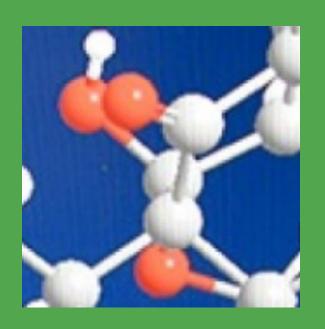


K-theoretic Persistent Cohomology



Y. Maruyama and A. Yasuda (Nagoya Uuniversity and Australian National University)

Overview: We propose K-theoretic persistent cohomology (KPCH), which equips the Grothendieck group of persistence modules with lambda-operations arising from exterior powers. This yields new persistence layers that measure concurrency of structures, thus allowing to distinguish graph structures indistinguishable by usual persistent homology.

Objective: Beyond additive summaries of H^p (e.g. total persistence), quantify simultaneity of classes. KPCH does this by placing $[H^p]$ in a K-theoretic λ -ring and extracting exterior-power layers $\Lambda^i H^p$ that are computable, stable, and interpretable as concurrency.

Setup: Fix a field k and a totally ordered $I \subset \mathbb{R}$. A persistence module is a functor

$$M: I \to \mathbf{Vect}_k, \qquad t \mapsto M_t, \quad (s \le t) \mapsto \phi_{s \le t}^M: M_s \to M_t.$$

Let $\mathsf{PMod}_{\mathsf{pfd}}$ denote pointwise fin-dim modules. The interval decomposition thm yields a barcode $\mathcal{B}(M)$ (a finite multisite of intervals when M is tame) and $M \cong \bigoplus_{J \in \mathcal{B}(M)} I_J$. Define Betti curve $\beta_M(t) := \dim_k M_t$ and total persistence $\mathrm{TP}(\mathcal{B}(M)) := \sum_{[b,d) \in \mathcal{B}(M)} (d-b)$.

K-theory and λ-structure:

Let $K_0(\mathsf{PMod}_{\mathsf{pfd}})$ be the Grothendieck group generated by iso. classes [X] with relations $[\mathsf{B}] = [\mathsf{A}] + [\mathsf{C}]$ for every short exact $0 \to \mathsf{A} \to \mathsf{B} \to \mathsf{C} \to 0$ in $\mathsf{PMod}_{\mathsf{pfd}}$.

Define multiplication by $[M] \cdot [N] := [M \otimes N]$

Define $\lambda^n([M]) := [\Lambda^n M]$ where $(\Lambda^n M)_t = \Lambda^n(M_t)$ with structure maps $\Lambda^n(\phi_{s \le t}^M)$.

Theorem (special λ -structure): $K_0(\mathsf{PMod}_{pfd})$ with \cdot and λ^n satisfies

$$\lambda^0(x) = 1, \quad \lambda^1(x) = x, \quad \lambda_t(x+y) = \lambda_t(x)\lambda_t(y), \quad \lambda_t = \sum_{n \ge 0} \lambda^n t^n.$$

For a filtered space $(X_{\alpha})_{\alpha \in I}$, set $\kappa_p := [H^p(X_{\alpha}; k)] \in K_0$ and interpret $\lambda^i(\kappa_p)$ as the K-class of the new persistence layer Λ^iH^p .

Interval calculus: If $M \cong \bigoplus_{r \in R} I_{J_r}$, then the following hold:

$$\Lambda^i M \; \cong \; \bigoplus_{r_1 < \dots < r_i} \; I_{J_{r_1} \cap \dots \cap J_{r_i}}, \qquad \mathcal{B}(\Lambda^i M) = \left\{ \left[\max b_{\ell_j}, \, \min d_{\ell_j} \right) \right\}_{\ell_1 < \dots < \ell_i}$$

keeping only positive-length intersections. Thus Λ^i records i-fold concurrency windows.

Stability: Let d_I be the interleaving distance and d_B the bottleneck distance,

$$d_I(\Lambda^i M, \Lambda^i N) \leq d_I(M, N) \Rightarrow d_B(\operatorname{Dgm}(\Lambda^i M), \operatorname{Dgm}(\Lambda^i N)) \leq d_B(\operatorname{Dgm}(M), \operatorname{Dgm}(N)).$$

Integral formula:
$$\operatorname{TP} \left(\mathcal{B}(\Lambda^i M) \right) = \int_I \binom{\beta_M(t)}{i} dt, \quad \dim_k(\Lambda^i M_t) = \binom{\beta_M(t)}{i}.$$

This enables a single-pass computation of the total i-fold concurrency form $\mathcal{B}(M)$.

Experiment Results:

Feature	SEQUENTIAL	Overlap	AUROC	Acc.
$ ext{TP}ig(\mathcal{B}(\Lambda^2H^1)ig) \ ext{TP}ig(\mathcal{B}(H^1)ig)$	0.00	0.62	0.99	0.97
	1.58	1.60	0.52	0.55
Max lifetime in H^1	0.86	0.88	0.54	0.53

