
Appendix of “OOD Link Prediction Generalization Capabilities of

Message-Passing GNNs in Larger Test Graphs”

In Appendix A, we introduce more related work that has not been discussed in the main paper. In
Appendix B, we provide more details in experiments set up and model training. In Appendix C, we
introduce notations and definitions that we will use throughout the rest of the appendix. In Appendix D,
we show large random and real world graphs have few isomorphic nodes. In Appendix E, we prove the
convergence results (Theorem 1) for gMPNN•. In Appendix F, we prove the results for hardness of
link prediction for gMPNN•. Finally, we prove the convergence results for gMPNN•• and cMPNN••

(Theorem 2) in Appendix G.

A Further Related Work

Representation power of GNNs. The representation power of GNNs is widely studied in recent
years. [51, 78] first show that gMPNN is no more powerful than 1-WL test [73]. Many works have
been proposed [43, 51–53] to increase the representation power of GNNs for graph representation,
but little has studied on representation power for node and link prediction.

Structural link prediction. Existing link prediction methods assume that, with powerful enough
node representations, combining them can guarantee powerful link representations [23, 29]. However,
Hu et al. [25] empirically shows that these approaches perform worse than simple heuristic approaches
such as Common Neighbor and Adamic-Adar [1, 37]. Theoretically, Srinivasan and Ribeiro [65] was
the first work to formally analyze the difference between structural node and link representations,
and show that even most-expressive structural node representations are not able to perform link
prediction tasks in graphs with high degree of symmetry. In order to remedy this, the state-of-the-art
link prediction methods like SEAL [85] use GNNs but transform the task into a graph classification
task (the link is an attribute of an induced subgraph around the two target end nodes), where each
node in the subgraph are labeled according to their distances to the pair of target end nodes. Zhang
et al. [86] unifies such approaches [36, 83, 85] through a method they call “labeling trick”, which
they show is able to learn structural link representations with a node-most expressive GNN.

Ability of GNNs to emulate graph algorithms as graph sizes increase. Recently, Xu et al. [79]
shows that GNNs can extrapolate in algorithmic-related tasks as the graph size grows, if the GNN uses
max as an aggregator (rather than sum we considered in this paper). Unfortunately, our Definition 3
of gMPNN• does not allow max aggregators, in part because it is unclear how one could reach
stability using the max aggregator. Fortunately, while we could not obtain theoretical results using
the max aggregator, we can test it empirically. Table 2 reproduces all our empirical results using
the max aggregator (on GraphSAGE and GAT, since these are the only GNNs designed for the max
aggregator). Our experiments show that the max aggregator, just like the sum aggregators, shows
poor OOD performance as test graph sizes increase. Other works Bevilacqua et al. [7], Yehudai
et al. [81] also talk about graph extrapolation as size grows but focus on graph classification. Chen
et al. [10], Wu et al. [76, 77] also explore environment-invarian GNN representations for graph
classification or node classification tasks. These works differ in that they focus on node classification
and graph classification. As Srinivasan and Ribeiro [65] shows, link prediction tasks are significantly
different from graph and node classification. Moreover, whether or not one can prove that the max
aggregator is or is not able to perform our OOD task is left as future work.

Positional node embeddings for link prediction. Another way to perform link prediction tasks is
to use positional node embeddings (PE), which preserves relative positions of the nodes in a graph.
The original link predictor in Kipf and Welling [28] uses positional embedding as node attributes for
this type of task. However, such approaches can lose the desired permutation equivariance property
in graph models. Traditional PE methods include DeepWalk [56] and matrix factorization [2, 49].
You et al. [82] proposes position-aware GNN that only aggregates message from randomly selected
anchor nodes, which has poor generalization ability on inductive tasks. Srinivasan and Ribeiro [65]
proves that using set representations of PE embeddings over all permutations of the graph input
and all random decisions made by the embedding algorithm (e.g., the set of all eigenvectors of
randomly permuted graph Laplacian matrices and random eigenvectors due to geometric multiplicity
of eigenvalues) can achieve the desired permutation equivariance for link prediction. Dwivedi and

17

Bresson [16], Kreuzer et al. [33] propose PE that randomly flips of the sign of eigenvectors to alleviate
sign ambiguity and pass it to a transformers architecture [68]. Lim et al. [38] proposes a representation
that is invariant to the elements of the set described by Srinivasan and Ribeiro [65] in order to achieve
equivariant representations for spectral node embeddings. Wang et al. [71] proposes a provable
solution for using PEs to learn equivariant and stable representation using separate channels in GNN
layers. Dwivedi et al. [17] turns to the idea of learning PE that can be combined with structural
representations, and design architecture to decouple structural and positional representations in order
to improve both representations.

B Further Experiment details

In this section we present the details of the experimental section, discussing implementation details.
Training was performed on NVIDIA Telsa P100, GeForce RTX 2080 Ti, and TITAN V GPUs.

B.1 Model implementation

All neural network approaches, including the models proposed in this paper, are implemented in
PyTorch [55] and Pytorch Geometric [19] (available respectively under the BSD and MIT license).

Our GIN [78], GCN [28], GAT [70] and GraphSAGE [24] implementations are based on their Pytorch
Geometric implementations. We also consider max aggregation as proposed by Xu et al. [80] for
extrapolations although it does not fit our theoretical framework.

We use the Adam optimizer to optimize all the neural network models. We use the neural network
weights that achieve best validation-set performance for prediction.

B.2 Empirical validation for convergence and Stability

Consider an SBM (Definition 6) with three blocks (r = 3) and Sa,a = 0.55, a = 1, 2, 3, S1,2 =
S2,1 = 0.05, S1,3 = S3,1 = 0.02. The probability a node belongs to block one or three is 0.45,
while for block two it is 0.1. Note that one and three are isomorphic blocks (see Definition 7). Since
our results are valid for any gMPNN functions ⇥, for our first experiment with node embeddings we
use a randomly initialized GraphSAGE [24] GNN model, where following standard GNN procedures
we initialize node features as size-normalized degrees (where di = 1

N

P
j=1,...,N Ai,j). For the

experiment with pairwise embeddings, we test both the � and of Lemma 2, and a scenario where
is a randomly-initialized feedforward neural network. Later in this section we show how to efficiently
compute the exact cMPNN• and cMPNN•• embeddings of our GraphSAGE and gMPNN•• models.

The validation procedure follows Maskey et al. [45]. We use SBM graphs as examples. Consider an

SBM (Definition 6) with three blocks (r = 3) and S =

"
0.55 0.05 0.02
0.05 0.55 0.05
0.02 0.05 0.55

#
. The probability a node

belongs to block one or three is 0.45, while for block two it is 0.1. The in-block edge probability is
0.55, and across-isomorphic block probability is 0.02 and across-non-isomorphic block probability is
0.05. Note that blocks one and three are isomorphic blocks (see Definition 7).

Since our results is valid for any gMPNN functions, we use a randomly initialized GraphSAGE [24]
GNN model for our first experiments with node embeddings. Following our Definition 6, the initial
node embeddings within the same block should be the same, however, following standard GNN
procedures we initialize node features as size-normalized degrees. Note that in theory, node within
each block has the same expected graphon degree, but this setting is more realistic and shows a
stronger results than proposed in our theorems when initial node embeddings also have variance.

To efficiently calculate exact cMPNN• embeddings, we need to make use of the property
of SBMs, i.e. the graphon values within a block is constant. The graphon degree dW
for nodes in block 1, 2 and 3 is 0.2615, 0.1 and 0.2615. Then we can write the integral
R
X

W (x,y)
dW (x) �

(t)(f
•(t�1)

(x), f
•(t�1)

(y))dµ(y) as 1
0.2615 (0.45 ⇥ S1,1�(t)(B(t�1)

1 ,B(t�1)
1) + 0.1 ⇥

S1,2�(t)(B(t�1)
1 ,B(t�1)

2) + 0.45⇥ S1,3�(t)(B(t�1)
1 ,B(t�1)

3)). This can be calculated exactly by
extracting the neural network weights from the GNN model for � and .

18

Table 2: Test performance over 50 runs of node and pairwise gMPNNs for in-distribution and
OOD link prediction over SBM graphs. Methods marked with ⇤ indicate best result out of distinct
configurations detailed in the Appendix.

Training graph size N tr = 103

Tasks Model Hit@10(%) Hit@50(%) Hit@100(%) mcc.(%) balanced acc.(%)
In

-d
is

tri
bu

tio
n

lin
k

pr
ed

ic
tio

n

Tr
an

sd
uc

tiv
e

GraphSAGE* 95.55(0.52) 95.93(0.73) 96.14(0.74) 95.42(0.37) 97.66(0.19)
GraphSAGE(max)* 95.43(0.38) 96.13(0.57) 96.54(0.60) 95.38(0.36) 97.64(0.19)
GCN* 93.15(14.57) 93.99(13.08) 94.35(12.72) 92.41(14.72) 95.97(8.24)
GAT* 93.77(13.03) 94.01(13.02) 94.14(13.03) 90.94(16.09) 95.26(8.38)
GAT(max)* 92.91(12.27) 93.88(9.12) 94.08(8.82) 87.36(20.41) 93.34(10.95)
GIN* 95.77(0.59) 96.09(0.58) 96.28(0.59) 95.48(0.41) 97.69(0.22)

gMPNN
••

(fixed) 93.76(0.55) 94.17(0.51) 94.51(0.49) 93.64(0.53) 96.72(0.28)
gMPNN

••
(learn) 96.71(0.32) 96.88(0.31) 97.00(0.30) 94.23(0.55) 97.03(0.29)

Oracle 96.92(0.36) 96.92(0.36) 96.92(0.36) 93.74(0.42) 96.77(0.22)

In
du

ct
iv

e
N

te
=

N
tr

GraphSAGE* 47.38(39.08) 52.13(38.87) 54.94(37.83) 19.34(43.19) 61.46(20.17)
GraphSAGE(max)* 17.72(22.89) 25.91(27.75) 31.43(30.18) 18.24(30.43) 58.65(14.53)
GCN* 66.29(37.67) 68.52(35.87) 69.92(35.12) 31.76(35.12) 67.21(22.75)
GAT* 40.05(39.05) 41.34(39.39) 41.96(39.54) 19.44(35.22) 59.52(16.94)
GAT(max)* 41.98(39.23) 43.34(38.71) 43.54(38.69) 22.66(38.99) 61.46(19.02)
GIN* 39.33(34.62) 42.93(33.86) 43.90(33.72) 18.59(39.43) 59.79(18.24)

gMPNN
••

(fixed) 93.85(0.49) 94.23(0.51) 94.55(0.49) 93.74(0.48) 96.77(0.25)
gMPNN

••
(learn) 96.71(0.30) 96.91(0.28) 97.02(0.27) 94.23(0.59) 97.03(0.31)

Oracle 97.01(0.31) 97.01(0.31) 97.01(0.31) 93.87(0.39) 96.84(0.20)

O
O

D
li

n
k

p
r
e
d

ic
ti

o
n

I
n

d
u

c
ti

v
e
N

te
=

10
4 GraphSAGE* 9.97(19.47) 11.73(21.80) 12.98(23.70) -6.56(5.12) 49.32(0.60)

GraphSAGE(max)* 1.44(2.35) 2.60(4.76) 3.58(6.53) -2.52(4.44) 49.83(0.57)
GCN* 39.29(31.33) 42.15(30.81) 44.19(30.97) -4.88(14.84) 50.33(6.72)
GAT* 27.31(26.93) 28.13(26.78) 28.72(26.93) -2.00(8.96) 50.20(3.37)
GAT(max)* 32.56(26.94) 33.01(27.16) 33.24(27.27) -2.85(9.76) 49.82(3.43)
GIN* 0.00(0.00) 0.00(0.00) 0.00(0.00) -3.93(5.12) 49.59(0.57)

gMPNN
••

(fixed) 96.74(0.07) 96.93(0.04) 97.01(0.04) 93.76(0.05) 96.78(0.03)
gMPNN

••
(learn) 96.97(0.04) 97.02(0.04) 97.08(0.04) 93.94(0.67) 96.88(0.35)

Oracle 96.96(0.03) 96.96(0.03) 96.96(0.03) 93.77(0.04) 96.79(0.02)

Then we compare the difference between gMPNN• and cMPNN• for increasing number of nodes.
We first plot log-log plots, where a O(1p

N
) decay rate will have slope � 1

2 in the log-log plot. Our
theory bounds the decay rate by O(logNp

N
), which can be approximated by the � 1

2 slope and is
validated in Figure 2.

Pairwise embeddings For the experiment with pairwise embeddings, we test both the � and of
Lemma 2, and a scenario where is a randomly initialized two layer feed-forward neural network.
To compute the cMPNN•• embeddings, without choosing the adjacency matrix as input to the model,
we can input the graphon value matrix W where Wi,j = W (Xi, Xj). In our experiment, we choose
graph with 20 nodes, 9 in block 1, 2 in block 2, and 9 in block 3. The result of cMPNN•• is stable
for graphs with different sizes. Then we plot the same log-log plot as above.

B.3 Link prediction performance evaluation with SBMs

First, we use a slightly modified SBM with S =

"
0.6 0.05 0.02
0.05 0.6 0.05
0.02 0.05 0.6

#
with other things the same as

in the above subsection. Here we increase the in-block edge probability to 0.6 since we are going to
hide edges for link prediction purpose.

We start by sampling the training graph (Gtr,F tr) with N tr = 103 nodes. We randomly hide 10%
of Etr from the original graph Gtr for link prediction purpose since the goal of link prediction is to
predict possible missing links that is not observed in the original graph. We call these edges Ehid-tr.

Then we split Ehid-tr into positive train (80%) and validation (10%) edges (we reserve 10% of Ehid-tr

for the transductive test scenario), and uniformly sample the same number of across-block non-edges

19

Table 3: Test performance over 50 runs of node and pairwise gMPNNs for in-distribution and OOD
link prediction over the ogbl-ddi graph. Methods marked with ⇤ indicate best result out of distinct
configurations detailed in the Appendix.

Training graph size N tr = 427

Tasks Model Hit@10(%) Hit@50(%) Hit@100(%) mcc.(%) balanced acc.(%)

In
-d

is
tri

bu
tio

n
lin

k
pr

ed
ic

tio
n

Tr
an

sd
uc

tiv
e

GraphSAGE* 30.23(2.03) 47.70(1.75) 60.36(1.79) 71.47(0.70) 85.72(0.36)

GCN* 17.91(0.52) 33.69(0.60) 44.34(0.85) 59.45(0.50) 78.85(0.36)
GAT* 1.46(0.52) 8.20(1.34) 16.37(1.95) 52.64(1.62) 74.75(0.61)
GIN* 17.21(4.74) 28.76(5.79) 37.46(6.60) 54.27(1.59) 76.84(1.19)

gMPNN
••

(fixed) 14.09(0.06) 50.32(0.01) 65.41(0.01) 73.23(0.10) 86.60(0.04)

gMPNN
••

(learn) 38.60(1.68) 59.04(0.22) 68.63(0.06) 71.96(0.06) 85.74(0.03)

Random 0.48(2.58) 1.16(4.58) 2.01(6.54) 0.05(0.39) 50.00(0.01)

In
du

ct
iv

e
N

te
=

N
tr GraphSAGE* 10.52(1.33) 23.85(1.29) 36.60(1.37) 47.58(2.98) 71.59(2.46)

GCN* 10.76(0.90) 24.79(0.73) 34.99(0.70) 50.82(0.19) 74.73(0.21)
GAT* 0.07(0.02) 0.22(0.10) 0.51(0.07) -0.93(0.77) 50.00(0.01)
GIN* 10.95(4.19) 24.42(5.75) 33.71(6.70) 40.67(2.36) 66.24(1.75)

gMPNN
••

(fixed) 34.24(0.07) 66.87(0.03) 73.91(0.02) 67.89(0.34) 83.76(0.20)

gMPNN
••

(learn) 56.45(0.08) 68.42(0.03) 74.93(0.02) 65.55(0.15) 82.62(0.09)

Random 0.41(1.64) 2.20(4.88) 4.97(8.77) -0.03(0.22) 50.00(0.00)

O
O

D
li

n
k

p
r
e
d

ic
ti

o
n

I
n

d
u

c
ti

v
e
N

te
=

38
40 GraphSAGE* 1.79(1.21) 13.70(6.71) 25.31(8.77) 16.65(3.31) 52.79(1.01)

GCN* 12.38(1.23) 27.28(1.27) 37.45(1.43) 55.03(0.76) 77.38(0.36)
GAT* 2.76(1.27) 7.55(3.28) 12.78(4.50) 23.83(16.31) 59.54(6.96)
GIN* 0.00(0.00) 0.00(0.00) 0.00(0.00) 45.87(3.55) 68.92(2.78)

gMPNN
••

(fixed) 9.31(5.23) 67.42(0.02) 78.44(0.01) 75.42(0.17) 87.37(0.11)

gMPNN
••

(learn) 57.97(0.02) 74.75(0.07) 80.00(0.11) 72.04(0.20) 84.57(0.14)

Random 1.21(3.50) 3.39(7.72) 5.71(11.13) 0.00(0.00) 50.00(0.00)

Table 4: Test performance over 50 runs of node and pairwise gMPNNs for in-distribution (large) and
OOD (small) link prediction over SBM graphs. Methods marked with ⇤ indicate best result out of
distinct configurations detailed in the Appendix.

Training graph size N tr = 104

Tasks Model Hit@10(%) Hit@50(%) Hit@100(%) mcc.(%) balanced acc.(%)

In
-d

is
tri

bu
tio

n
lin

k
pr

ed
ic

tio
n

Tr
an

sd
uc

tiv
e

GraphSAGE* 75.35(38.50) 75.41(38.53) 75.46(38.55) 70.81(43.47) 85.93(20.62)
GCN* 86.23(27.88) 86.48(27.85) 86.56(27.85) 82.73(32.32) 91.36(15.84)
GAT* 59.21(43.07) 59.62(43.09) 59.79(43.12) 50.19(42.84) 75.51(21.35)
GIN* 80.89(33.65) 81.12(33.71) 81.20(33.72) 82.46(30.01) 90.49(16.59)

gMPNN
••

(fixed) 95.74(0.12) 96.15(0.06) 96.33(0.04) 93.77(0.04) 96.79(0.02)
gMPNN

••
(learn) 96.95(0.03) 96.95(0.03) 96.95(0.03) 93.76(0.06) 96.79(0.03)

Oracle 96.96(0.03) 96.96(0.03) 96.96(0.03) 93.77(0.04) 96.79(0.02)

In
du

ct
iv

e
N

te
=

N
tr GraphSAGE* 64.77(40.22) 65.88(39.91) 66.60(39.87) 33.19(50.16) 68.30(23.45)

GCN* 79.67(34.82) 79.90(34.55) 80.07(34.31) 51.16(49.53) 76.23(23.72)
GAT* 46.73(37.62) 47.12(37.64) 47.31(37.65) 19.14(39.03) 60.02(18.77)
GIN* 59.68(41.62) 61.15(41.47) 61.69(41.37) 44.80(46.15) 71.90(22.57)

gMPNN
••

(fixed) 95.67(0.11) 96.15(0.06) 96.33(0.04) 93.77(0.05) 96.79(0.03)
gMPNN

••
(learn) 96.94(0.04) 96.94(0.04) 96.94(0.04) 93.76(0.06) 96.78(0.03)

Oracle 96.95(0.04) 96.95(0.04) 96.95(0.04) 93.77(0.05) 96.79(0.03)

O
O

D
li

n
k

p
r
e
d

ic
ti

o
n

I
n

d
u

c
ti

v
e
N

te
=

10
3 GraphSAGE* 33.52(44.93) 33.70(44.87) 33.97(44.77) 32.72(47.00) 66.97(22.73)

GCN* 72.28(40.06) 73.95(38.58) 74.17(38.56) 68.93(40.98) 84.54(19.69)
GAT* 23.31(39.07) 23.32(39.07) 23.34(39.07) 24.07(39.18) 61.74(19.39)
GIN* 1.31(1.62) 1.39(1.62) 1.42(1.62) -0.64(5.63) 49.93(0.63)

gMPNN
••

(fixed) 93.68(0.40) 93.72(0.41) 93.74(0.41) 93.40(0.42) 96.59(0.22)
gMPNN

••
(learn) 96.12(0.28) 96.44(0.34) 96.57(0.36) 94.43(0.31) 97.14(0.16)

Oracle 96.94(0.30) 96.94(0.30) 96.94(0.30) 93.82(0.40) 96.81(0.21)

as negative train and validation edges. The embedding method gMPNN• (resp. gMPNN••) along
with link predictor ⌘• (resp. ⌘••) are trained in an end-to-end manner for predicting positive and
negative edges in training using cross-entropy loss. Our experiments consider three scenarios (in
all scenarios we use the same number of negative test edges as positive test edges, sampled from
non-edges in Gte with endpoints in different isomorphic blocks): (i) (In-distribution) transductive
scenario where Gte = Gtr, where positive test edges are the 10% reserved in Ehid-tr not used in
training or validation; (ii) In-distribution inductive scenario where Gte is sampled from the same
SBM with N te = N tr, where we also hide 10% of the edges and sample 0.1|Ehid-tr| positive test
edges from Ehid-te (for fair comparison across all scenarios); (c) OOD inductive scenario where Gte is

20

sampled from the same SBM with N te = 10⇥N tr, where we also hide 10% of the edges and sample
0.1|Ehid-tr| positive test edges from Ehid-te(for fair comparison across all scenarios).

For structural node embeddings we consider GraphSAGE [24], GCN [28] (without positional
features), GAT [70] and GIN [78] as the representatives of gMPNN• models. Here we also add max
aggregation for GAT and GraphSAGE model as proposed by Xu et al. [80] for extrapolation. The
link predictor ⌘• is as feedfoward network that receives the two node embeddings as input, and has
link prediction threshold ⌧ = 0.5 (see Definition 8 for details). We initialize the node features as the
size-normalized degrees.

For structural pairwise embeddings we choose our proposed gMPNN•• method of Definition 10,
since we can prove that our approach is theoretically sound in Lemma 2. We test gMPNN•• in two
versions: The � and functions in Lemma 2 (denoted fixed) and a feedforward neural network
for (denoted learn). The link predictor ⌘•• is the same as ⌘• except it just takes one pairwise
embedding as input, rather than two node embeddings. We initialize the pairwise features as all 1’s to
contain no additional information about connectivity between the pair of the nodes.

Many existing link prediction methods rely on positional node embeddings and our work focuses on
permutation-equivariant MPNN GNNs. These positional node embedding link prediction methods
are not equivariant (they are positional node representations) based on matrix and tensor factorization
methods. Developing a theory for the effect of positional node representations in OOD link prediction
is far from trivial and an entirely new paper that requires a new theory. At this point we do not even
know how positional representations could be approximately counterfactually-invariant.

For all models including gMPNN•, gMPNN••, ⌘• and ⌘••. The number of hidden layers was chosen
between {2, 3}, and the number of hidden neurons was chosen between {5, 10} due to the simple
experimental set up. For GAT, we have 2 attention heads. Specifically. We optimized all models
using Adam with learning rate chosen from {1⇥10�3, 5⇥10�4, 1⇥10�4}. We also choose ⌘• as
taking the inner product between pair of nodes as input (as Hu et al. [25]) and the concatenated
node embeddings as input. The hyperparameter search is performed by training all models with 10
different initialization seeds and selecting the configuration that achieved the highest mean accuracy
on the validation data, and we mark the methods with ⇤ in Tables 1 and 2 indicating the optimal
configuration is being used. The training time is around 10 minutes for 1, 000 epochs.

Table 2 presents our empirical results in the new setting over 50 independent runs. The oracle
predictor knows the graphon values W (X te

i
, X te

j
). The reason why it can not achieve 100% accuracy

is because there exists rarely sampled positive edges between blocks. Our evaluation metrics include
the Matthews correlation coefficient (mcc) [47], balanced accuracy, and Hits@K for K = 10, 50, 100
that counts the ratio of positive edges ranked at the k-th place or above against all negative edges. The
results from the new table conveys the same message as Table 1 and has been discussed in Section 6.

We also include a new setting for training on larger graphs (104 nodes) and extrapolating to smaller
graphs (103 nodes) in Table 4. We are able to see the structure node representations gMPNN• are
still able to perform relatively well on in-distribution inductive tasks, although the graphs are large,
while still suffer from OOD performance to smaller graphs except GCN, although it is not related to
the theoretical discussions of this paper. In contrast, the gMPNN•• is able to consistently offer good
performance on both in-distribution and OOD tasks.

As discussed in Appendix A, Xu et al. [79] shows that GNNs can extrapolate in algorithmic-related
tasks as the graph size grows, if the GNN uses max as an aggregator (rather than sum we considered
in this paper). Unfortunately, our Definition 3 of gMPNN• does not allow max aggregators, in part
because it is unclear how one could reach stability using the max aggregator. Fortunately, while we
could not obtain theoretical results using the max aggregator, we can test it empirically. Table 2
reproduces all our empirical results using the max aggregator (on GraphSAGE and GAT, since these
are the only GNNs designed for the max aggregator). Our experiments show that the max aggregator,
just like the sum aggregators, shows poor OOD performance as test graph sizes increase. Whether
there is theoretical proof that the max aggregator is not able to perform this OOD task is left as future
work.

21

B.4 Link prediction performance evaluation with ogbl-ddi

In what follows we introduce empirical results using the ogbl-ddi dataset, which represents a drug-
drug interaction network. For the purpose of performing OOD tasks, we start by sampling 10% of
the nodes (427 nodes) and its induced subgraph to be the training graph, where node features are
constructed as size-normalized degrees in the training graph. Validation positive and negative edges
are obtained by applying the original edge split on the induced training subgraph. Our experiments
consider three scenarios: (i) (In-distribution) transductive scenario where Gte = Gtr, where test
positive and negative edges are obtained by applying the original edge split on the induced training
subgraph; (ii) In-distribution inductive scenario where Gte is constructed as sampling N te = N tr

nodes from the remaining ogbl-ddi graph and its induced subgraph, where the test edges are obtained
by applying the original edge split on the newly induced test subgraph; (iii) OOD inductive scenario
where Gte is the induced subgraph without the training nodes with N te = 3840, the test edges are
obtained by applying the original edge split on the newly induced test subgraph, where we further
down-sample to the same amount of test edges as in (ii) for fair comparison across all scenarios.

We used the same benchmarking methods as in the SBM experiments, and add a random guesser
where it is constructed as randomly-initialized GraphSAGE model with a randomly-initialized link
predictor. We initialize the pairwise features as all 1’s to contain no additional information about
connectivity between the pair of the nodes for gMPNN••.

For structural node embeddings we consider GraphSAGE [24], GCN [28] (without positional
features), GAT [70] and GIN [78] as the representatives of gMPNN• models. The link predictor ⌘•
is as feedfoward network that receives the two node embeddings as input, and has link prediction
threshold ⌧ = 0.5 (see Definition 8 for details). We initialize the node features as the size-normalized
degrees.

For structural pairwise embeddings we choose our proposed gMPNN•• method of Definition 10,
since we can prove that our approach is theoretically sound in Lemma 2. We test gMPNN•• in two
versions: The � and functions in Lemma 2 (denoted fixed) and a feedforward neural network
for (denoted learn). The link predictor ⌘•• is the same as ⌘• except it just takes one pairwise
embedding as input, rather than two node embeddings. We initialize the pairwise features as all 1’s to
contain no additional information about connectivity between the pair of the nodes.

For all models including gMPNN•, gMPNN••, ⌘• and ⌘••. The number of hidden layers was chosen
between {2, 3}, and the number of hidden neurons was chosen between {16, 32} due to the simple
experimental set up. For GAT, we have 2 attention heads. Specifically. We optimized all models
using Adam with learning rate chosen from {1⇥10�3, 5⇥10�4, 1⇥10�4}. We also choose ⌘• as
taking the inner product between pair of nodes as input (as Hu et al. [25]) and the concatenated
node embeddings as input. We train all the models with 200 epochs. The hyperparameter search is
performed by training all models with 10 different initialization seeds and selecting the configuration
that achieved the highest mean accuracy on the validation data, and we mark the methods with ⇤ in
Table 3 indicating the optimal configuration is being used.

Table 3 presents our empirical results on the ogbl-ddi link prediction task. All gMPNN• methods
performs worse in inductive settings than transductive settings, and suffer much worse performance
in OOD transductive setting except GCNs. In contrast, the gMPNN•• is able to consistently offer
good performance on both in-distribution and OOD tasks, showing that the theoretical results are not
limited to SBM models.

C Defintion and notations

In this section, we follow the definitions and notations from Maskey et al. [46, Appendix A]. As
in Maskey et al. [46, Appendix A], we call the metric space (�, d), where the metric in the space �
is defined as d : �⇥ � ! [0,1). The nodes of the graph are considered as sampled point from �,
the node i is identified with Xi for the graph G with nodes X = (X1, . . . , XN). We also represent
F (Xi) := fi for i = 1, . . . , N .

Next, we define various notions of degree for the pairwise node embedding.

Definition 11. Let W defined in Definition 1, and G as the sampled graph with nodes X =
(X1, ..., XN).

22

• We define the graphon fraction of common neighbors at x, y 2 X by

cW (x, y) =

Z

X
W (x, z)W (y, z)dµ(z), (2)

• Given two points x, y that need not be in X , we define the graph-graphon fraction of
common neighbors of X at x, y by

cX(x, y) =
1

N

NX

i=1

W (x,Xi)W (y,Xi), (3)

• Given two points x, y that need not be in X , we define the sampled-graph fraction of
common neighbors of X at x, y by

cA(x, y) =
1

N

NX

i=1

A(x,Xi)A(y,Xi), (4)

where we define A(x,Xi) ⇠ Ber(W (x,Xi)) and A(y,Xi) ⇠ Ber(W (y,Xi)) as indepen-
dent random variables.

where cX(x, y) and cA(x, y) are interpreted as the graph fraction of common of neighbors of the
node pair (x, y) in the graph (x, y,X1, ..., Xn).

Adapting Maskey et al. [46, Definition A.3] to the continuous integral aggregation,
Definition 12. Let W be defined in Definition 1, for a metric-space message signal U : X⇥X ! RF ,
the continuous integral aggregation is defined by

M•
W
U =

Z

X
W (·, y)U(·, y)dµ(y).

Adapting Maskey et al. [46, Definition A.4] to the N-normalized sum aggregation,
Definition 13. Let W be defined in Definition 1, X = X1, ..., Xn sample points. For a metric-space
message signal U : X ⇥ X ! RF , we define the graph-graphon (N-normalized) sum aggregation by

M•
X
U =

1

N

X

i

W (·, Xi)U(·, Xi),

and the sampled-graph (N-normalized) sum aggregation by

M•
A
U =

1

N

X

i

A(·, Xi)U(·, Xi),

where we define A(x,Xi) ⇠ Ber(W (x,Xi)) as a random variable.
Definition 14. Let W be defined in Definition 1, X = X1, ..., Xn sample points. For a metric-space
message signal U : (X ⇥ X)⇥ (X ⇥ X) ! RF , we define the graphon pairwise aggregation by

M••
W
U =

1

2

Z

X
(
W (y, z)

cW (·, ·) U(·, (x, z)) + W (x, z)

cW (·, ·) U(·, (y, z)))dµ(z),

and the graph-graphon pairwise aggregation by

M••
X
U =

1

2N

NX

i=1

(
W (y,Xi)

cX(·, ·) U(·, (x,Xi)) +
W (x,Xi)

cX(·, ·) U(·, (y,Xi))),

and the sample-graph pairwise aggregation by

M••
A
U =

1

2N

NX

i=1

(
A(y,Xi)

cA(·, ·)
U(·, (x,Xi)) +

A(x,Xi)

cA(·, ·)
U(·, (y,Xi))),

where we define A(x,Xi) ⇠ Ber(W (x,Xi)) as a random variable.

23

Maskey et al. [46, Definition A.7] has defined for a vector z = (z1, . . . , zF) 2 RF , we define as
usual

kzk1 = max
1kF

|zk|.

For every x, x0 2 X , we say a function f : � ! RF is Lipschitz continuous if there exists a Lf > 0
such that for every x, x0 2 �, we have

kf(x)� f(x0)k1  Lfd(x, x
0).

Here if � = RF , d(x, x0) = kx � x0k1. For our theoretical results, we make the following
assumptions:
Assumption 1. (extension of Maskey et al. [46, Definition A.10]) Let (�, d) be a metric space and
W : �⇥� ! [0,1). Let ⇥ be a MPNN with message and update functions �(l) : R2Fl ! RHl and
 (l) : RFl+Hl ! RFl+1 , l = 1, . . . , T � 1.

1. By Definition 1 of the graphon , the graphon satisfies kWk1  1.

2. [46, Definition A.10, item 6]: There exists a constant dmin > 0 such that for every x 2 �,
we have dW (x) � dmin.

3. There exists a constant dcmin such that for every x, y 2 X , we have cW (x, y) � dcmin.

4. Mtr = max(supp(N tr)) is the largest graph in training, where N tr is the distribution of
graph sizes in the training data.

5. [46, Similar to Definition A.10, item 7 adding dependence on Mtr]: For every l = 1, . . . , T ,
the message function �(l) and update function (l) are Lipschitz continuous with Lipschitz
constants L(l)

� (Mtr) and L(l)
 (Mtr) respectively.

D Large real-world and random graphs have relatively few isomorphic nodes

In what follows we show that isomorphic nodes are rare both in many real-world networks and SBMs.
We start with real-world graphs. MacArthur et al. [42] has computed the fraction of non-isomorphic
nodes (denoted as the network redundancy rG by [42]) of different types of small (< 23,000 nodes)
real-world graphs. MacArthur et al. [42] shows that the majority of biological graphs are composed
of mostly non-isomorphic nodes. Small technological networks (e.g., road network) tend to have
significantly more isomorphic nodes.

In order to see whether these results also hold for larger graphs, we performed a similar experiment
on the following datasets.

• The ogbl-ppa dataset is an undirected, unweighted graph. Nodes represent proteins from 58
different species, and edges indicate biologically meaningful associations between proteins [74],
e.g., physical interactions, co-expression, homology or genomic neighborhood.

• The ogbl-ddi dataset is a homogeneous, unweighted, undirected graph, representing the drug-drug
interaction network. Each node represents an FDA-approved or experimental drug [74]. Edges
represent interactions between drugs and can be interpreted as a phenomenon where the joint effect
of taking the two drugs together is considerably different from the expected effect in which drugs
act independently of each other.

• The Slashdot graph contains friend/foe links between the users of Slashdot (where we ignore edge
types).

• HepPh is a co-authorship network where if an author i co-authored a paper with author j, the graph
contains a undirected edge from i to j. If the paper is co-authored by k authors this generates a
completely connected (sub)graph on k nodes.

• The Github graph shows GitHub developers (nodes) who have starred at least 10 repositories and
edges are mutual follower relationships between them (we make the graph undirected for our
analysis).

• The Twitch/En graph shows Twitch users (who stream in English) as nodes and links are mutual
friendships between them.

24

0 200000 400000 600000
Graph size

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

c
ti

o
n

 o
f

n
o
n
-i

so
m

o
rp

h
ic

 n
o
d
e
s

Slashdot

ddi

ppa
Twitch/En

Github

HepPh Epinions

Fraction of non-isomorphic nodes vs graph size

Figure 3: Fraction of isomorphic nodes in real-world graphs: The fraction of non-isomorphic nodes
(also denoted as the network redundancy rG by [42]) in real-world graphs tends to be close to 90%,
except in the HepPh collaboration network and Slashdot, which contain many small disconnected
components. We assume all graphs are undirected and unattributed for this analysis.

• The Epinions graph shows users of the consumer review site Epinions.com as nodes and edges as
trust relationships between users.

Figure 3 shows the fraction of non-isomorphic node shown against the size of the graph. This
analysis considers a few datasets widely used in the neural network literature to benchmark link
prediction methods such as OGB2 ppa and ddi, where ppa is the largest dataset we were able to run
the nauty3 isomorphism checking algorithm without crashing. Nauty [48] is one of the most efficient
graph isomorphism algorithms available, which we use to calculate a lower bound on the size of the
automorphism group of our graphs. Using social networks in the SNAP4 repository we again observe
a large fraction of the nodes are non-isomorphic. Visual inspection shows that most isomorphic nodes
are low-degree siblings (e.g., the most common are nodes with degree one that have the same parent).
Note that our results do not contradict Ball and Geyer-Schulz [5], which shows that many real-world
graphs have isomorphic nodes. Having isomorphic nodes is different than containing a large fraction
of isomorphic nodes.

The results in Figure 3 show that most nodes in real-world graphs tend to be non-isomorphic for
reasonably large graphs (in particular ppa). In what follows we show that random graph models
generally do not contain isomorphic nodes with high probability.

Theoretical results on random graphs. Regarding isomorphic nodes on random graphs, we can prove
the following result:

Corollary 3. Consider a random graph G = (V,E) with N given nodes so that all possible 2(
N
2)

graphs should have the same probability to be chosen. Then, as N ! 1 all nodes in G are
non-isomorphic, regardless whether we take the nodes in G to be attributed or unattributed.

Proof. The proof for unattributed G is a direct consequence of Erdos and Rényi [18, Theorem 2].
Adding node attributes cannot make two non-isomorphic nodes be isomorphic, which concludes our
proof.

Erdos and Rényi [18, Theorem 3] (see also Kim et al. [27, Theorem 3.1]) shows that the statement
in Corollary 3 is also true for G(N, p) graphs with p satisfying (lnN)/N  p  1 � (lnN)/N .
Kim et al. [27, Theorem 3.1] shows a similar result for random d-regular graph on N vertices with
3  d  n�4. Luczak et al. [41] has shown similar results for preferential-attachment graphs, where
in each step a new node with m � 3 edges is added. In what follows we show a similar result for
SBMs.
Proposition 1. Consider a random graph G = (V,E) with N given nodes, generated by the SBM in
Definition 6, where within-block and inter-block probabilities in S lie in the interval (p, 1� p), with

2https://ogb.stanford.edu/docs/graphprop/
3https://pallini.di.uniroma1.it/
4https://snap.stanford.edu/data/index.html

25

(lnN)/N  p  1� (lnN)/N . Then, as N ! 1 all nodes in G are non-isomorphic, regardless
whether we take the nodes in G to be attributed or unattributed.

Proof. Let S have r > 0 blocks. Consider generating the G first by sampling the within-block edges.
Let Ga be the induced subgraph of all nodes that belong to a single block a 2 {1, . . . , r}. By the
results in Erdos and Rényi [18, Theorem 3], as N ! 1, Ga has no isomorphic nodes. The above is
true for all within-block edges. Now consider sampling the between-block edges of two i, j 2 V
nodes in G. The event of i and j being isomorphic (if considering just their edges to Ga) is the same
as they connecting to the same nodes in Ga (since each node on a block is non-isomorphic, if they
connect to different nodes they would no longer be isomorphic). The probability of this event is at
most (1� ✏)↵N , for ✏ = min(p, 1� p), where ↵ > 0 is the fraction of nodes in Ga (which is not a
function of N). As N ! 1, by the union bound, the probability that this will happen with any pair
of edges is at most

�
N

2

�
(1� ✏)↵N , which goes to zero.

W.l.o.g. now assume a is the block with the least number of nodes (which is also diverging as
N ! 1). The only alternative for i and j to be isomorphic is to do so by connecting to nodes
in distinct blocks. For instance, we could imagine r copies of Ga: Even though i and j did not
connect to the same nodes in the same graphs, they connected to their isomorphic equivalent nodes in
different copies. But since there are only r blocks, and r does not depend on N , this event must have
probability at most (1� ✏)↵N/r. As N ! 1, by the union bound, the probability

�
N

2

�
(1� ✏)↵N/r

goes to zero. Replacing the copies of Ga with the actual sampled blocks only makes this probability
smaller, since the subgraphs of the other blocks are larger and may contain different topologies than
Ga (making their nodes distinct from the nodes in Ga). Finally, adding node attributes cannot make
two non-isomorphic nodes be isomorphic, which concludes our proof.

E Proof results for Theorem 1

In what follows we provide the elements to prove Theorem 1.

First we prove the following lemma of the difference between a graph-graphon (N-normalized) sum
aggregation and a sampled-graph (N-normalized) sum aggregation in Definition 13. Using the same
assumptions as Maskey et al. [45, Lemma B.3]:
Lemma 3. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-2. are
satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr), with Mtr as
in Assumption 1 item 4. Consider a metric-space signal f : � ! RF with kfk1 < 1. Suppose that
X1, . . . , XN are drawn i.i.d. from µ on �, and let p 2 (0, 1/H). Let x 2 �, and define the random
variable

Tx =
1

N

NX

i=1

A(x,Xi)�
�
f(x), f(Xi)

�
� 1

N

NX

i=1

W (x,Xi)�
�
f(x), f(Xi)

�

on the sample space XN ⇥ [0, 1]N . Then, with probability at least 1�Hp, we have

kTxk1 
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log 2/pp

N
. (5)

Proof. The proof of the bound is the same as the proof in Maskey et al. [45, Lemma B.3] since
E(A(x,Xi)) = W (x,Xi), even though Tx is a different quantity than the quantity used in Maskey
et al. [45, Lemma B.3].

Combining Maskey et al. [45, Lemma B.3] and Lemma 3, we can use the triangle inequality to prove
the following lemma about concentration of error between a sampled-graph (N-normalized) sum
aggregation in Definition 13 and the continuous integral aggregation in Definition 12, which is used
in Definitions 3 and 5. Using the same assumption as Maskey et al. [45, Lemma B.4]:
Lemma 4. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-2. are
satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr). Consider a

26

metric-space signal f : � ! RF with kfk1 < 1. Suppose that X1, . . . , XN are drawn i.i.d. from
µ on �, and let p 2 (0, 1/(2H)). Let x 2 �, and define the random variable

Rx =
1

N

NX

i=1

A(x,Xi)�
�
f(x), f(Xi)

�
�
Z

�

W (x, y)�
�
f(x), f(y)

�
dµ(y)

on the sample space �N ⇥ [0, 1]N . Then, with probability at least 1� 2Hp, we have

kRxk1  2
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log 2/pp

N
. (6)

Proof. Use the triangle inequality, the results from Maskey et al. [45, Lemma B.3] and Lemma 3.
Define Yx = 1

N

P
N

i=1 W (x,Xi)�
�
f(x), f(Xi)

�
�
R
�
W (x, y)�

�
f(x), f(y)

�
dµ(y).

kRxk1 = kTx + Yxk1  kTxk1 + kYxk1.

From Maskey et al. [45, Lemma B.3] and Lemma 3, kTxk1 
p
2
(L�(Mtr)kfk1+k�(0,0)k1)

p
log 2/pp

N

w.p. 1 � Hp and kYxk1 
p
2
(L�(Mtr)kfk1+k�(0,0)k1)

p
log 2/pp

N
w.p. 1 � Hp. We have with

probability at least 1� 2Hp using the union bound of the two events,

kRxk1  2
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log 2/pp

N
.

Based on Lemma 4, we can prove the following corollary about the maximum concentration error
between sampled-graph (N-normalized) sum aggregation (M•

A
) and continuous integral aggregation

(M•
W

) for all the nodes in the sampled graph G. Using the same overall framing as [45, Lemma B.3]:

Corollary 4. Consider (�, d, µ) a metric-measure space and graphon W satisfying items 1 and 2 of
Assumption 1. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr), and a
metric-space signal f : � ! RF with kfk1 < 1. Define X1, . . . , XN as drawn i.i.d. from µ on �,
and then edges Ai,j ⇠ Ber(W (Xi, Xj)) i.i.d sampled. Let p 2 (0, 1/2H), and define the random
variable

RXi =
1

N

NX

j=1

A(Xi, Xj)�
�
f(Xi), f(Xj)

�
�
Z

�

W (Xi, y)�
�
f(Xi), f(y)

�
dµ(y)

on the sample space �N ⇥ [0, 1]N . Then, with probability at least 1� 2Hp, we have

max
i=1,...,N

k(M•
A
�M•

W
)
�
�(f, f)

�
(Xi)k1 = max

i=1,...,N
kRXik1

 2
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log(2N/p)p

N
.

(7)

Proof. Using the result from Lemma 3 we have with probability 1� Hp

N
,

k 1

N

NX

i=1

A(x,Xi)�
�
f(x), f(Xi)

�
� 1

N

NX

i=1

W (x,Xi)�
�
f(x), f(Xi)

�
k1


p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log(2N/p)p

N
.

Using the union bound of the N events that the above equations happens for x = X1, ..., XN , with
probability at least 1�Hp, we have

max
i=1,...,N

k 1

N

NX

j=1

A(Xi, Xj)�
�
f(Xi), f(Xj)

�
� 1

N

NX

j=1

W (Xi, Xj)�
�
f(Xi), f(Xj)

�
k1


p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log(2N/p)p

N
.

27

The same logic can be applied to YXi , 8i 2 {1, ..., N}. Thus, using the triangle inequality, and the
union bound of the two events, we have with probability at least 1� 2Hp,

max
i=1,...,N

kRXik1  2
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log(2N/p)p

N
.

Now the layer-wise error between a cMPNN• and gMPNN• can be bounded as follows:

Corollary 5. Consider (�, d, µ) a metric-measure space and graphon W consistent with items 1
and 2 of Assumption 1. Let � : R2F ! RH and : RF+H ! RF

0
be Lipschitz continuous

with Lipschitz constants L�(Mtr) and L (Mtr). Consider a metric-space signal f : � ! RF with
kfk1 < 1. Let p 2 (0, 1

2(H+1)). Suppose that X1, . . . , XN are drawn i.i.d. from µ in �, and then
edges Ai,j ⇠ Ber(W (Xi, Xj)) i.i.d sampled. Then with probability at least 1� 2Hp,

max
i=1,...,N

k
⇣
f(·),M•

A

�
�(f, f)

�
(Xi)

⌘
�

⇣
f(·),M•

W

�
�(f, f)

�
(Xi)

⌘
k1

 L (Mtr)
⇣
2
p
2
(L�(Mtr)kfk1 + k�(0, 0)k1)

p
log(2N/p)p

N

⌘
.

(8)

Proof. The proof is the same as Maskey et al. [45, Lemma B.6]. The different result comes from the
different bound between Corollary 4 and Maskey et al. [45, Lemma B.5].

E.1 Proof of Theorem 1

Following [45, Appendix B.2], they first bound the layer-wise error as Corollary 5, and derive the
final bound through a recurrence relation. The only difference is on the layer-wise bound Corollary 6
and Maskey et al. [45, Corollary B.6]. We will omit the middle parts. Hence, finally, we can prove
Theorem 1 by slightly adpating the proof in Maskey et al. [45, Theorem B.14] to our setting.

Theorem 1 (OOD convergence without in-distribution convergence). For a random graph model
(W, f) satisfying Definition 1, let N tr be a random variable defining the distribution of graph
sizes in training. Define the test distribution (Gte,F te) ⇠ (W, f) through the causal graph in
Figure 1 as an interventional change to obtain larger test graph sizes where min(supp(N te))�Mtr =
max(supp(N tr)) (which means any test graph is much larger than the largest possible training
graph). Let ⇥ = ((�(l))T

l=1, (
(l))T

l=1) be a MPNN as in Definition 2 with T layers such that
�(l) : R2Fl�1 ! RHl�1 and (l) : RFl�1+Hl�1 ! RFl are learned from the training distribution
and are Lipschitz continuous with Lipschitz constants L(l)

� (Mtr) and L(l)
 (Mtr) that depend on Mtr.

Let gMPNN• ⇥•(T)
A

and cMPNN• ⇥•(T)
W

be as in Definitions 3 and 5. Let X te
1 , ..., X

te
N te and Ate be

as in Definition 1. Let p 2 (0, 1PT
l=1 2(Hl+1)

). Then, if

p
N te

p
log (2N te/p)

� 4
p
2

dmin
, (1)

we have with probability at least 1�
P

T

l=1 2(Hl + 1)p,

�•A-W := max
i=1,...,N te

k⇥•(T)
Ate (F te)i �⇥•(T)

W
(f)(X te

i
)k1  (C1 + C2kfk1)

p
log(2N te/p)p

N te
,

where the constants C1 and C2 are defined in the Appendix and depend on {L(l)
� (Mtr), L

(l)
 (Mtr)}Tl=1

and the distribution of (Gtr,F tr).

Proof. In this case, k�(l)(0, 0)k1, k (l)(0, 0)k1 can be determined by (Gtr,F tr), N tr if the MPNN
⇥ has been trained on the training graph (Gtr,F tr).

28

Following the procedure of Maskey et al. [45, Appendix B.2] with Corollary 5, we can derive
similarly, with probability at least 1�

P
T

l=1(2Hl + 1)p,

�•A-W 
TX

l=1

L(l)
 (Mtr)

⇣
2
p
2
(L�(Mtr)(l)kf•(l)k1 + k�(l)(0, 0)k1)

p
log(2N te/p)p

N te

⌘

TY

l0=l+1

((L(l0)
 (Mtr))

2 + 2(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(9)

Using the same proof in Maskey et al. [45, Lemma B.9], we can derive

||f•(l)||1  B1
(l) +B2

(l)||f ||1,

where B1
(l), B2

(l) are independent of f , and

B1
(l) =

lX

k=1

�
L(k)
 (Mtr)k�(k)(0, 0)k1 + k (k)(0, 0)k1

� lY

l0=k+1

L(l0)
 (Mtr)

�
1 + L(l0)

� (Mtr)
�

(10)

and

B2
(l) =

lY

k=1

L(k)
 (Mtr)

⇣
1 + L(k)

� (Mtr)
⌘
. (11)

Now we can decompose the summation in Equation (9). First, we defince C1 as

C1 =
TX

l=1

L(l)
 (Mtr)

⇣
2
p
2(L(l)

� (Mtr) B1
(l) + k�(l+1)(0, 0)k1)

⌘

⇥
TY

l0=l+1

((L(l0)
 (Mtr))

2 + 2(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(12)

Then we can define C2 as

C2 =
TX

l=1

L(l)
 (Mtr)

⇣
2
p
2L(l)
� (Mtr)B2

(l)
⌘ TY

l0=l+1

((L(l0)
 (Mtr))

2 + 2(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(13)
It is clear to see we can rewrite Equation (9) as

�•A-W  (C1 + C2kfk1)

p
log(2N te/p)p

N te
. (14)

Thus C1 and C2 depends on {L(l)
� (Mtr)}Tl=1 and {L(l)

 (Mtr)}Tl=1.

F Proof of theoretical results for hardness of link prediction

In this section, we prove the results for ⇥•(T)
A

and ⇥•(T)
W

based on Theorem 1. Now we can prove
Corollary 1.

Corollary 1. Let ⇥ = ((�(l))T
l=1, (

(l))T
l=1),⇥

•(T)
A

,⇥•(T)
W

, p, (W, f), (Gtr,F tr), (Gte,F te), N tr,
N te, Ate, and X te

1 , ..., X
te
N te be as in Theorem 1. If there exists i, j 2 V te, i 6= j, s.t. ⇥•(T)

W
(Xi) =

⇥•(T)
W

(Xj) and Equation (1) is satisfied, then, with C1 and C2 as in Theorem 1, we have that with
probability at least 1�

P
T

l=1 2(Hl + 1)p,

k⇥•(T)
Ate (F te)i �⇥•(T)

Ate (F te)jk1  (C1 + C2kfk1)
2
p
log(2N te/p)p

N te
.

29

Proof. The proof follows Theorem 1 by using the triangle inequality.

From Theorem 1, we know with probability at least 1 � 2
P

T

l=1(Hl + 1)p, k⇥•(T)
Ate (F te)i �

⇥•(T)
W

(f)(X te
i
)k1  (C1 + C2kfk1)

p
log 2N te/pp

N te and k⇥•(T)
Ate (F te)j � ⇥•(T)

W
(f)(X te

j
)k1 

(C1 + C2kfk1)
p

log 2N te/pp
N te .

Then

k⇥•(T)
Ate (F te)i �⇥•(T)

Ate (F te)jk1
 k⇥•(T)

Ate (F te)i �⇥•(T)
W

(f)(X te
i
)k1 + k⇥•(T)

W
(f)(X te

i
)�⇥•(T)

Ate (F te)jk1
= k⇥•(T)

Ate (F te)i �⇥•(T)
W

(f)(X te
i
)k1 + k⇥•(T)

W
(f)(X te

j
)�⇥•(T)

Ate (F te)jk1

 (C1 + C2kfk1)
2
p
log(2N te/p)p

N te
.

The first inequality holds by traingle inequality, and the second equation holds since⇥•(T)
W

(f)(X te
i
) =

⇥•(T)
W

(f)(X te
j
).

Then we are able to prove Lemma 1 by induction. By our Definition 7, we can also claim tk� tk�1 =
t⇡(k) � t⇡(k)�1, 8k 2 {1, ..., r}.

Lemma 1. Let ⇥ = ((�(l))T
l=1, (

(l))T
l=1) be a MPNN as in Definition 2, and ⇥•(T)

W
as in Defi-

nition 5. For the SBM model (W, f) in Definition 6 with N te nodes X1, . . . , XN te . If there exists
i, j 2 V te such that X te

i
, X te

j
are nodes that belong to isomorphic SBM blocks (Definition 7), then

⇥•(T)
W

(f)(X te
i
) = ⇥•(T)

W
(f)(X te

j
).

Proof. We prove the lemma by induction.

We assume in layer l, f•(l)(X te
i
) = f•(l)(X te

j
), 1  l  T � 1, f•(l) outputs the same value within

each block B(l), and B(l) = ⇡ �B(l). By Definitions 6 and 7, we know the assumption holds for
l = 1. First,

f•(l+1)(X te
i
) = (l+1)

⇣
f•(l)(X te

i
),M•

W

�
�(l+1)(f•(l), f•(l))

�
(X te

i
)
⌘
.

Since f•(l)(X te
i
) = f•(l)(X te

j
), we only need to show M•

W

�
�(l+1)(f•(l), f•(l))

�
(X te

i
) =

M•
W

�
�(l+1)(f•(l), f•(l))

�
(X te

j
).

M•
W

�
�(l+1)(f•(l), f•(l))

�
(X te

i
)

=

Z

[0,1]
W (X te

i
, y)�(l+1)(f•(l)(X te

i
), f•(l)(y))dy

=
rX

k=1

Z

[tk�1,tk)
W (X te

i
, y)�(l+1)(f•(l)(X te

i
), f•(l)(y))dy

=
rX

k=1

�(l+1)(B(l)
a
,B(l)

k
)

Z

[tk�1,tk)
W (X te

i
, y)dy

=
rX

k=1

�(l+1)(B(l)
a
,B(l)

k
)(tk � tk�1)Si,k

=
rX

k=1

�(l+1)(B(l)
a
,B(l)

k
)(tk � tk�1)S⇡(i),⇡(k)

(15)

30

=
rX

k=1

�(l+1)(B(l)
⇡(a),B

(l)
⇡(k))(t⇡(k) � t⇡(k)�1)S⇡(i),⇡(k)

=
rX

k=1

�(l+1)(B(l)
b
,B(l)

⇡(k))(t⇡(k) � t⇡(k)�1)Sj,⇡(k)

=
rX

k=1

�(l+1)(B(l)
b
,B(l)

k
)(tk � tk�1)Sj,k

=
rX

k=1

�(l+1)(B(l)
b
,B(l)

k
)

Z

[tk�1,tk)
W (X te

j
, y)dy

=

Z

[0,1]
W (X te

j
, y)�(l+1)(f•(l)(X te

j
), f•(l)(y))dy

= M•
W

�
�(l+1)(f•(l), f•(l))

�
(X te

j
)

(16)

Here we use the fact that f•(l) f•(l) outputs the same value within each block, and B(l)
k

=

B(l)
⇡(k), 8k 2 {1, ..., r}.

We have shown f•(l+1)(X te
i
) = f•(l+1)(X te

j
). And this proof applies for all X te

i
2 [ta�1, ta) (in

block a), and the same conclusion holds. So f•(l+1) still outputs the same value within each block.
Furthermore, B(l+1)

a = B(l+1)
⇡(a) using the same proof technique. And this implies ⇡ � B(l+1) =

B(l+1).

Thus, ⇥•(T)
W

(X te
i
) = f•(T)(X te

i
) = f•(T)(X te

j
) = ⇥•(T)

W
(X te

j
).

Then we are ready to prove Corollary 2 by applying Corollary 1.

Corollary 2. Let ⇥ = ((�(l))T
l=1, (

(l))T
l=1) be the MPNN with T layers and ⇥•(T)

A
,⇥•(T)

W
as in

Theorem 1. Let ⌘• : RFT ⇥ RFT ! [0, 1] be as in Definition 8. Consider the SBM (W, f) in
Definition 6 with isomorphic blocks (Definition 7). Let (Gtr,F tr) ⇠ (W, f) and (Gte,F te) ⇠ (W, f)
be the training and test graphs with N tr and N te nodes, respectively as in Theorem 1. Consider any
two test nodes i, j 2 {1, ..., N te}, i 6= j, for which we can make a link prediction decision with ⌘•

(i.e., ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
A (F te)j) 6= ⌧). Let Gte be large enough to satisfy both Equation (1) and

p
N te

p
log(2N te/p)

>
2(C1 + C2kfk1)

|⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� ⌧ |/L•

⌘
(Mtr)

,

where p, C1, and C2 are as given in Corollary 1. Then, if i and j belong to isomorphic blocks (i.e.,
⇥•(T)

W
(f)(X te

i
) = ⇥•(T)

W
(f)(X te

j
)), with probability at least 1�

P
T

l=1 2(Hl+1)p the link prediction
method in Definition 8 will make the same link prediction regardless of the SBM probability matrix
S (Definition 6) and whether i and j are in the same block or distinct isomorphic blocks.

Proof. To prove the corollary, we assume we have two nodes j and j0, such that i and j are in the
same block while i and j0 are in distinct isomorphic blocks. In the proof, we will show that the link
prediction between i and j and the prediction between i and j0 will be the same.

First, from Corollary 1, since nodes j and j0 are in distinct isomorphic SBM blocks, when Equation (1)
is satisfied, we have with probability at least 1� 2

P
T

l=1(Hl + 1)p

k⇥•(T)
Ate (F te)j �⇥•(T)

Ate (F te)j0k1  (C1 + C2kfk1)
2
p
log 2N te/pp

N te
.

31

Then when the requirement for N te is satisfied,

k⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� ⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j0)k1

 L•
⌘
(Mtr)k⇥•(T)

Ate (F te)j �⇥•(T)
Ate (F te)j0k1  L•

⌘
(Mtr)(C1 + C2kfk1)

2
p
log 2N te/pp

N te

< k⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� ⌧k1

If ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j) > ⌧ , then

⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j0)

� ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� |⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j0)|

> ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� |⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌧ |

= ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� (⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌧) = ⌧

If ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j) < ⌧ , then

⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j0)

 ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j) + |⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j0)|

< ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j) + |⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌧ |

= ⌘•(⇥•(T)
Ate (F te)i,⇥

•(T)
Ate (F te)j)� (⌘•(⇥•(T)

Ate (F te)i,⇥
•(T)
Ate (F te)j)� ⌧) = ⌧

So whether i and j are in the same block, or in distinct isomorphic SBM blocks, their prediction will
be the same (both links have predictions larger than ⌧ or less).

G Proof for pairwise gMPNN
••

and cMPNN
••

First we prove Lemma 2 showing W (x, y) is a stationary point in cMPNN••.

Lemma 2. If �(x, y) = y and (x, y) = x/y, then f••(t)(x, y) = W (x, y), 8x, y 2 X is a station-
ary point in the cMPNN••, i.e. if f••(t�1)(x, y) = W (x, y), then f••(t)(x, y) = W (x, y), 8x, y 2
X .

Proof. If f••(t�1)(x, y) = W (x, y), then

M••
W
(�(t)(f (t�1)))(x, y) =

1

2

Z

X
(
W (y, z)

cW (x, y)
�(t)(f••(t�1)(x, y), f••(t�1)(x, z))

+
W (x, z)

cW (x, y)
�(t)(f••(t�1)(x, y), f••(t�1)(y, z)))dµ(z)

=
1

2

Z

X
(
W (y, z)

cW (x, y)
W (x, z) +

W (x, z)

cW (x, y)
W (y, z))dµ(z)

=
1

cW (x, y)

Z

X
W (x, z)W (y, z)dµ(z)

=
cW (x, y)

cW (x, y)
= 1

Thus f••(t)(x, y) = (t)(f••(t�1)(x, y),M••
W
(�(t)(f••(t�1), f••(t�1)))(x, y)) = W (x,y)

1 =
W (x, y).

We finish proving W (x, y) is a stanionary point in cMPNN••. There are infinity choices of � and
such that W (x, y) is a stanionary point.

Then we aim to prove Theorem 2, and the prove procedure should be very similar as Theorem 1.

32

G.1 Preparation

Following Maskey et al. [45, Lemma B.3], we propose the following lemma for cMPNN••. Using
the same overall framing as Maskey et al. [45, Lemma B.3],
Lemma 5. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-3. are
satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr). Consider a
metric-space signal f•• : �⇥ � ! RF with kf••k1 < 1. Suppose that X1, . . . , XN are drawn
i.i.d. from µ on �, and let p 2 (0, 1/H). Let x, y 2 �, and define the random variable

Y ••
x,y

=
1

2N

NX

i=1

⇣
W (y,Xi)�(f

••(x, y), f••(x,Xi)) +W (x,Xi)�(f
••(x, y), f••(y,Xi))

⌘

� 1

2

Z

X

⇣
W (y, z)�(f••(x, y), f••(x, z))) +W (x, z)�(f••(x, y), f••(y, z))

⌘
dµ(z)

on the sample space �N . Then, with probability at least 1�Hp, we have

kY ••
x,y

k1 
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log 2/pp

N
. (17)

Proof. The proof of the bound is the same as the proof in Maskey et al. [45, Lemma B.3], even
though Yx,y is a different quantity than the quantity used in Maskey et al. [45, Lemma B.3].

Lemma 6. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-3. are
satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr). Consider a
metric-space signal f•• : �⇥ � ! RF with kf••k1 < 1. Suppose that X1, . . . , XN are drawn
i.i.d. from µ on �, and let p 2 (0, 1/H). Let x, y 2 �, and define the random variable

T ••
x,y

=
1

2N

NX

i=1

⇣
A(y,Xi)�(f

••(x, y), f••(x,Xi)) +A(x,Xi)�(f
••(x, y), f••(y,Xi))

⌘

� 1

2N

NX

i=1

⇣
W (y,Xi)�(f

••(x, y), f••(x,Xi)) +W (x,Xi)�(f
••(x, y), f••(y,Xi))

⌘

on the sample space XN ⇥ [0, 1]2N . Then, with probability at least 1�Hp, we have

kT ••
x,y

k1 
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log 2/pp

N
. (18)

Proof. The proof procedure is the same as Maskey et al. [45, Lemma B.3] where we use
E[A(y,Xi)] = W (y,Xi) and E[A(x,Xi)] = W (x,Xi).

Lemma 7. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-3. are
satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr). Consider a
metric-space signal f•• : �⇥ � ! RF with kf••k1 < 1. Suppose that X1, . . . , XN are drawn
i.i.d. from µ on �, and let p 2 (0, 1/(2H)). Let x, y 2 �, and define the random variable

R••
x,y

=
1

2N

NX

i=1

⇣
A(y,Xi)�(f

••(x, y), f••(x,Xi)) +A(x,Xi)�(f
••(x, y), f••(y,Xi))

⌘

� 1

2

Z

X

⇣
W (y, z)�(f••(x, y), f••(x, z))) +W (x, z)�(f••(x, y), f••(y, z))

⌘
dµ(z)

on the sample space �N ⇥ [0, 1]2N . Then, with probability at least 1� 2Hp, we have

kR••
x,y

k1  2
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log 2/pp

N
. (19)

33

Proof. Use the triangle inequality and the results from Lemmas 5 and 6.

kR••
x,y

k1 = kT ••
x,y

+ Y ••
x,y

k1  kT ••
x,y

k1 + kY ••
x,y

k1.

From Lemmas 5 and 6, kT ••
x,y

k1 
p
2
(L�(Mtr)kf••k1+k�(0,0)k1)

p
log 2/pp

N
w.p. 1 � Hp and

kY ••
x,y

k1 
p
2
(L�(Mtr)kf••k1+k�(0,0)k1)

p
log 2/pp

N
w.p. 1�Hp. With probability at least 1� 2Hp,

by intersecting the two events, we have

kR••
x,y

k1  2
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log 2/pp

N
.

Based on Lemma 7, we can prove the following corollary about the maximum concentration error
for all pairs of nodes in the sampled graph G. Using the same overall framing as Maskey et al. [45,
Lemma B.3],
Corollary 6. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-3.
are satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr). Consider
a metric-space signal f•• : �⇥ � ! RF with kf••k1 < 1. Suppose that X1, . . . , XN are drawn
i.i.d. from µ on �, and then edges Ai,j ⇠ Ber(W (Xi, Xj)) i.i.d sampled. Let p 2 (0, 1/2H), and
define the random variable

R••
Xi,Xj

=
1

2N

NX

z=1

⇣
A(Xj , Xz)�(f

••(Xi, Xj), f
••(Xi, Xz))

+A(Xi, Xz)�(f
••(Xi, Xj), f

••(Xj , Xz))
⌘

� 1

2

Z

X

⇣
W (Xj , z)�(f

••(Xi, Xj), f
••(Xi, z)))

+W (Xi, z)�(f
••(Xi, Xj), f

••(Xj , z))
⌘
dµ(z)

on the sample space �N ⇥ [0, 1]2N . Then, with probability at least 1� 2Hp, we have

max
i,j=1,...,N

kR••
Xi,Xj

k1  2
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/p)p

N
. (20)

Proof. Using the result from Lemma 6, we have with probability 1� Hp

N2 ,

kT ••
Xi,Xj

k1 
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/p)p

N
.

Using the union bound of the N2 events that the above equations happens for x = X1, ..., XN and
y = X1, ..., XN , with probability at least 1�Hp, we have

max
i,j=1,...,N

kT ••
Xi,Xj

k1 
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/p)p

N
.

The same logic can be applied to Y ••
Xi,Xj

, 8i 2 {1, ..., N}. Thus, using the triangle inequality, and
the union bound of the two events, we have with probability at least 1� 2Hp,

max
i,j=1,...,N

kR••
Xi,Xj

k1  2
p
2
(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/p)p

N
.

Following Maskey et al. [45, Lemma B.2], we also bound the maximum sampled-graph fraction of
common neighbors cA(·, ·) under a condition of the sample size N . Using a same assumption as
Maskey et al. [45, Lemma B.2],

34

Lemma 8. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-3.
are satisfied. Suppose that X1, . . . , XN are drawn i.i.d. from µ on �, and then edges Ai,j ⇠
Ber(W (Xi, Xj)) i.i.d sampled. And let p 2 (0, 1). If N 2 N satisfy

p
N � 4

p
2

p
log (2N2/p)

dcmin
. (21)

Then, with probability at least 1� 2p, we have

max
i,j=1,...,N

kcA(Xi, Xj)� cW (Xi, Xj)k1  2
p
2

p
log (2N2/p)p

N
,

and

min
i,j=1,...,N

cA(Xi, Xj) �
dcmin

2
. (22)

Proof. For given x, y 2 X , define the random variable

cA(x, y)� cX(x, y) =
1

N

NX

i=1

A(x,Xi)A(y,Xi)�
1

N

NX

i=1

W (x,Xi)W (y,Xi)

on the sample space �N ⇥ [0, 1]2N . Using the same proof technique in Lemmas 5 to 7, we can prove
with probability at least 1� 2p, we have

max
i,j=1,...,N

kcA(Xi, Xj)� cW (Xi, Xj)k1  2
p
2

p
log (2N2/p)p

N
,

Since cW (Xi, Xj) � dcmin, then with probability at least 1� 2p, when Equation (21) is satisfied, we
have

min
i,j=1,...,N

cA(Xi, Xj) �
dcmin

2

Based on Lemma 8, we can prove a modified version of Maskey et al. [45, Lemma B.5]. Using a
same overall framing as Maskey et al. [45, Lemma B.5],
Lemma 9. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions 1.1-
3. are satisfied. Let � : R2F ! RH be Lipschitz continuous with Lipschitz constant L�(Mtr).
Consider a metric-space signal f•• : � ⇥ � ! RF with kf••k1 < 1. Let p 2 (0, 1

2(H+1)), and
let N 2 N satisfy (21). Suppose that X1, . . . , XN are drawn i.i.d. from µ in �, and then edges
Ai,j ⇠ Ber(W (Xi, Xj)) i.i.d sampled. Then, condition (22) together with (23) below are satisfied in
probability at least 1� 2(H + 1)p:

max
i,j=1,...,N

k(M••
A

�M••
W
)
�
�(f••, f••)

�
(Xi, Xj)k1

 4

p
2
p
log(2N2/P)p
Nd2cmin

(L�(Mtr)kf••k1 + k�(0, 0)k1)

+
2
p
2(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/P)

dcmin
p
N

,

(23)

Proof. The proof is the same as Maskey et al. [45, Lemma B.5]. The only difference is on the
difference between Lemma 8 and Maskey et al. [45, Lemma B.2], and the difference between
Corollary 6 and Maskey et al. [45, Lemma B.4].

Same as Maskey et al. [45, Lemma B.6], the layer-wise error for cMPNN•• and a gMPNN•• can be
bounded. Using the same overall framing as Maskey et al. [45, Lemma B.6],

35

Corollary 7. Let (�, d, µ) be a metric-measure space and W be a graphon s.t. Assumptions
1.1-3. are satisfied. Let � : R2F ! RH and : RF+H ! RF

0
be Lipschitz continuous with

Lipschitz constants L�(Mtr) and L (Mtr). Consider a metric-space signal f•• : �⇥ � ! RF with
kf••k1 < 1. Let p 2 (0, 1

2(H+1)), and let N 2 N satisfy (21). Suppose that X1, . . . , XN are
drawn i.i.d. from µ in �, and then edges Ai,j ⇠ Ber(W (Xi, Xj)) i.i.d sampled. Then, condition (22)
together with (24) below are satisfied in probability at least 1� 2(H + 1)p,

max
i,j=1,...,N

k
⇣
f••(·, ·),M••

A

�
�(f••, f••)

�
(Xi, Xj)

⌘
�

⇣
f••(·, ·),M••

W

�
�(f••, f••)

�
(Xi, Xj)

⌘
k1

 L (Mtr)
⇣
4

p
2
p
log(2N2/p)p
Nd2cmin

(L�(Mtr)kf••k1 + k�(0, 0)k1)

+
2
p
2(L�(Mtr)kf••k1 + k�(0, 0)k1)

p
log(2N2/p)

dcmin
p
N

⌘
,

(24)

Proof. The proof is the same as Maskey et al. [45, Lemma B.6]. The difference comes from the
different bound in our Lemma 9 and the bound used by Maskey et al. [45, Lemma B.5].

G.2 Proof for Theorem 2

Finally, we can prove Theorem 2. The proof closely follows that of Maskey et al. [45, Theorem B.14],
adapted to our setting. Using the same overall framing as Maskey et al. [45, Theorem B.14].
Theorem 2 (OOD convergence without in-distribution convergence). For a random graph model
(W, f) satisfying Definition 1, let N tr be a random variable defining the distribution of graph sizes
in training. Define the test distribution (Gte,F te) ⇠ (W, f) through the causal graph in Figure 1
as an interventional change to obtain larger test graph sizes where min(supp(N te))�Mtr =
max(supp(N tr)) (which means any test graph is much larger than the largest possible training
graph). Let ⇥ = ((�(l))T

l=1, (
(l))T

l=1) be a MPNN as in Definition 2 with T layers such that �(l)

and (l) that are learned from the training data and are Lipschitz continuous with Lipschitz constants
L(l)
� (Mtr) and L(l)

 (Mtr). Let gMPNN•• ⇥••(T)
W

and cMPNN•• ⇥••(T)
W

be as in Definitions 9 and 10.
For a random graph model (W, f) as in Definition 1 with dcmin > 0. Let X te

1 , ..., X
te
N te and Ate be as

in Definition 1. Let p 2 (0, 1PT
l=1 2(Hl+1)

). Then, if
p
N tep

log (2(N te)2/p)
� 4

p
2

dcmin
, we have with probability

at least 1�
P

T

l=1 2(Hl + 1)p,

�••A-W= max
i,j=1,...,N te

k⇥••(T)
A

(F ••)i,j�⇥••(T)
W

(f••)(X te
i
, X te

j
)k1(C3+C4kf••k1)

p
log(2(N te)2/p)p

N te
,

where the constants C3 and C4 are defined in the Appendix and depend on {L(l)
� (Mtr), L

(l)
 (Mtr)}Tl=1

and the distribution of (Gtr,F tr).

Proof. In this case, k�(l)(0, 0)k1, k (l)(0, 0)k1 can be determined by (Gtr,F tr), N tr if the MPNN
⇥ has been trained on the training graph (Gtr,F tr).

Following the procedure of Maskey et al. [45, Appendix B.2] with Corollary 7, we can derive
similarly, with probability at least 1�

P
T

l=1(2Hl + 1)p,

�••A-W 
TX

l=1

L(l)
 (Mtr)

⇣
4

p
2
p
log(2(N te)2/p)p
N ted2cmin

(L(l)
� (Mtr)kf••(l)k1 + k�(l)(0, 0)k1)

+
2
p
2(L(l)(Mtr)

� kf••(l)k1 + k�(l)(0, 0)k1)
p
log(2(N te)2/p)

dcmin
p
N te

⌘

TY

l0=l+1

((L(l0)
 (Mtr))

2 +
8

d2cmin
(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(25)

36

Using the same proof in Maskey et al. [45, Lemma B.9], we can derive

||f••(l)||1  B••
1

(l) +B••
2

(l)||f ||1,

where B1
••(l), B2

••(l) are independent of f••, and

B••
1

(l+1) =
l+1X

k=1

�
L(k)
 (Mtr)

1

dcmin
k�(k)(0, 0)k1 + k (k)(0, 0)k1

�

l+1Y

l0=k+1

L(l0)
 (Mtr)

�
1 +

1

dcmin
L(l0)
� (Mtr)

�
(26)

and

B••
2

(l+1) =
l+1Y

k=1

L(k)
 (Mtr)

✓
1 +

1

dcmin
L(k)
� (Mtr)

◆
. (27)

Now we can decompose the summation in Equation (25). First, we defince C3 as

C3 =
TX

l=1

L(l)
 (Mtr)

⇣
4

p
2

d2cmin
(L(l)
� (Mtr)B

••(l)
1 + k�(l)(0, 0)k1)

+
2
p
2(L(l)

� (Mtr)B
••(l)
1 + k�(l)(0, 0)k1)

dcmin

⌘

TY

l0=l+1

((L(l0)
 (Mtr))

2 +
8

d2cmin
(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(28)

Then we can define C4 as

C4 =
TX

l=1

L(l)
 (Mtr)

⇣
4

p
2

d2cmin
L(l)
� (Mtr)B

••(l)
2 +

2
p
2L(l)
� (Mtr)B

••(l)
2

dcmin

⌘

TY

l0=l+1

((L(l0)
 (Mtr))

2 +
8

d2cmin
(L(l0)
� (Mtr))

2(L(l0)
 (Mtr))

2),

(29)

It is clear to see we can rewrite Equation (25) as

�••A-W  (C3 + C4kf••k1)

p
log(2(N te)2/p)p

N te
. (30)

Thus C3 and C4 depends on {L(l)
� (Mtr)}Tl=1 and {L(l)

 (Mtr)}Tl=1 and possibly on (Gtr,F tr) and
N tr.

37

