samples at 1$ per unit and noisy samples at cσ$ per unit, for a parameter cσ that
we will bound using data from our experiments. Specifically, to bound cσ we can derive inequalities by comparing
performances from Table 3. For example, the CIFAR-10 performance using 90% clean data is 2.07 which is better
than the 2.42 FID performance obtained using 30% clean and 70% noisy samples at σ = 0.2, which implies that:

0.9n ⩾ 0.3n+ c0.20.7n =⇒ c0.2 ⩽
6

7
.

We repeat this computation for all pairs of the table and derive more inequalities. We restrict comparisons to settings
with at least 10% clean samples to ensure we remain in the asymptotic regime. The best upper and lower bounds are:

CIFAR-10, CelebA: 1.17 ⩽
1

c0.05
⩽ 1.25 , ImageNet: 1.125 ⩽

1

c0.05
⩽ 1.17

CIFAR-10, CelebA: 1.25 ⩽
1

c0.1
⩽ 1.5 , ImageNet: 1.125 ⩽

1

c0.1
⩽ 1.17

CIFAR-10, CelebA, ImageNet: 1.5 ⩽
1

c0.2
⩽ 1.75

The quantity 1/cσ measures the number of noisy samples required to compensate for a clean one. In line with intuition,
for larger values of σ (i.e. the noisier the sample), more noisy samples required to replace a clean one. In addition, this
ratio is the lowest for the largest dataset, ImageNet. The narrow ranges of the upper and lower bounds, lend credibility
to this data pricing approach. Finer-grid evaluation at Table 3 would allow for even narrower estimates.

6 LIMITATIONS AND FUTURE WORK

In this paper, we only studied the case of additive Gaussian Noise corruption. In practice, the corruption might be
more complex or even unknown. We further focused on the scale of having two noise levels, i.e. clean data and
noisy data. The approach can be naturally extended to arbitrary many noise levels. Further, all the results in this work
were developed for pixel-space diffusion models. A promising avenue for future research is to extend these findings
to latent diffusion models. Finally, due to the high computational training requirements, we were only able to scale
up to ImageNet and 64 × 64 resolution. It is worth exploring how these behaviors change as we further increase the
dimension and the dataset size. On the theory side, our Gaussian Mixtures Model might not capture all the intricacies
of real distributions and while being a useful tool, we should always interpret these results with caution.
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A APPENDIX

Algorithm 2 Truncated Sampling Sampling Algorithm.

Input: network hθ, time steps T , step size ∆t, noise schedule {σt}Tt=0, stopping time σtn .
1: xT ∼ N (0, σT ) ▷ Initialization
2: for t = T, T − 1, . . . , 1 do
3: x̂0 ← hθ(xt, t)
4: if σt−1 < σtn then
5: return x̂0 ▷ Truncated Sampling
6: end if
7: xt−1 ← xt − σt−σt−1

σt
(xt − x̂0)

8: end for
9: return x0

Algorithm 3 Denoised Method of Moments with Heterogenous Variances

Input: Samples Xi ∼MDirac ∗ N (0, σ2
i )

Output: Candidate k-mixture M̂Dirac =
∑k

i=1 ŵiδx̂i

1: Define weights αi, for i ∈ [n]:

αi =
1/σ4k−2

i∑n
j=1 1/σ

4k−2
j

.

2: Define moment approx. for r ∈ [2k − 1]:

m̃r =

n∑
i=1

αiγr,σi
(Xi).

3: Return output of Lemma 4.1 on input m̂.

B PROOF OF LEMMA 4.1

In this section, we establish Lemma 4.1 used to prove the weakened bound for the one-dimensional setting in The-
orem 4.6. This result is implicit in Wu & Yang (2020) and we include the proof here for completeness. Before we
proceed, we reproduce the following result from Wu & Yang (2020) which shows that for two distributions with finite
support and close moments, their Wasserstein distance is also close.
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Proposition B.1. Let D and D′ be k-atomic distributions supported on [−1, 1]. If |mi(D) − mi(D′)| ⩽ δ for
i = 1, . . . , 2k − 1, then:

W1(D,D′) ⩽ O(kδ
1

2k−1 ).

We reproduce the statement of Lemma 4.1 and include its proof below.
Lemma 4.1. (Wu & Yang (2020)). Let k ∈ N, δ ∈ [0, 1]. Let D be a k-atomic distribution supported on [−1, 1] and
m̃1, . . . , m̃2k−1 be estimates satisfying |m̃i −mi(D)| ⩽ δ for all i ∈ [2k − 1]. Then there is a procedure running in
time Ok(1), which on input {m̃i}2k−1

i=1 , returns distribution D̂ satisfying:

W1(D, D̂) ⩽ O(kδ
1

2k−1 ).

Proof. We recall some preliminaries from Wu & Yang (2020). First, the moment space defined for a set K ⊂ R:

Mr(K) = {mr(π) : π is supported on K}.
Specifically when K = [a, b],Mr is fully characterized by the following convex constraints:

M0,r ≽ 0, (a+ b)M1,r−1 ≽ abM0,r−2 +M2,r for even r

bM0,r−1 ≽ M1,r ≽ M0,r−1 for odd r, (MOM-CHAR)

where the matrices Mi,j are defined as follows for m ∈Mr:

Mi,j =


mi mi+1 · · · m i+j

2

mi+1 mi+2 · · · m i+j
2 +1

...
...

. . .
...

m i+j
2

m i+j
2 +1 · · · mj

 .

As noted in Wu & Yang (2020), these constraints are easy to see as necessary. Surprisingly, they also turn out be
sufficient for characterizing the spaceMr Shohat & Tamarkin (1943).

The algorithm now establishing Lemma 4.1 is presented in Algorithm 4. By our assumptions on the input, we have:

∀i ∈ [2k − 1] : |m̂i − m̃i| ⩽ δ =⇒ |m̂i −mi(D)| ⩽ δ

where the first inequality follows from the fact that m̂ is the minimizer of the convex program and D certifies that a
solution with small error exists and the second follows from the triangle inequality. Next, since m̂ corresponds to the
moments of a valid distribution from the sufficiency criterion for one-dimensional distributions, Algorithm 5 returns a
k atomic distribution matching the moments m̂. An application of Proposition B.1 establishes the lemma.

Algorithm 4 Estimate Distribution from Moments

Input: Moment estimates m̃1, . . . , m̃2k−1

Output: Candidate k-mixture M̂Dirac =
∑k

i=1 ŵiδx̂i

1: Let m̂ be the solution to the following:

min {∥m̃− m̂∥ : m̂ satisfies MOM-CHAR} where m̃ = (m̃1, . . . , m̃2k−1).

2: Return the output of Algorithm 5 on input m̂.

C HIGH-DIMENSIONAL UPPER BOUND: PROOF OF THEOREM 4.2

In this section, we prove Theorem 4.2. Here, we adopt the techniques from Doss et al. (2023) which reduces the high
dimensional setting to the one-dimensional setting through a series of reductions. The first reduces the d-dimensional
setting to the k-dimensional setting by a projection onto the principal components of the data. This is a standard
procedure that is frequently employed to reduce high-dimensional estimation to their more tractable low-dimensional
counterparts. The second step follows by establishing a result which shows that any candidate mixture whose one-
dimensional marginals are approximately consistent with the original mixture is close to the original mixture in
Wasserstein distance. In the remainder of the section, Appendix C.1 analyzes the low-dimensional projection step,
Appendix C.2 presents the low-dimensional estimation algorithm and finally, Appendix C.3 establishes Theorem 4.2.
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Algorithm 5 Gauss Quadrature

Input: Valid moment vector m = (m1, . . . ,m2k−1)
Output: Quadrate points (x1, . . . , xk) and weights (w1, . . . , wk)

1: Define the degree-k polynomial:

P (x) =


1 m1 . . . mk

...
...

. . .
...

mk−1 mk . . . m2k−1

1 x . . . xk

 .

2: Now, define (x1, . . . , xk) as the roots of P (x)
3: The weights (w1, . . . , wk) are defined as:

w =


1 1 . . . 1
x1 x2 . . . xk

...
...

. . .
...

xk−1
1 xk−1

2 . . . xk−1
k


−1 

1
m1

...
mk−1

 .

C.1 REDUCTION TO LOW-DIMENSIONS

Here, we establish concentration bounds on the matrix, Σ̂, used to compute the low-dimensional projection in Algo-
rithm 8. We recall the following result that we will repeatedly use in our proofs:

Lemma C.1 (Exercise 4.4.3 Vershynin (2018)). Let d ∈ N and G be an ε-net of the unit sphere. Then, we have for
any symmetric M ∈ Rd×d:

∥M∥ ⩽ 1

1− ε
max
v∈G
|v⊤Mv|.

We first bound the noise terms that arise when computing the high-dimensional covariance.

Lemma C.2. Let g1, . . . , gn
i.i.d∼ N (0, I) and αi ⩾ 0 for i ∈ [n] with

∑n
i=1 αi = 1. Then, we have:∥∥∥∥∥

n∑
i=1

αigig
⊤
i − I

∥∥∥∥∥ ⩽ max

√√√√(d+ log(1/δ))

n∑
i=1

α2
i , (d+ log(1/δ))max

i
αi


with probability at least 1− δ.

Proof. As is standard, we note the following characterization of the spectral norm for any symmetric M ∈ Rd×d:

∥M∥ = max
∥v∥=1

|v⊤Mv|

and start with a fixed v. The extension to the remainder of values is obtained through a discretization argument, a net
over the unit sphere and a union bound. Now, for fixed ∥v∥ = 1, consider the random variable:

Wv := v⊤

(
n∑

i=1

αigig
⊤
i − I

)
v =

n∑
i=1

αi(⟨gi, v⟩2 − 1).

We now prove that W is sub-exponential:

Claim C.3. We have for any |λ| < 1/4 and g ∼ N (0, 1):

E[expλ(g2 − 1)] ⩽ exp(4λ2).

Proof. We have for any |λ| < 1/4 and g ∼ N (0, 1):

E[exp(λ(g2 − 1))] = e−λ

∫ ∞

−∞

1√
2π

exp

{
(λg2)− g2

2

}
dg
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= e−λ

∫ ∞

∞

1√
2π

exp

{
− (1− 2λ)

2
· g2
}
dg

= e−λ · 1√
1− 2λ

= e−λ ·
√
1 + 2λ√
1− 4λ2

⩽ e−λ · eλ√
1− 4λ2

⩽
1√

e−8λ2
= exp(4λ2)

concluding the proof of the claim.

Hence, we have that each of the (⟨gi, v⟩2 − 1) are C-sub-exponential random variables for some constant C > 0.
Hence, we have by Bernstein’s inequality (Vershynin, 2018, Theorem 2.8.2):

P {Wv ⩾ t} ⩽ 2 exp

(
−cmin

(
t2∑n

i=1 α
2
i

,
t

maxi αi

))
.

Now, let Q be a 1/4-cover of the set {x : ∥x∥ = 1} with |Q| ⩽ 9d. Then, we have by the union bound:

P {∃v ∈ Q : Wv ⩾ t} ⩽ 2 · 9d exp
(
−cmin

(
t2∑n

i=1 α
2
i

,
t

maxi αi

))
.

Choosing t∗ as:

t∗ = max

√√√√(d+ log(1/δ))

n∑
i=1

α2
i , (d+ log(1/δ))max

i
αi


yields:

max
v∈Q

Wv ⩽ t∗

with probability at least 1− δ. Observing that:

∥M∥ = max
∥v∥=1

|v⊤Mv| ⩽ 2max
v∈Q
|v⊤Mv|

for any symmetric matrix M (Lemma C.1), concludes the proof.

Now, we formally establish concentration of the second moment matrix Σ̂, in spectral norm.

Lemma C.4. Let D be a k-atomic distribution supported such that each element, x, in its support satisfies ∥x∥ ⩽ R.
Furthermore, suppose X1, . . . , Xn are independent samples with Xi ∼ D ∗ N (0, σ2

i I) with σ2
i > 0 for all i ∈ [n].

Then, we have:∥∥∥∥∥
n∑

i=1

αiXiX
⊤
i − σ̄2I − EX∼D[XX⊤]

∥∥∥∥∥ ⩽

max

√√√√(d+ log(1/δ))

n∑
i=1

α2
iσ

2
i max(σ2

i , R
2), (d+ log(1/δ))max

i
αiσ

2
i , R

2k

√√√√log(k/δ)

n∑
i=1

α2
i


where αi =

1/σ4
i∑n

j=1 1/σ4
j

and σ̄2 =
∑n

i=1 αiσ
2
i with probability at least 1− δ.

Proof. Note that we may write Xi = Yi + σigi where Yi ∼ D and gi ∼ N (0, I) independently. Now, we write the
error term as follows:

n∑
i=1

αiXiX
⊤
i − σ̄2I − EX∼D[XX⊤]

=

(
n∑

i=1

αiYiY
⊤
i − EX∼D[XX⊤]

)
+

(
n∑

i=1

αiσ
2
i gig

⊤
I − σ̄2I

)
+

n∑
i=1

αiσi(Yig
⊤
i + giY

⊤
i ).
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The proof proceeds by bounding the errors of each of the three terms separately. We start with the middle term which
we bound with Lemma C.2 to obtain the following:∥∥∥∥∥

n∑
i=1

αiσ
2
i gig

⊤
I − σ̄2I

∥∥∥∥∥ ⩽ max

√√√√(d+ log(1/δ))

n∑
i=1

α2
iσ

4
i , (d+ log(1/δ))max

i
αiσ

2
i

 .

For the first term, note that the error matrix may be written as follows:
n∑

i=1

αiYiY
⊤
i − EX∼D[XX⊤] =

k∑
i=1

(ŵi − wi)µiµ
⊤
i

where ŵi :=
∑n

j=1 αj1 {Yj = µi} corresponds to the empirical counterpart of the mixture weights. Now, we have
for any ∥v∥ = 1: ∣∣∣∣∣v⊤

(
n∑

i=1

αiYiY
⊤
i − EX∼D[XX⊤]

)
v

∣∣∣∣∣ ⩽ R2
k∑

i=1

|ŵi − wi|.

An application of Hoeffding’s inequality and the union bound obtains:

∀i ∈ [k] : |ŵi − wi| ⩽ C

√√√√log(k/δ)

n∑
i=1

α2
i

with probability at least 1− δ/4. Conditioned on this event, we have:∥∥∥∥∥
n∑

i=1

αiYiY
⊤
i − EX∼D[XX⊤]

∥∥∥∥∥ ⩽ CR2k

√√√√log(k/δ)

n∑
i=1

α2
i .

We now proceed to the final term. Consider a 1/4-net of the unit sphere, G. We have for any fixed v ∈ G:

v⊤

(
n∑

i=1

αiσi(Yig
⊤
i + giY

⊤
i )

)
v =

n∑
i=1

2αiσi⟨v, Yi⟩⟨v, gi⟩.

Noting that ⟨v, gi⟩ is a standard Gaussian random variable and that ∥Yi∥ ⩽ R, we get that each term in the sum is
sub-Gaussian and as a consequence, we get by Hoeffding’s inequality:∣∣∣∣∣v⊤

(
n∑

i=1

αiσi(Yig
⊤
i + giY

⊤
i )

)
v

∣∣∣∣∣ ⩽ C

√√√√log(1/δ′)

n∑
i=1

α2
iσ

2
iR

2

with probability at least 1− δ′. Hence, we get by the union bound over all v ∈ G and the size of G:

∀v ∈ G :

∣∣∣∣∣v⊤
(

n∑
i=1

αiσi(Yig
⊤
i + giY

⊤
i )

)
v

∣∣∣∣∣ ⩽ C

√√√√(d+ log(1/δ))

n∑
i=1

α2
iσ

2
iR

2.

Finally, this yields the same bound on spectral norm from Lemma C.1. The three bounds previously proved now
conclude the proof of the lemma by the triangle inequality.

C.2 ESTIMATION IN LOW-DIMENSIONS

The following lemma is a generalization of a key technical lemma in Doss et al. (2023). This lemma establishes
that the Wasserstein distance between two k-atomic distributions over Rd can be approximated through various one-
dimensional projections. While the version in Doss et al. (2023) required the supremum in the conclusion to be taken
over all vectors on the unit sphere, our result only requires a supremum over a grid of the unit sphere. Crucially, the size
of the grid is independent of n and hence, the final error. Our algorithmic approach benefits from this since to establish
concentration over these one-dimensional projections, we may use more robust median-of-means based approaches
to obtain these individual estimates as opposed to the more intricate chaining-based techniques of Doss et al. (2023)
which necessarily incurs the sub-optimal

√
log(1/δ) dependence features in their final bound. The chaining-based

techniques in Doss et al. (2023) are required since the grid size resulting from the previous approach is dependent on
n and hence, the simple techniques we employ incur additional factors depending on n. Technically, our improvement
arises from a robustness analysis of the randomized one-dimensional projection argument employed in the proof.
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Lemma C.5. Let d, k ∈ N and G be a 1/(32k2
√
d)-net of Sd−1. Then, for two k-atomic distributions, D and D′:

sup
v∈G

W1(Dv,D′
v) ⩽ W1(D,D′) ⩽ 16k2

√
d sup
v∈G

W1(Dv,D′
v).

Proof. The lower bound follows from (Doss et al., 2023, Lemma 3.1). For the upper bound, we proceed as in (Doss
et al., 2023, Lemma 3.1) starting with a simple probabilistic argument. However, we additionally analyze the robust-
ness properties of their construction to account for the discretization in our bound. First, define the set of vectors:

Q :=

{
x− y

∥x− y∥
: x, y ∈ {µi}ki=1 ∪ {µ′

i}ki=1 and x ̸= y

}
.

Note that Q is of size at most k2. We follow now the probabilistic argument also utilized in Doss et al. (2023) to
establish the existence of a vector v ∈ Sd−1 which satisfies:

∀u ∈ Q : ∥u∥ ⩽ Ck2
√
d|⟨v, u⟩|.

Now, draw v from the uniform distribution on Sd−1. For any u ∈ Q, we have by standard results for t ⩽ 1/2:

P {|⟨v, u⟩| ⩽ t} = Γ(d/2)√
πΓ((d− 1)/2)

∫ t

−t

(1− x2)(d−3)/2dx ⩽ 4t
√
d.

Then, we get via a union bound:
∀u ∈ Q : 8k2

√
d⟨v, u⟩ ⩾ 1

with probability at least 1/2. Hence, we have for such a v:

∀x, y ∈ {µi}ki=1 ∪ {µ′
i}ki=1 : ∥x− y∥ ⩽ 8k2

√
d|⟨v, x− y⟩|.

Now, let ṽ be the closest neighbor of v in G. We now have for any u ∈ Q:

|⟨ṽ, u⟩| ⩾ |⟨v, u⟩| − ∥ṽ − v∥ ⩾ 1

16k2
√
d
.

For this ṽ, observe that each of the elements in {µi}ki=1 ∪ {µ′
i}ki=1 is mapped to a distinct real number. Hence, every

coupling ofD andD′ correspond to a coupling on the projections of the distributionsDṽ andD′
ṽ and vice-versa. Then,

consider any coupling of Dṽ and D′
ṽ , C(Y, Y ′) and its corresponding high-dimensional analogue, Cd(X,X ′). Then,

we have:
16k2

√
dE(Y,Y ′)∼C [|Y − Y ′|] ⩾ E(X,X′)∼C [∥X −X ′∥] ⩾ W1(D,D′).

By maximizing over all such couplings, we derive the conclusion of the lemma.

The key benefit of Lemma C.5 is that it only requires us to obtain an candidate distribution whose marginals are close
in Wasserstein distance to the marginals along a subset of directions independent of n. In the remainder of the proof,
we will assume that d = k as we may project the data down to k dimensions by computing the PCA of the centered
covariance matrix. Before we adapt the analysis of Doss et al. (2023), we will prove a moment concentration result
which will enable a tightening of the dependence on the failure probability. While Doss et al. (2023) obtain an upper
bound with a

√
log(1/δ) dependence, our bound will instead grow was (log(1/δ))1/(4k−2).

Lemma C.6. Let k,m, n ∈ N, δ ∈ (0, 1/2), and R > 0 be a constant. Suppose D be a k-atomic distribu-
tion over Rk with each x in its support satisfying ∥x∥ ⩽ R. Then, there is a procedure which when given inde-
pendent samples X1, . . . , Xn distributed according to Xi ∼ D ∗ N (0, σ2

i I) with σi ⩾ 1 and maxi 1/σ
4k−2
i ⩽

c
∑n

i=1 1/σ
4k−2
i /(log(1/δ) + k log(k)), returns one-dimensional estimates, {Dv}v∈G , satisfying:

∀v ∈ G : W1(Dv, D̂v) ⩽ Ck2 ·

(
1

(k log(k) + log(1/δ))
·

n∑
i=1

1

σ4k−2
i

)−1/(4k−2)

where G is a (1/ poly(k))-net of Sk−1 with probability at least 1− δ.
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Proof. We start by defining a partition π : [n]→ [m] where m = C(log(1/δ) + k log(k)) satisfying the following:

∀j ∈ [m] :
∑

i,π(i)=j

1

σ4k−2
i

⩾
1

2m

n∑
i=1

1

σ4k−2
i

.

Such a partition may be found in linear time by Lemma C.7. For all v ∈ G, ℓ ∈ [m], let D̂v,ℓ be the one-dimensional
k-atomic mixture obtained by running Algorithm 3 on the points {⟨Xi, v⟩}i,π(i)=ℓ. From Theorem 4.6, we get that:

P

W1(Dv, D̂v,ℓ) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)
 ⩾

3

4
.

Defining the random variables Qv,ℓ as follows:

Qv,ℓ = 1

W1(Dv, D̂v,ℓ) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)
 ,

we get that E[Qv,ℓ] ⩾ 3/4. Therefore, we get by an application of Hoeffding’s inequality for a fixed v ∈ G:

P

{
m∑
i=1

Qv,ℓ ⩽ 0.6m

}
⩽ exp(−cm).

By a union bound, we get from our setting of m:

P

{
∃v ∈ G :

m∑
i=1

Qv,ℓ ⩽ 0.6m

}
⩽ |G| exp(−cm) ⩽ δ.

We now condition on the above event. At this point, we have m estimates D̂v,ℓ for each direction v ∈ G. To obtain
a single estimate for each direction, v, observe the following by the triangle inequality for any j, j′ ∈ [m] such that
Qv,j , Qv,j′ = 1:

W1(D̂v,j , D̂v,j′) ⩽ W1(D̂v,j ,Dv) +W1(Dv, D̂v,j′) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)

.

Now, as a consequence, the following set exists:

J :=

j ∈ [m] :

∣∣∣∣∣∣
ℓ ∈ [m] : W1(D̂v,j , D̂v,ℓ) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)

∣∣∣∣∣∣ ⩾ 0.6m

 .

J is computable from the estimates D̂v,j and we now show that any arbitrary element of J suffices. Let j∗v ∈ J
and notice by the pigeonhole principle and the definition of J , that there exists ℓ ∈ [m] such that Qv,ℓ = 1 and
furthermore,

W1(D̂v,j∗v
, D̂v,ℓ) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)

=⇒ W1(D̂v,j∗v
,Dv) ⩽ Ck2 ·

(
n∑

i=1

m

σ4k−2
i

)−1/(4k−2)

by the triangle inequality and the definition of Qv,ℓ. The lemma follows from the estimates {D̂v,j∗} for v ∈ G.

Our algorithm uses a median-of-means based approach to recover the moments of the one-dimensional projections.
Since the variances are non-uniform, we use a deterministic partitioning algorithm to partition points to ensure buckets
of roughly equal size. The following lemma establishes guarantees on the sample partitioning algorithm.

Lemma C.7. Given k ∈ N and n numbers, α1, . . . , αn ⩾ 0 such that maxi αi ⩽
∑n

i=1 αi/4k, it is possible to find a
partition π : [n]→ [k] such that:

min
i

∑
j:π(j)=i

αj ⩾

∑n
i=1 αi

2k
.

Furthermore, the runtime of this procedure is O(n log(k)).
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Proof. We will analyze the simple greedy procedure in Algorithm 6 where ties are broken arbitrarily. Define:

M i
j :=

∑
ℓ⩽i,π(ℓ)=j

αℓ.

We will prove by induction on i that:
∀j, ℓ ∈ [k] : |M i

j −M i
ℓ | ⩽ αmax.

The case for i = 1 is trivially true. Suppose the condition is true for i = m. To extend to m + 1, let jM :=
argmaxi M

m
i and jm := argmini M

m
i . Then, we must argmaxj M

m+1
j ∈ {jM , jm}. Note now that for all

ℓ ̸= jM , jm:

|Mm+1
jM

−Mm+1
ℓ | ⩽ αmax, |Mm+1

jm
−Mm+1

ℓ | = |(Mm
ℓ −Mm

jm)− αi+1| ⩽ αi+1 ⩽ αmax.

Finally, we have:
|Mm+1

jm
−Mm+1

jM
| = |(Mm

jM −Mm
jm)− αi| ⩽ αi ⩽ αmax

concluding the proof of the inductive claim and consequently, establishes the correctness of the algorithm. The runtime
follows from the fact that the scores may be stored in a self-balancing binary tree.

Algorithm 6 Partition Mass

Input: Weights α1, . . . , αn

Output: Partition π : [n]→ [k]
1: for i = 1 . . . n do
2: π(i) = argminj

∑
ℓ<i,π(ℓ)=j αℓ

3: end for
4: Return π

In the next, we use the techniques of Doss et al. (2023) to improve the computational properties of the estimation
algorithm. This part of the proof is essentially identical to Doss et al. (2023). However, we include minor changes
which allow tightening the bounds. The next lemma shows that the set C defined in Algorithm 7, which defines the
low-dimensional estimation algorithm, has a good solution.

Algorithm 7 Low-dimensional Algorithm

Input: Data Points X1, . . . , Xn, variances σ1, . . . , σn and failure probability δ

Output: Low-dimensional mixture M̂ =
∑k

i=1 ŵiδµ̂i

1: Let G be a 1/(32k2
√
k)-net of Sk−1 containing e1, . . . , ek

2: For each v ∈ G, let D̂v be the output of Lemma C.6
3: Let for each i ∈ [k], let D̂ei =

∑k
j=1 ŵ

i
jδµ̂i

j

C := {µ̂1
i }ki=1 × {µ̂2

i }ki=1 × · · · × {µ̂k
i }ki=1

4: LetW be a (1/n1/(4k−2))-net over the probability simplex over k elements
5: Define:

(ŵi, µ̂i)
n
i=1 := argmin

ŵ′∈W,µ̂′
i∈C

argmax
v∈G

W1(D̂v, (ŵ
′
i, µ̂

′
i)

k
i=1)

6: Return D̂ =
∑k

i=1 ŵiδµ̂i

Finally, let

Lemma C.8. Let d, k ∈ N and let D =
∑k

i=1 wiδµi
be a k-atomic mixture over Rd with ∥µi∥ ⩽ R for all i ∈ [k].

Furthermore, for each i ∈ [d], let D̂ei =
∑k

j=1 ŵ
i
jδµi

j
be k-atomic distributions over R, each satisfying:

W1(Dei , D̂ei) ⩽ ν.

Then, for any (ν/R)-net over the probability simplex,W , there exists a solution D̂ =
∑k

i=1 ŵiδµ̂i
such that:

W1(D̂,D) ⩽ 2dν where ŵ ∈ W and µ̂i ∈ {µ̂1
j}kj=1 × {µ̂2

j}kj=1 × · · · × {µ̂k
j }kj=1.
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Proof. We have as a consequence of the assumption of the lemma:

∀j ∈ [d] :
∑
i=1

wi min
ℓ∈[k]
|⟨µi, ej⟩ − µ̂j

ℓ | ⩽ ν.

Defining now:

∀i ∈ [k] : µ̂i = (µ̃1
i , . . . , µ̃

d
i ) where µ̂j

ℓ := argmin
µ̃∈{µ̂j

m}k
m=1

|⟨µℓ, ej⟩ − µ̃| for all ℓ ∈ [k], j ∈ [d].

We have for the mixture D̃ =
∑k

i=1 wiδµ̂i
:

W1(D, D̃) ⩽
k∑

i=1

wi∥µi − µ̂i∥ ⩽
k∑

i=1

wi∥µi − µ̂i∥1 =

k∑
i=1

wi

d∑
j=1

|⟨µi, ej⟩ − µ̃j
i | =

d∑
j=1

k∑
i=1

wi|⟨µi, ej⟩ − µ̃j
i | ⩽ dν.

Finally, let ŵ ∈ W be such that ∥ŵ − w∥1 ⩽ ν/R. We have for the mixture D̂ =
∑k

i=1 ŵiδµ̂i
:

W1(D, D̂) ⩽ W1(D, D̃) +W1(D̃, D̂) ⩽ dν +

k∑
i=1

|ŵi − wi| max
j,ℓ∈[k]

∥µ̂j − µ̂ℓ∥ ⩽ dν + 2
√
dR

k∑
i=1

|ŵi − wi| ⩽ 2dν

concluding the proof of the lemma.

C.3 PROOF OF THEOREM 4.2

The complete high-dimensional estimation algorithm is presented in Algorithm 8. The algorithm splits the points into
two sets, and utilizes the first to compute a low-dimensional sub-space that (approximately) contains the means of the
components of the mixture and then, runs the low-dimensional estimation algorithm Algorithm 7 on the second set.
Before proceeding with the proof, we recall another lemma from Doss et al. (2023) which relates the loss in accuracy
caused by the low-dimensional projection to the error in estimating the low-dimensional projection in Lemma C.4.

Lemma C.9. Let D =
∑k

j=1 wjδµj
be a k-atomic distribution. Let Σ = EX∼D[UU⊤] =

∑k
j=1 wjµjµ

⊤
j with

eigenvalues λ1 ⩾ · · · ⩾ λd. Let Σ′ be a symmetric matrix and Π′
r be the projection matrix onto the subspace spanned

by the top r eigenvectors of Σ′. Then,

W1
2(Γ,ΓΠ′

r
) ⩽ k (λr+1 + 2∥Σ− Σ′∥2) .

Algorithm 8 High-dimensional Gaussian Mixtures

Input: Point set X = {X1, . . . , Xn}, Variances σ1, . . . , σn, Failure Probability δ

Output: k-atomic mixture
∑k

i=1 ŵiδµ̂i

1: Partition X into X1 and X2 by allocating each Xi to X1 or X2 uniformly at random
2: Define

Σ̂ =
∑

Xi∈X1

αiXiX
⊤
i − σ̄2I where αi :=

1/σ4
i∑

Xi∈X1
1/σ4

i

and σ̄2 =
∑

Xi∈X1

αiσ
2
i .

3: Let U be the top-k singular subspace of Σ̂
4: Let X̃2 = ΠU (X2)

5: Return (ŵi, µi)
k
i=1 as the output of Algorithm 7 on input X̃2, weights {σi}Xi∈X2

, and failure probability δ/4

Proof of Theorem 4.2. The algorithm that achieves the guarantees of the theorem is defined in Algorithm 8. We
first show that the partitioning step induces balanced partitions for the subspace computation and low-dimensional
estimation steps.

Claim C.10. We have the following: ∑
Xi∈X1

1

σ4
i

⩾
1

4

n∑
i=1

1

σ4
i
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c2
4(log(1/δ) + k log(k)

∑
Xi∈X1

1

σ4k−2
i

⩾
1

4

n∑
i=1

1

σ4k−2
i

with probability at least 1− δ/4.

Proof. For the first, observe that: ∑
Xi∈X1

1

σ4
i

=

n∑
i=1

Wi where Wi :=
1 {Xi ∈X1}

σ4
i

.

Now, we have by Hoeffding’s inequality:

P

{
n∑

i=1

Wi − E

[
n∑

i=1

Wi

]
⩽ −t

}
⩽ exp

{
− 2t2∑n

i=1 1/σ
8
i

}
⩽ exp

{
−2 · t

maxi(1/σ4
i )
· t∑n

i=1 1/σ
4
i

}
Now, setting:

t =
1

4

n∑
i=1

1

σ4
i

=⇒ t

maxi(1/σi)4
· t∑n

i=1 1/σ
4
i

=
1

16
·
∑n

i=1 1/σ
4
i

maxi(1/σ4
i )

⩾ 4 log(1/δ).

Observing that:

E

[
n∑

i=1

Wi

]
=

1

2

n∑
i=1

1

σ4
i

yields the first claim with probability at least 1− δ/8. For the second, similarly define:∑
Xi∈X2

1

σ4k−2
i

=

n∑
i=1

Qi where Qi :=
1 {Xi ∈X2}

σ4k−2
i

.

As before, we have by Hoeffding’s inequality:

P

{
n∑

i=1

Qi − E

[
n∑

i=1

Qi

]
⩽ −t

}
⩽ exp

{
− 2t2∑n

i=1 1/σ
8k−4
i

}
⩽ exp

{
−2 · t

maxi(1/σ
4k−2
i )

· t∑n
i=1 1/σ

4k−2
i

}
Now, setting:

t =
1

4

n∑
i=1

1

σ4k−2
i

=⇒ t

maxi(1/σi)4k−2
· t∑n

i=1 1/σ
4k−2
i

=
1

16
·
∑n

i=1 1/σ
4k−2
i

maxi(1/σ
4k−2
i )

⩾ 4 log(1/δ).

Observing,

E

[
n∑

i=1

Qi

]
=

1

2

n∑
i=1

1

σ4k−2
i

yields the second claim with probability at least 1− δ/8. A union bound establishes the claim.

We will now assume the event in the conclusion of Claim C.10 in the remainder of the proof. We have as a consequence
of Claim C.10 and Lemma C.4:∥∥∥Σ̂− EX∼D[XX⊤]

∥∥∥ ⩽ max

√(d+ log(1/δ))
∑

Xi∈X1

α2
iσ

4
i , (d+ log(1/δ))max

i
αiσ

2
i , k

√
log(k/δ)

∑
Xi∈X1

α2
i

 .

For the second term, we have for any Xi ∈X1:

(d+ log(1/δ))αiσ
2
i ⩽

√
(d+ log(1/δ))

√
(d+ log(1/δ))α2

iσ
4
i ⩽ c

√
d+ log(1/δ)∑

Xi∈X1
1/σ4

i

.

Hence, we get that the second is dominated by the first as:∑
Xi∈X1

α2
iσ

4
i =

∑
Xi∈X1

(1/σi)
4

(
∑

Xi∈X1
1/σ4

i )
2
=

1∑
Xi∈X1

1/σ4
i

.
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Finally, the third term is dominated by the second as σi ⩾ 1. To conclude, we get by Claim C.10 and the previous
discussion that: ∥∥∥Σ̂− EX∼D[XX⊤]

∥∥∥ ⩽

√
(d+ log(1/δ))∑n

i=1 1/σ
4
i

.

Therefore, we have for the subspace U in Algorithm 8 by Lemma C.9:

W1(D,DU ) ⩽ Ck 4

√
(d+ log(1/δ))∑n

i=1 1/σ
4
i

.

with probability at least 1 − δ/4. Next, since X2 are independent of X1 (and hence, the subspace U ), we get by
Claim C.10 and Lemmas C.6 and C.8 that the solution D̂ = (ŵi, µ̂i)i∈[k] satisfies:

W1(D̂,DU ) ⩽ Ck3

(
k∑

i=1

(k log(k) + log(1/δ))

σ4k−2
i

)−1/(4k−2)

with probability at least 1− δ/4. By a union bound and the triangle inequality, we get:

W1(D̂,D) ⩽ W1(D̂,DU ) +W1(DU ,D)

⩽ C

k

(
(d+ log(1/δ))∑n

i=1 1/σ
4
i

)1/4

+ k3

(
k∑

i=1

(k log(k) + log(1/δ))

σ4k−2
i

)−1/(4k−2)


with probability at least 1− δ establishing the correctness of Algorithm 8.

Finally, to bound the runtime, the computation of the top-k right singular subspace can be computed in time Õk(nd)

and projecting the points in X2 onto the low dimensional subspace is also computable in time Õk(nd). For the running
of Algorithm 7, observe that the procedure in Lemma C.6 runs in time Õk(|G|n) = Õk(n). Finally, for the remainder
of Algorithm 7, note that the number of candidate vectors in C is at most kk and the number of candidate weight
vectors in W is at most n. Therefore, the total number of candidates is at most Õk(n). The time taken to check
candidate solution is at most Õk(1) for each v ∈ G and since there are at most Õk(1) of these, the time to check a
single candidate is Õk(1). Thus the total runtime for the Algorithm 7 is at most Õk(n) and as a consequence, the
runtime of Algorithm 8 is bounded by Õk(nd).

D LOWER BOUND: PROOF OF THEOREM 4.4

In this section, we prove the lower bound Theorem 4.4. We prove the lower bound in three cases which will imply the
final bound. Firstly, we prove the k-dependent term from the lower bound in Appendix D.1 and show that it holds in
the one-dimensional setting. Then, we establish a pair of bounds for high-dimensional setting, one for the dimension-
dependent term in and another for the failure probability δ, in Appendix D.2. We then combine these three results
to obtain the final bound from Theorem 4.4. We will frequently make use of the following inequality which will be
crucial in obtaining the high-probability lower bounds in the respective statements:

Lemma D.1 ( Bretagnolle & Huber (1979); Tsybakov (2009); Canonne (2023)). We have for any two distributions, P
and Q:

TV(P,Q) ⩽ 1− 1

2
exp(DKL(P∥Q)).

D.1 ONE-DIMENSIONAL LOWER BOUND

Here, we establish a lower bound in one dimension for the estimation problem with k components. We show that the
k-dependent term in the lower bound is unavoidable even in the simpler one-dimensional setting. Our proof largely
follows that in Wu & Yang (2020) but is specialized to the setting of heterogeneous variances. We start by recalling
some technical results from Wu & Yang (2020).
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Lemma D.2. Let ε ∈ [0, 1] and l ∈ N. Suppose now that D and D′ are centered distributions supported on [−ε, ε]
satisfying ml(D) = ml(D′). Then, we have the following:

χ2(D ∗ N (0, 1)||D′ ∗ N (0, 1)) ⩽ O

((
eε2

l + 1

)l+1
)
.

We also note the following simple corollary by the invariance of f -Divergences to re-scaling of the distributions.

Corollary D.3. Let ε ∈ [0, 1] and l ∈ N. Suppose now that D and D′ are centered distributions supported on [−ε, ε]
satisfying ml(D) = ml(D′). Then, we have the following for any σ2 ⩾ 1:

χ2(D ∗ N (0, σ2)||D′ ∗ N (0, σ2)) ⩽ O

((
eε2

(l + 1)σ2

)l+1
)
.

Lemma D.2 implies that two Dirac distributions supported on a small range and matching a large number of moments
are challenging to distinguish from each other. The following result from Wu & Yang (2020) shows that when allowed
a support size of k, there exist two distributionsD andD′ supported on [−ε, ε] and more than ε/k apart but nevertheless
matching their first 4k − 2 moments.

Lemma D.4. For any ε ⩾ 0 and k ∈ N, there exists two distributions D and D′ supported on [−ε, ε] satisfying:

W1(D,D′) ⩾ Ω
( ε
k

)
and m2k−2(D) = m2k−2(D′).

Furthermore, D and D′ are supported on at most k elements.

Next, we prove the main one-dimensional lower bound.

Theorem D.5. There exists an absolute constants C, c > 0 such that the following holds. Let n, k ∈ N, δ ∈ (0, 1/4],
and σi ⩾ 1 for i ∈ [n] be such that:

n∑
i=1

1

σ4k−2
i

⩾ (C
√
k)4k−2 log(1/δ).

Then, there exist two distributions, D1 and D2, each supported on at most k-points in [−1, 1], such that the following
holds for any estimator θ̂:

max
D∈{D1,D2}

PX

W1(D, θ̂(X)) ⩾
c

k

(
1

log(1/δ)

n∑
i=1

(
1

σ4k−2
i

))−1/(4k−2)
 ⩾ δ where X ∼

n∏
i=1

D ∗ N (0, σ2
i ).

Proof. Let ε ∈ [0, 1] be a parameter to be chosen later andD andD′ be two distributions whose existence is guaranteed
by Lemma D.4. Then, observe that we have the following for all i ∈ [n]:

χ2(D ∗ N (0, σ2
i )||D′ ∗ N (0, σ2

i )) ⩽ O

((
eε2

(2k − 1)σ2
i

)2k−1
)
.

Recall the tensorization properties of the χ2 divergence:

χ2

(
n∏

i=1

D ∗ N (0, σ2
i )||

n∏
i=1

D′ ∗ N (0, σ2
i )

)
+ 1 =

n∏
i=1

(
χ2

(
D ∗ N (0, σ2

i )||D′ ∗ N (0, σ2
i )
)
+ 1
)
.

As a consequence, we get that:

χ2

(
n∏

i=1

D ∗ N (0, σ2
i )||

n∏
i=1

D′ ∗ N (0, σ2
i )

)
⩽ C

n∑
i=1

(
eε2

(2k − 1)σ2
i

)2k−1

when
n∑

i=1

(
eε2

(2k − 1)σ2
i

)2k−1

⩽ c

for some absolute constants C, c > 0. Finally, picking ε as:

ε = c

(
1

log(1/δ)

n∑
i=1

(
e

(2k − 1)σ2
i

)2k−1
)−1/(4k−2)
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for c > 0 yields:

χ2

(
n∏

i=1

D ∗ N (0, σ2
i )||

n∏
i=1

D′ ∗ N (0, σ2
i )

)
⩽

log(1/δ)

8
.

As a consequence, we get:

γ := DKL

(
n∏

i=1

D ∗ N (0, σ2
i )||

n∏
i=1

D′ ∗ N (0, σ2
i )

)
⩽

log(1/δ)

8
.

By the BH-inequality (Lemma D.1), we now get:

TV

(
n∏

i=1

D ∗ N (0, σ2
i )||

n∏
i=1

D′ ∗ N (0, σ2
i )

)
⩽ 1− 1

2
exp (−γ) ⩽ 1− δ.

An application of Le Cam’s (Wainwright, 2019, Lemma 15.9) method now yields the result.

D.2 HIGH-DIMENSIONAL LOWER BOUNDS

Here, we adapt the techniques of Wu & Zhou (2021) to establish lower bounds in the setting of heterogenous variances.
The dimension-dependent lower bound is established for the simple setting with two equally weighted components
with means distributed symmetrically across the origin. Hence, the set of candidates mixturesMDirac parameterized
by θ ∈ Rd and defined below:

MDirac =
1

2
δθ +

1

2
δ−θ.

In the rest of this section, we will use Dθ to refer to a member of this family. We now reproduce a technical result
from Wu & Zhou (2021) which bounds the KL-Divergence between two different Gaussian mixtures from this family
in terms of the distance between their respective location parameters.

Lemma D.6. Then there exists a universal constant C such that the following holds. For any s ∈ [0, 1] and u, v such
that ∥u∥ = ∥v∥ = 1, we have:

DKL(Dsu ∗ N (0, I)∥Dsv ∗ N (0, I)) ⩽ C∥u− v∥2s4.

Furthermore, we have by the scale-invariance of the KL-divergence, the following corollary.

Corollary D.7. Assume the setting of Lemma D.6. Then, for any σ ⩾ 1, we have:

DKL(Dsu ∗ N (0, σ2I)∥Dsv ∗ N (0, σ2I)) ⩽ C∥u− v∥2
( s
σ

)4
.

We now present the main lower bound of the section:

Theorem D.8. There exist absolute constants C, c > 0 such that the following holds. Let d ⩾ 3, n ∈ N, and {σi}ni=1

be such that σi ⩾ 1 for all i ∈ [n] and:
n∑

i=1

1

σ4
i

⩾ Cd.

Then, we have for any estimator T̂ :

max
θ∈Rd

PX

{
W1(T̂ (X),Dθ) ⩾ c

(
d∑n

i=1 1/σ
4
i

)1/4
}

⩾
1

2

where X = {Xi}ni=1 are independent random vectors with Xi ∼ Dθ ∗ N (0, σ2
i I).

Proof. The proof will use the standard testing to estimation framework for proving minimax lower bounds. First, let
G denote a 1/4-packing of the unit sphere such that |G| ⩾ 4d−1. Now, we have from Corollary D.7, for any u, v ∈ G
and σ ⩾ 1 and s ∈ [0, 1]:

DKL(Dsu ∗ N (0, σ2I)∥Dsv ∗ N (0, σ2I)) ⩽ C∥u− v∥2
( s
σ

)4
⩽ 4C

( s
σ

)4
.
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Hence, we get by the tensorization of the KL-divergence:

DKL

(
n∏

i=1

Dsu ∗ N (0, σ2
i I)

∥∥∥∥ n∏
i=1

Dsv ∗ N (0, σ2
i I)

)

=

n∑
i=1

DKL

(
Dsu ∗ N (0, σ2

i I)

∥∥∥∥Dsv ∗ N (0, σ2
i I)

)
⩽ Cs4

n∑
i=1

1

σ4
i

.

Now, picking

s = c

(
d∑n

i=1 1/σ
4
i

)1/4

,

we get that:

DKL

(
n∏

i=1

Dsu ∗ N (0, σ2
i I)

∥∥∥∥ n∏
i=1

Dsv ∗ N (0, σ2
i I)

)
⩽

d

16
.

An application of Fano’s inequality (Wainwright, 2019, Proposition 15.12) for the set of candidates {su}u∈G and
noting that |G| ⩾ 4d−1 yields the result from the observation that for any u, v ∈ G, W1(Dsu,Dsv) ⩾ s/4.

We now establish a separate high-probability version of the bound.

Theorem D.9. There exist absolute constants C, c > 0 such that the following holds. Let d ⩾ 2, n ∈ N, δ ∈ (0, 1/4],
and {σi}ni=1 be such that σi ⩾ 1 for all i ∈ [n] and:

n∑
i=1

1

σ4
i

⩾ C log(1/δ).

Then, we have for any estimator T̂ :

max
θ∈Rd

PX

{
W1(T̂ (X),Dθ) ⩾ c

(
log(1/δ)∑n
i=1 1/σ

4
i

)1/4
}

⩾
1

2

where X = {Xi}ni=1 are independent random vectors with Xi ∼ Dθ ∗ N (0, σ2
i I).

Proof. Let u = e1 and v = e2. Then, we have by Corollary D.7 for any σ ⩾ 1 and s ∈ [0, 1]:

DKL(Dsu ∗ N (0, σ2I)∥Dsv ∗ N (0, σ2I)) ⩽ 2C
( s
σ

)4
.

We now have by the tensorization of the KL-divergence:

DKL

(
n∏

i=1

Dsu ∗ N (0, σ2
i I)

∥∥∥∥ n∏
i=1

Dsv ∗ N (0, σ2
i I)

)

=

n∑
i=1

DKL

(
Dsu ∗ N (0, σ2

i I)

∥∥∥∥Dsv ∗ N (0, σ2
i I)

)
⩽ Cs4

n∑
i=1

1

σ4
i

.

Now, setting:

s = c

(
log(1/δ)∑n
i=1 1/σ

4
i

)1/4

,

we get:

DKL

(
n∏

i=1

Dsu ∗ N (0, σ2
i I)

∥∥∥∥ n∏
i=1

Dsv ∗ N (0, σ2
i I)

)
⩽

log(1/δ)

8
.

Again, we get by the BH-inequality (Lemma D.1):

TV

(
n∏

i=1

Dsu ∗ N (0, σ2
i I),

n∏
i=1

Dsv ∗ N (0, σ2
i I)

)
⩽ 1− δ.

An application of Le Cam’s method (Wainwright, 2019, Lemma 15.9) concludes the proof of the result.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Finally, we combine the three bounds to prove the complete lower bound from Theorem 4.4.

Proof of Theorem 4.4. The proof follows from Theorems D.5, D.8 and D.9 by choosing the largest out of the three
lower bounds in the conclusions of the results.

E ADDITIONAL RESULTS

E.1 PUSHING PERFORMANCE TO ITS LIMIT

In all our previous experiments, we used the EDM (Karras et al., 2022) hyperparameters that were tuned for clean
data training. Here, we ablate different parameters that can further increase the performance of training with data
mixtures. The first observation is that data corruption increases the time for convergence. In Figure 4 we plot the FID
as a function of training time for a model trained with data mixtures. As shown, the FID keeps dropping as we train,
indicating that the default parameters might lead to undertrained models when there is training data corruption. Hence,
we take the ImageNet training run with 90% noisy data and 10% clean data, which has reported performance 1.68 in
Table 3 and we train the model for 500K more steps. This alone decreases the FID from 1.68 to 1.63.

We then argue that for times t ⩽ tn we should expect sub-optimal estimates since only a few (clean) samples were
used. We attempt to balance the higher learning error with reduced discretization error by increasing the number of
sampling steps spent on these noise levels during sampling. This further improves the performance from 1.63 to 1.60.

Next, we use consistency loss to improve the learning for t < tn, that was previously trained only with the clean
points. We note that we only use consistency loss for this final part of the 500k training steps. Consistency fine-tuning
improves the FID to 1.58. Finally, we use weight decay as a regularization technique to mitigate instabilities caused
by the increased training variance. This further reduces the FID to 1.55. It is possible that more optimizations could
further decrease the FID but at this point we are already close to the optimal 1.41 obtained using 100% clean samples.

Configuration (σ = 0.2) ImageNet FID
p = 10% clean and 90% noisy
A Baseline Parameters 1.68
B + More training 1.63
C + Sampling Noise Scheduling 1.60
D + Consistency Loss 1.58
E + Weight Decay 1.55
Clean Data Performance 1.41

Figure 2: Evaluation of training and sampling improvements for models trained with noisy data.

In what follows, we present some additional results that did not fit in the main paper.

CIFAR CelebA ImageNet

σ = 0.0

σ = 0.1

σ = 0.2

Figure 3: Dataset images with varying noise levels (σ).
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D

CIFAR FID for 10.00% clean data and 90.00% noisy data (sigma: 0.2)

Figure 4: FID as a function of training steps for a model trained with a mix of clean and noisy data. FID continues to
go down as we train more and more, indicating that the model at 200K iterations is still undertrained.

F EXPERIMENTAL DETAILS

F.1 TRAINING

We train our CIFAR-10 models for 200,000 steps, our CelebA models for 100,000 steps and our ImageNet models for
2, 500, 000 steps. All of our images are normalized in [−1, 1] prior to adding additive Gaussian Noise. We use the
training hyperparameters from the EDM codebase (Karras et al., 2022). For our experiments with consistency, we use
8 steps for the reverse sampling and 32 samples to estimate the expectations. We use a fixed coefficient to weight the
consistency loss that is chosen as a hyperparameter from the set of {0.1, 1.0, 10.0} to maximize performance. Upon
acceptance of this work, we will provide all the code and checkpoints to accelerate research in this area. Consistency
leads to a 2× increase in hardware requirements (memory footprint) and 2× (ImageNet) to 3× (CIFAR, CelebA)
slowdown.

F.2 EVALUATION

We generate 50,000 images to compute FID. Each FID number reported in this paper is the average of three indepen-
dent FID computations that correspond to the seeds: 0-49,999, 50,000-99,999, 100,000-149999.
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