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Abstract
Many algorithms have been developed to estimate probability distributions subject to differential
privacy (DP): such an algorithm takes as input independent samples from a distribution and estimates
the density function in a way that is insensitive to any one sample. A recent line of work, initiated by
Raskhodnikova et al. (Neurips ’21), explores a weaker objective: a differentially private algorithm
that approximates a single sample from the distribution. Raskhodnikova et al. studied the sample
complexity of DP single-sampling i.e., the minimum number of samples needed to perform this task.
They showed that the sample complexity of DP single-sampling is less than the sample complexity
of DP learning for certain distribution classes. We define two variants of multi-sampling, where the
goal is to privately approximate m > 1 samples. This better models the realistic scenario where
synthetic data is needed for exploratory data analysis.

A baseline solution to multi-sampling is to invoke a single-sampling algorithm m times on
independently drawn datasets of samples. When the data comes from a finite domain, we improve
over the baseline by a factor of m in the sample complexity. When the data comes from a Gaussian,
Ghazi et al. (Neurips ’23) show that single-sampling can be performed under approximate differential
privacy; we show it is possible to single- and multi-sample Gaussians with known covariance subject
to pure DP. Our solution uses a variant of the Laplace mechanism that is of independent interest.

We also give sample complexity lower bounds, one for strong multi-sampling of finite distribu-
tions and another for weak multi-sampling of bounded-covariance Gaussians.
Keywords: differential privacy, sample complexity, synthetic data

1. Introduction

Much research effort has been focused on estimating the parameters of data distributions under the
differential privacy (DP) constraint (Dwork et al., 2006). DP algorithms assure any outlier that
choosing to contribute their data does not greatly increase risk of privacy harms. This is powerful
given that the data can concern sensitive personal attributes such as medical history, location history,
and internet habits. If we assume data are independent samples from a distribution D, it is natural to
estimate the expectation; Karwa and Vadhan (2018) give DP confidence intervals for the Gaussian
mean while Kamath et al. (2020) estimate the mean of heavy tailed distributions. Other algorithms
perform the more ambitious task of estimating the distribution’s density function itself; for example,
Kamath et al. (2019) and Bie et al. (2022) show how to estimate Gaussians accurately in statistical
distance.

But we do not always require private estimates of the distribution or its parameters. Exploratory
data analysis, for example, only requires synthetic samples that in some sense resemble the original
distribution. To rigorously define what it means to make such a summary, this work builds on
the work of Raskhodnikova et al. (2021). Under their definition, a DP sampling algorithm ingests
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independent samples from a distribution D like prior work but it only emits one random variable that
is meant to approximate one fresh sample from D up to statistical distance α. This definition is also
adopted by Ghazi et al. (2023), who provide approximate DP algorithms for sampling from Gaussians.
We emphasize that each algorithm by these two sets of authors only produces an approximation of
a single sample, so we name their objective single-sampling. The main motivation of our work is
broadening the objective to generating multiple samples under DP.

We note that multiple formalizations of the DP objective exist. Pure DP algorithms, for example,
bound the participation risk in terms of a single parameter ε. Meanwhile, approximate DP algorithms
permit a δ > 0 chance that the bound does not hold. Other variants of DP like zero concentrated DP
(zCDP) interpolate between those two extremes. Our algorithms span all three DP variants.

1.1. Our Results and Techniques

Our work extends the prior work along a number of directions.

1. Novel Definitions. We formalize what it means to produce m > 1 samples from a distribution
subject to DP in Section. Specifically, we provide strong and weak variants of multi-sampling
in Definitions 6 and 7. Both variants require that the output random variables are mutually
independent and identically distributed. The weak variant only requires that the marginal
distribution of the output is close to that of the input, while the strong variant requires that the
product distributions are close.

2. New Pure DP Single-samplers. For distributions over the set [k], we show how to perform
pure DP single-sampling with a sample complexity that has a smaller leading constant than the
prior work by Raskhodnikova et al. (2021) in Theorem 12. We achieve this via amplification-
by-subsampling. For multivariate Gaussian distributions with known covariance, we provide a
pure DP single-sampler that builds upon the approximate DP single-sampler from Ghazi et al.
(2023) in Theorems 19 and 20. We achieve this with a novel variant of the Laplace distribution,
which is of independent interest.

3. Multi-samplers. We describe baseline techniques to create multi-sampling algorithms from
ones designed for single-sampling (see Lemmas 8 & 9 and Corollary 10). In particular, if
we apply Corollary 10 to our single samplers, we obtain strong multi-samplers under pure
DP for k-ary and Gaussian distributions. The sample complexities grow by a factor of m2:
one factor of m comes from repeatedly calling the single-sampler, another from a union
bound. But under approx. DP we show that one factor of m is sufficient. In the k-ary case,
amplification-by-shuffling lets us avoid paying the cost of repetitions. In the Gaussian case,
Ghazi et al. (2023)’s single-sampler has a sample complexity depending only logarithmically
on α, mitigating the union bound’s effect.

4. Lower Bounds for Multi-Sampling. For strong multi-sampling, we formalize the following
intuition in Theorem 23: if there are m i.i.d. samples from D and m i.i.d. samples from D̂
such that the joint random variable is close (i.e., we have a strong multi-sampler) then the
individual variables are close (i.e., we have single-sampler). For weak multi-sampling, we note
that we can treat the m outputs of a DP sampler as if they were fresh samples without privacy
constraints. We formalize the intuition that overly-large m would circumvent DP estimation
lower bounds, in particular those for Gaussians as shown in Theorem 29.
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DIFFERENTIALLY PRIVATE MULTI-SAMPLING FROM DISTRIBUTIONS

We summarize our results in Tables 1, 2, and 3. The Õ, Ω̃, Θ̃ notation suppresses terms that are
polylogarithmic in m, 1/ε, 1/δ, 1/α, k, d.

k-ary distributions
pure DP approximate DP
≤ 2k

αε

Single- Raskhodnikova et al. (2021) Ω( k
αε)

∗

Sampling ≤ k
αε Raskhodnikova et al. (2021)

Thm. 12

Weak Multi- ≤ m · k
αε O

(
m+ k

αmin(ε,ε2)
log 1

δ

)
Sampling via Lemma 8 Thm. 13

O
(
m · k

αmin(ε,ε2)
log 1

δ

)
Strong Multi- ≤ m2 · k

αε Thm. 15
Sampling via Coro. 10 Ω

(√
m · k

αε

)∗
Thm 25

Table 1: Sample complexity bounds for DP sampling k-ary distributions. For the lower bounds ∗,
the result assumes ε < 1, δ < 1/5000n, and sufficiently small error α.

Gaussians with known covariance Σ

pure DP zCDP approximate DP

Single- O
(
d3/2

αε log d
α

)
Õ
(√

d
ε

)
Θ̃
(√

d
ε

)
Sampling Thm. 20 Coro. 22 Ghazi et al. (2023)

Weak Multi-

Sampling O
(
m · d3/2αε log d

α

)
Õ
(
m ·

√
d
ε

)
Õ
(
m ·

√
d
ε

)
via Lemma 8
Strong Multi-

Sampling O
(
m2 · d3/2αε log d

α

)
Õ
(
m ·

√
d
ε

)
Õ
(
m ·

√
d
ε

)
via Coro. 10

Table 2: Sample complexity bounds for DP sampling Gaussians with known covariance matrices.

1.2. Open Questions

Our work is an initial foray into DP multi-sampling. As such, there are some questions which we do
not have the answers to:

• Under approximate DP, we are able to avoid a multiplicative factor of m in the sample com-
plexity of strong multi-sampling from k-ary distributions. But is approximate DP necessary?
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Gaussians with bounded covariance (I ⪯ Σ ⪯ κI)
zCDP approximate DP

Single Õκ

(
d3/2

αε2

)
Θ̃κ

(
d
ε

)
Sampling Coro. 34 Ghazi et al. (2023)

Weak Multi-

Sampling Õκ

(
m · d3/2

αε2

)
Õκ

(
m · dε

)
via Lemma 8
Weak Multi-

Sampling Ω̃
(

d2

α2 + d2

αε +
1
ε

√
log κ

)
when m > d Thm. 29
Strong Multi-

Sampling Õκ

(
m2 · d3/2

αε2

)
Õκ

(
m · dε

)
via Coro. 10

Table 3: Sample complexity bounds for DP sampling Gaussians with bounded covariance matrices.

• Is it possible to perform weak multi-sampling of Gaussians without a multiplicative factor of
m, as with k-ary distributions? Our use of amplification by shuffling is limited, as the known
results for local additive noise are weaker than the one for randomized response.

• Perhaps most interestingly, we can conceive of an alternative definition of weak multi-sampling:
we could design an algorithm that bounds the distance between the joint distribution of its
output and m i.i.d. samples from D, but makes no promises about independence of the
members of its output. We call this qualitatively weak multi-sampling, as opposed to our
quantitatively weak multi-sampling.1 Any strong multi-sampler, like the ones in our work,
satisfy both definitions of weak multi-sampling. But what do algorithms tailor-made for
qualitatively weak multi-sampling look like? What is the best way to use the ability to correlate
random variables? What would their sample complexity be, especially compared to the ones
we made for quantitatively weak multi-sampling?

2. Preliminaries

2.1. Measuring Closeness of Distributions

We briefly review the various ways we will measure how far or close distributions are from each
other. Note that we mildly abuse notation and define distances and divergences for distributions and
random variables interchangeably.

1. The term “quantitative” suits our notion of weak multi-sampling because a weak multi-sampler can be turned into strong
multi-sampler by appropriately tuning the error parameter α (Lemma 9). In contrast, independent-and-identically-
distributed is a quality that cannot be achieved by setting parameters.

4



DIFFERENTIALLY PRIVATE MULTI-SAMPLING FROM DISTRIBUTIONS

We will measure the error of our sampling algorithms according to total variation (TV) distance,
also known as statistical distance. The TV distance between a pair of distributions D,D′ is

||D−D′||TV := sup
E

∣∣∣∣ P
η∼D

[η ∈ E]− P
η∼D′

[η ∈ E]

∣∣∣∣
Some variants of differential privacy are phrased in terms of the Rényi divergence of order α:

Dα(D||D′) :=
1

α− 1
log E

x∼D

[(
D(x)

D′(x)

)α−1
]

where D(x),D′(x) are the densities placed on x.
Other versions rely on the hockey-stick divergence of order β:

DHS
β (D||D′) := sup

E

(
P

η∼D
[η ∈ E]− β · P

η∼D′
[η ∈ E]

)
We say that two distributions D,D′ are (ε, δ)-close—denoted D ≈ε,δ D

′ when both DHS
eε (D||D′)

and DHS
eε (D′||D) are at most δ. When δ = 0, we write D ≈ε D

′.
The following technical lemma connects (ε, δ)-closeness with total-variation distance:

Lemma 1 If D ≈ε,δ D
′, then ||D−D′||TV ≤ 2δ

eε+1 + (eε − 1)

Proof From the textbook by Dwork and Roth (2014, Lemma 3.17), there exists D̂, D̂′ where
(a) ||D̂ − D||TV and ||D̂′ − D′||TV are both at most δ

eε+1 and (b) D̂ ≈ε,0 D̂′. We can derive
||D̂− D̂′||TV ≤ eε − 1 from (b). The lemma follows by the triangle inequality.

2.2. Differential Privacy

Our privacy objective is differential privacy (DP). There are multiple variants but all rely on a
neighboring relation: two inputs X,X ′ each containing data from the same n users are neighbors
if they differ on the value contributed by one user. This definition of “neighbor” is sometimes
referred to as the replacement or bounded neighboring relation, to contrast with add-remove or
unbounded variant. In the former, neighboring datasets have the same public size n. In the latter,
one dataset includes a user’s data while the other does not (so n is not public knowledge). We
prefer the replacement relation because guarantees made for add-remove neighbors make the implicit
assumption that n is not public.

Definition 2 (Pure DP) An algorithm M satisfies ε-pure differential privacy (DP) if, for any neigh-
boring inputs X,X ′, M(X) ≈ε,0 M(X ′).

Definition 3 (Zero-Concentrated DP) An algorithm M satisfies ε2

2 -zero-concentrated differential
privacy (zCDP) if, for any neighboring inputs X,X ′ and any event E, ∀α > 1Dα(M(X)||M(X ′)) <

α · ε22 .

Definition 4 (Approximate DP) An algorithm M satisfies (ε, δ)-approximate differential privacy
if, for any neighboring inputs X,X ′, M(X) ≈ε,δ M(X ′).
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2.2.1. RANDOMIZED RESPONSE

A critical component of our results is k-ary randomized response with parameter ε (Warner, 1965;
Dwork et al., 2006). This is the algorithm that takes a sensitive value x ∈ [k] as input and produces a
value y ∈ [k] according to the following probability mass function:

RRε
x(y) :=

{
exp(ε)

exp(ε)+k−1 if y = x
1

exp(ε)+k−1 otherwise
(1)

This satisfies ε-DP as every outcome’s assigned probability changes multiplicatively by exp(ε) or
exp(−ε).

2.3. Definitions of Sampling Tasks

We now define the tasks of interest under DP. Let D be a family of distributions (e.g. Gaussians
or distributions over [k]). We will use n to denote sample complexity, m to denote the number of
desired samples, and α to denote an error tolerance.

Definition 5 (Single-Sampling Raskhodnikova et al. (2021)) An algorithm A performs α-sampling
for a class D of distributions with sample complexity n ∈ Z if the following holds for any D ∈ D:
algorithm A consumes n i.i.d. samples from D in order to produce one sample from some distribution
D̂ where ||D − D̂||TV ≤ α. The randomness of D̂ comes from both the n samples of D and the
coins of algorithm A.

Definition 6 (Strong Multi-sampling) An algorithm A performs strong (m,α)-sampling for D
with sample complexity n if the following holds for any D ∈ D: when A consumes n independent
samples from D, it produces m independent samples from some distribution D̂ where ||D⊗m −
D̂⊗m||TV ≤ α.

Definition 7 (Weak Multi-sampling) An algorithm A performs weak (m,α)-sampling for D with
sample complexity n if the following holds for any D ∈ D: algorithm A consumes n i.i.d. samples
from D in order to produce m i.i.d. samples from some distribution D̂ where ||D− D̂||TV ≤ α.

We briefly illustrate the difference between strong and weak multi-sampling. Consider an
algorithm that consumes m samples from D and produces some analysis of D (e.g. quantile).
If it were given the output of a strong multi-sampler instead of m samples from D, the analysis
will remain α-close to its non-private counterpart. Meanwhile, consuming the output of a weak
multi-sampler would lead to conclusions about a distribution α close to D.

2.3.1. BASELINE TECHNIQUES FOR MULTI-SAMPLING

Here, we describe baseline techniques to perform weak and strong multi-sampling. We show that
it is possible to use a single-sampler for weak multi-sampling and that it is possible to use a weak
multi-sampler for strong multi-sampling.

Lemma 8 (From Single to Weak Multi-sampling) If A performs α-sampling for D with sample
complexity n, then there is an algorithm A′ that performs weak (m,α)-sampling for D with sample
complexity m·n. Specifically, A′ executes A on disjoint sets of n samples. A′ has the same differential
privacy guarantee as A.
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DIFFERENTIALLY PRIVATE MULTI-SAMPLING FROM DISTRIBUTIONS

Lemma 9 (From Weak to Strong Multi-sampling) If A performs weak (m,α)-sampling for D
with sample complexity n(α), then there is an algorithm A′ that performs strong (m,α)-sampling for
D with sample complexity n(α/m). Specifically, A′ executes A with a small enough error tolerance
to apply a union bound. A′ has the same differential privacy guarantee as A.

Chaining the two transformations together leads to the following corollary:

Corollary 10 (From Single-Sampling to Strong Multi-sampling) If A performs α-sampling for
D with sample complexity n(α), then there is an algorithm A′ that performs strong (m,α)-sampling
for D with sample complexity m · n(α/m). A′ has the same differential privacy guarantee as A.

2.3.2. FAMILIES OF DISTRIBUTIONS

For any positive integer k, the family of k-ary distributions consists of all distributions over the set
[k] := {1, . . . , k}. We will sometimes use “finite-domain distributions” to refer to them.

For any positive integer d and positive reals κ,R, we use Nd(≤ R,⪯ κ) to denote the Gaussian
distributions that have mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d satisfying ∥µ∥2 ≤ R and
I ⪯ Σ ⪯ κ · I . We will call this a family of bounded-mean and bounded-covariance Gaussians. We
drop d when it is clear from context.

We note special cases of the above. The symbol N(≤ ∞,⪯ κ) (resp. N(≤ R,⪯ ∞)) refers
to all Gaussians with κ-bounded covariance but unbounded mean (resp. R-bounded mean but
unbounded covariance). The symbol N(≤ R,Σ) refers to all Gaussians with R-bounded mean and
covariance matching Σ.

Ghazi et al. (2023) in their paper show that a result by Ghazi et al. (2020, Theorem 6) implies that
DP algorithms that perform sampling for Nd(≤ R,⪯ κ) can be turned ones that perform sampling
for Nd(≤ ∞,⪯ κ).

Lemma 11 (Reduction for Unbounded Mean) For any d ≥ 1, R > 0, ε > 0, δ ∈ [0, 1), and
α, δ′ ∈ (0, 1). If there exists an (ε, δ ≥ 0)-DP algorithm for α-sampling of Nd(≤ R,⪯ κ) with
sample complexity n(d,R, α, ε, δ), then

• (Pure DP reduction). There exists an (2ε, δ)-DP algorithm for 2α-sampling of Nd(≤ ∞,⪯ κ)
with sample complexity n(d,O(κ

√
d), α, ε, δ) + Õ(d log(d)/ε).

• (Approximate DP reduction). There exists an (2ε, δ + δ′)-DP algorithm for 2α-sampling of
Nd(≤ ∞,⪯ κ) with sample complexity n(d,O(κ

√
d), α, ε, δ) + Õ(

√
d log(d)/ε).

The same holds for both variants of (m,α)-sampling.

We also a provide a proof sketch for the above for completeness’ sake in Appendix A.

3. DP Sampling Algorithms for Finite-Domain Distributions

In this section we describe DP sampling algorithms for k-ary distributions. Our analysis is based
upon privacy amplification: we develop a local randomizer with a large privacy parameter ε0, then
argue random sampling or shuffling shrinks the effective privacy parameter ε. We formalize the
intuition that the large local ε0 means that the samples are not too polluted by DP noise.

We note that Appendix B will detail extensions when we have hints about the shape of the
distribution.
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3.1. Single-Sampling

As a warm up to multi-sampling, we first show how to perform DP single-sampling by picking a
random sample and then performing randomized response. We can express the output distribution as
a mixture between the input distribution and the uniform distribution; we bound the weight on the
uniform distribution by α. The sample complexity bound given by Raskhodnikova et al. (2021) has
a leading constant of 2, while our constant is ≤ 1. Both algorithms are asymptotically optimal, as
Raskhodnikova et al. (2021) proved a lower bound of Ω(k/αε).

Algorithm 1: SubRR, Subsampled Randomized Response
Parameter: ε
Input: n samples X1, . . . Xn from a distribution over [k]
Output: One sample X̂ from a distribution over [k]
Assign ε0 ← ln(ε · n)
Choose r ∈ [n] uniformly at random
Compute X̂ by running k-ary randomized response on Xr with parameter ε0
return X̂

Theorem 12 For any ε > 0 and α ∈ (0, 1), SubRR is ε-DP and performs α-sampling for distribu-
tions over [k] with sample complexity 1

αε · (k − 1)(1− α) ≤ k
αε .

Proof We begin with the privacy proof. For any outcome y ∈ [k] and X,X ′ that differ on index j,
the ratio between the likelihood of y is

P [SubRR(X) = y]

P [SubRR(X ′) = y]
=

∑
i
1
nRR

ε0
Xi
(y)∑

i
1
nRR

ε0
X′

i
(y)

=

∑
i ̸=j

1
nRR

ε0
Xi
(y)∑

i
1
nRR

ε0
X′

i
(y)

+

1
nRR

ε0
Xj

(y)∑
i
1
nRR

ε0
X′

i
(y)

. (2)

The first step comes from the definition of randomized response.
In the first summand, there is one more term in the denominator’s summation than the numerator’s

summation. The excess term is a probability so it is > 0. Moreover, because X,X ′ differ only on j,
all the other terms match. Hence

(2) < 1 +

1
nRR

ε0
Xj

(y)∑
i
1
nRR

ε0
X′

i
(y)
≤ 1 +

1
nRR

ε0
Xj

(y)

mini RR
ε0
X′

i
(y)

To bound the second summand, we recall that randomized response is ε0-local DP: the above is
bounded by 1 + 1

n exp(ε0) This in turn is bounded by 1 + ε ≤ exp(ε) by virtue of our choice of ε0.
We now argue that the output of SubRR, X̂ , will have TV distance α from D when run on

independent samples from D. Observe that the random variable obtained by executing randomized
response on any x ∈ [k] is distributed as the mixture

exp(ε0)

exp(ε0) + k − 1
·Px +

k − 1

exp(ε0) + k − 1
·U[k]−x

where Px denotes the point distribution supported on x and U[k]−x is the uniform distribution over
[k] excluding x. When x is drawn from some D, the random variable is distributed as

exp(ε0)

exp(ε0) + k − 1
·D+

k − 1

exp(ε0) + k − 1
·
∑
x∈[k]

P
x̂∼D

[x̂ = x] ·U[k]−x
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Finally, we show that the mixture weight k−1
k−1+exp(ε0)

is at most α, which means the output of
SubRR follows a distribution α-close to D.

k − 1

k − 1 + exp(ε0)
=

k − 1

k − 1 + εn
≤ k − 1

k − 1 + (k − 1)(1− α)/α
=

1

1 + (1− α)/α
= α

The first step comes from our choice of ε0 and the second comes from our bound on n.

3.2. Weak Multi-Sampling

We pivot to the weak multi-sampling problem. A baseline solution is to leverage Lemma 8: repeatedly
invoke the single-sampler on disjoint batches of samples. This would cost us a factor of m in the
sample complexity. But we show that the overhead can be reduced by simply changing subsampling
to shuffling.

Algorithm 2: ShuRR, Shuffled Randomized Response
Parameters: ε, δ > 0 and f : R+ → R+

Input: n samples X1, . . . Xn from a distribution over [k]
Output: m samples X̂1, . . . , X̂m from a distribution over [k] where m ≤ n

Assign ε0 ← ln
(

f2(ε)n
ln(4/δ) − 1

)
Execute randomized response on X1, . . . , Xn with parameter ε0 then shuffle the results
return the first m elements of the shuffled results

Theorem 13 There exists a choice of f : R+ → R+ such that, for any 0 < ε, δ, α < 1 and
m ∈ N, ShuRR is (ε, δ)-DP and performs weak (m,α)-sampling with sample complexity n =
O
(
m+ k

αε2
log 1

δ

)
. There is another f which ensures ε-DP for ε > 1; the sample complexity

becomes O
(
m+ k

αε log
1
δ

)
.

Note that the ratio between our algorithm’s sample complexity and m—the average cost to
generate each of the m samples—is Oδ(1 +

k
mαε), a function of m that approaches 1 from above.

For comparison the naive approach of repeatedly executing a DP single-sampler has average sample
cost Ω(k/αε).

We provide a proof for Theorem 13 in Appendix C, but sketch the ideas here. Just as before, we
express randomized response as a mixture distribution to argue that the error parameter is ≤ α. To
argue that the algorithm ensures a target level of DP, we use the amplification-by-shuffling lemma of
Feldman et al. (2021) instead of amplification-by-subsampling.

Remark 14 (Improvements to Analysis) The privacy analysis of ShuRR is a black-box invocation
of an amplification-by-shuffling lemma. Future work that develops tighter bounds on the amplification
phenomenon can be swapped in without disturbing the heart of the argument.

3.3. Strong Multi-Sampling

We conclude with strong multi-sampling. We leverage Lemma 9: if we invoke our weak multi-
sampling result with an α/m parameter, we can use a union bound to argue the joint distribution of
the m samples is α-close to the target.
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Theorem 15 There exists a choice of f : R+ → R+ such that, for any 0 < ε, δ, α < 1 and
m ∈ N, ShuRR is (ε, δ)-DP and performs strong (m,α)-sampling with sample complexity n =
O
(
mk
αε2

log 1
δ

)
. There is another f which ensures ε-DP for ε > 1; the sample complexity becomes

O
(
mk
αε log 1

δ

)
.

4. DP Sampling Algorithms for Gaussian Distributions

Ghazi et al. (2023) gave the first approximate DP algorithms for single sampling from Gaussians
where the covariance is either known, bounded or unknown. Weak and strong multi-sampling
algorithms can be derived for all of these cases using Lemmas 8 and 9. We build upon the algorithms
of Ghazi et al. to present the first pure DP algorithms for the known covariance case. Furthermore,
we demonstrate that one of their algorithms satisfies the stricter privacy notion of zCDP. Additionally,
we examine Gaussians with bounded covariance in appendix D.

Remark 16 The sample complexity of the approximate DP α-sampling algorithms from Ghazi et al.
(2023, Table 1) only has a logarithmic dependence on 1/α, thus applying Lemma 9 leads to a factor
of m and not m2 in the sample complexity for strong (m,α) multi-sampling as seen in Tables 2 and
3.

4.1. Known Covariance, Pure Differential Privacy

In this section, we describe pure DP algorithms for single-sampling from Gaussians with known
covariance matrix Σ. It is without loss of generality to assume it is the identity matrix I since we can
apply the transform Σ−1/2. Weak and strong multi-sampling algorithms can be derived by way of
Lemmas 8 and 9. It is an interesting open question whether we can avoid a factor of m as with k-ary
distributions.

4.1.1. BUILDING-BLOCK: THE EUCLIDEAN-LAPLACE MECHANISM

A core building block of this section is a generalization of the Laplace distribution to d-dimensional
space (and a corresponding variant of the Laplace mechanism). The generalization that is most
common in the DP literature is comprised of one independent scalar Laplace random variable per
dimension. It is enough to ensure pure DP for ℓ1-sensitive functions. Here, we instead calibrate to
ℓ2-sensitivity by defining a density function in terms of the Euclidean distance.

Let ELap(b) denote the distribution over Rd with one2 parameter b > 0 and density function

FELap(b)(η) =
Γ(d/2)

2πd/2bdΓ(d)
· exp

(
−
∥η∥2
b

)
(3)

Proving that the above function integrates to 1 is an exercise we defer to Appendix E. Note that
the exponential term is a generalization of the exponential term of the scalar Laplace distribution:
the absolute value simply became the Euclidean norm. We call this distribution as the Euclidean-
Laplace distribution. Note that similar generalizations such as the Generalized Gaussian mechanism
(Ganesh and Zhao, 2021) have been introduced before where the noise is sampled proportional to

exp
{
−
(∥η∥p

b

)p}
for some p.

It will be very useful to bound the norm of a Euclidean-Laplace random variable:

2. It is natural to define a version with variable mean µ but we omit that for neatness.

10
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Lemma 17 For any α ∈ (0, 1) and η ∼ ELap(b), P
[
∥η∥2 > db ln d

α

]
≤ α.

We defer the proof to Appendix E. In Algorithm 3, we provide pseudocode for the Euclidean-
Laplace mechanism for private sums of vectors with bounded norm.

Algorithm 3: The Euclidean-Laplace mechanism

Input: X1, . . . , Xn ∈ Rd that each satisfy ∥Xi∥2 ≤ B
Output: y ∈ Rd

Parameters: B, ε > 0
b← B/ε
η ∼ ELap(b)
y ← η +

∑
i∈[n]Xi

return y

It is straightforward to prove that the Euclidean-Laplace mechanism ensures pure DP.

Theorem 18 For any B, ε > 0, the Euclidean-Laplace mechanism satisfies ε-DP.

Proof Fix any sequence of inputs X,X ′ that differ on exactly one index i. Let S (resp. S′) be
shorthand for

∑
i∈[n]Xi (resp.

∑
i∈[n]X

′
i). Then for any event E ⊆ Rd,

Pr[S + η ∈ E]

Pr[S′ + η ∈ E]
=

∫
y∈E FELap(b)(y − S)dy∫
y∈E FELap(b)(y − S′)dy

≤ max
y∈E

FELap(b)(y − S)

FELap(b)(y − S′)
≤ e

ε·||S−S′||2
B ≤ eε.

4.1.2. SINGLE-SAMPLING, WITH BOUNDED MEAN

Assuming finite R > 0, we describe how to perform single-sampling for Nd(≤ R, I) while satisfying
pure differential privacy. The pseudocode can be found in Algorithm 4. It is a modified version of
the Gaussian mechanism as constructed by Ghazi et al. (2023) for approximate DP sampling.

Algorithm 4: Our Gaussian Single-Sampler

Input: X1, . . . , Xn ∈ Rd

Output: y ∈ Rd

Parameters: B, ε > 0

{X̂i ← Xi ·min
(

B
∥Xi∥2

, 1
)
}i∈[n]

y ← the outcome of the Euclidean-Laplace mechanism on X̂ with parameters B, ε
σ2 ← (n− 1)/n
Z ∼ N(0, σ2 · I)
y ← Z + 1

n · y
return y

11
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Theorem 19 There is a constant c such that, when B ← R+ c ·
√

d log(1/α), Algorithm 4 is ε-DP
and performs O(α)-sampling for Nd(≤ R, I) with sample complexity Õ(d

3/2+dR
εα log d

α).

Proof Let M be the present mechanism. By closure of DP under post-processing and the fact that
we ensured all the inputs have norm at most B, M is ε-DP. So it simply remains to argue that, when
given i.i.d. samples from N(µ, I), this mechanism’s output closely resembles one sample from
N(µ, I).

Consider the alternative mechanism M ′ where η is deterministically set to the 0 vector. Note
that M ′ is found in the prior work by Ghazi et al. (2023) (their Algorithm 1). We write N(µ, I)n

as shorthand for n independent samples from N(µ, I). We will we show M(N(µ, I)n) ≈α,2α

M ′(N(µ, I)n), so that we get ||M ′(N(µ, I)n)−M(N(µ, I)n)||TV ≤ 6α via Lemma 1 and the fact
that α ∈ (0, 1).

Ghazi et al. (2023) show that ||M ′(N(µ, I)n)−N(µ, I)||TV ≤ α in TV-distance (their Theorem
4.2). Via the triangle inequality, we have that the TV distance between M(N(µ, I)n) and N(µ, I) is
7α.

Thus, it remains to prove M(N(µ, I)n) ≈α,2α M ′(N(µ, I)n). To do so, we will bound the norm
of our Euclidean-Laplace noise vector then invoke the differential privacy offered by Gaussian noise.
More precisely, Lemma 17 implies that our sample from the Euclidean-Laplace distribution η has
Euclidean norm at most O(dB log(d/α)/ε) except with probability α. Because Z is a Gaussian with
covariance n−1

n · I , the quantity Z + η/n is an instance of the Gaussian mechanism: for our range of
n and η, we argue that Z + η/n ≈α,α Z. Hence, M(N(µ, I)n) ≈α,2α M ′(N(µ, I)n).

To prove Z + η/n ≈α,α Z, we recall that adding Gaussian noise of variance O(
∆2

2
α2 log(1/α)) to

each coordinate of a ∆2-sensitive sum suffices to ensure α, α-DP (Dwork and Roth, 2014). Here, ∆2

is the maximum Euclidean norm of η/n, which we have established is O(dB log(d/α)/εn). The
variance in each coordinate of Z is 1, so it suffices for n to be O(dB log(d/α) log(1/α)/αε).

4.1.3. SINGLE-SAMPLING WITH UNBOUNDED MEAN

Theorem 20 Let α ∈ (0, 1), ε > 0. There exists an ε-DP algorithm that performs α-sampling for
Nd(≤ ∞, I) with sample complexity Õ

(
d3/2

αε log d
α

)
.

Proof Theorem 19 tells us that algorithm 4 is a pure DP algorithm that performs α-sampling for
N(≤ R, I) with sample complexity Õ(d

3/2+dR
εα log(d/α)). Using the pure DP reduction of Lemma

11 with κ = 1 yields a pure DP algorithm that performs α-sampling for N(≤ ∞, I) with sample
complexity Õ

(
d3/2

εα log d
α

)
.

4.2. Known Covariance, zero-concentrated DP

Ghazi et al. (2023) provide an approximate DP algorithm (their Algorithm 1) for single sampling
from N(≤ R, I). In this section, we show that this algorithm also satisfies the stricter privacy notion
of ε2

2 -zCDP.
Briefly, this algorithm takes as input samples from Nd(≤ R, I), clips them in a ball of radius

B = R + O(
√
d+ log(1/α)), adds Gaussian noise of appropriate variance, Z ∼ N(0, σ2) to the

empirical mean of the clipped input samples then outputs it.

12
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Theorem 21 (Bounded Mean) There exists an ε2

2 -zCDP algorithm that performs α-sampling for

Nd(≤ R, I) with sample complexity Õ
(
R+

√
d

ε

)
.

Proof We will use the same set of parameters that Ghazi et al. (2023) use, setting σ2 = n−1
n and

letting B = R + O(
√
d+ log(1/α)). Note that the accuracy analysis stays the same as there is

no change to the algorithm. For the zCDP privacy analysis, notice that, the empirical mean of the
clipped samples is a query with sensitivity ∆ = 2B

n . For ε2

2 -zCDP, we need σ ≥ ∆
ε = 2B

εn which is
exactly the same as required in the proof of Ghazi et al. Thus the algorithm achieves the exact same
sample complexity of Õ

(
R+

√
d

ε

)
while satisfying ε2

2 -zCDP.

Corollary 22 (Unbounded Mean) There exists an ε2

2 -zCDP algorithm that performs α-sampling

for Nd(≤ ∞, I) with sample complexity Õ
(√

d
ε

)
.

Proof This follows from theorem 21, the pure DP reduction of lemma 11 with κ = 1 and the fact
that any pure DP algorithm also satisfies zCDP.

5. Lower Bounds for Multi-Sampling

5.1. A Lower Bound for Strong Multi-sampling

We will use a recent result by Kontorovich (2024):

Theorem 23 For any two sequences of probability distributions D1, . . . ,Dm and D̂1, . . . , D̂m on
finite sets, if ∆ is the vector of TV-distances (||D1 − D̂1||TV , . . . , ||Dm − D̂m||TV ) then

||D1 ⊗ · · · ⊗Dm − D̂1 ⊗ · · · ⊗ D̂m||TV ≥ c ·min(1, ∥∆∥2)

where c > 0.1798 is a universal constant.

We will use this to argue that any strong multi-sampler is in essence performing highly accurate
single-sampling.

Theorem 24 Fix α < 0.1798. Let M be a strong (m,α)-sampler for D with sample complexity
n. There exists M ′ an α/

√
m-sampler for D with sample complexity n. Moreover, if M ensures

(ε, δ)-DP then M ′ also ensures (ε, δ)-DP.

Proof M ′ is the algorithm that executes M on its input and reports the first of the m outputs of M .
The DP guarantee is immediate from post-processing.

Suppose for contradiction that M ′ is not an α/0.1798
√
m-sampler. This means, for some

D ∈ D that generates the n i.i.d. inputs, the distribution from which its output comes from is
some D̂ where ||D̂ −D||TV > α/0.1798

√
m. Via Theorem 23, we know ||D̂⊗m −D⊗m||TV ≥

c ·min(1,
√
m||D̂−D||TV ) > 0.1798 ·min(1,

√
m||D̂−D||TV ) > min(0.1798, α) = α. But we

also know D̂⊗m is precisely the output distribution of M because its output is i.i.d., so we have a
contradiction with the accuracy of M .

This result implies lower bounds on the sample complexity of strong multi-sampling. We
instantiate it for k-ary distributions, via the lower bound on single-sampling by Raskhodnikova et al.
(2021):

13
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Theorem 25 For sufficiently small α > 0, any strong (m,α)-sampler for k-ary distributions must
have sample complexity n = Ω

(√
m · k

αε

)
.

Note that this separates strong multi-sampling from weak multi-sampling in the regime where
m = Ω

(
1
ε2

log2 1
δ

)
and k = Ω(log 1

δ ) (compare with Theorem 13).

5.2. A Generic Recipe for Weak Multi-Sampling Lower Bounds

Thus far, we have assumed that DP algorithms ensure privacy for all inputs. But there exist algorithms
A which consume inputs for whom DP is not enforced. Specifically, there are n inputs labeled
“private” and m inputs labeled “public” such that A is insensitive to any change in any one of the
“private” inputs. We refer to m as the “public” sample complexity and n as the “private” sample
complexity.

We will use such semi-private 3 algorithms to derive lower bounds.
Given a task T concerning distribution D ∈ D, suppose that the two statements below are true

1. If a DP algorithm performs T without public samples, then it has private sample complexity
> τ .

2. There is a semi-private algorithm that performs T by consuming n∗ < τ private samples from
D and m∗ public samples from a different D̂, where ||D− D̂||TV ≤ α.

If we had a weak (m = m∗, α)-sampler for D with sample complexity n < n∗, we can treat the
generated variables as the public samples required by the algorithm in (2) to do T . But overall we
have only consumed < τ private samples from D, which means we have arrived at a contradiction.

Via Lemma 8, our recipe also applies to single-sampling: if we had a single-sampler with sample
complexity n < n∗/m, there is a weak (m,α)-sampler with sample complexity < n∗.

5.3. Lower Bound for Weak Multi-Sampling of Bounded-Covariance Gaussians

We define the Gaussian learning task.

Definition 26 (Learning Bounded Gaussians) An algorithm learns Nd(≤ R,⪯ κ) up to error α if
it can consume independent samples from D ∈ Nd(≤ R,⪯ κ) and produce some D̃ := N(µ̃, Σ̃)
where ||D− D̃||TV ≤ α with 90% probability, where the randomness is over the algorithm and the
samples.

Now, we instantiate point 1 of our recipe with the following lower bound sketched by Kamath et
al.:

Theorem 27 (Lower bound for zCDP learning of bounded Gaussians Kamath et al. (2019)) If
an algorithm learns Nd(≤ R,⪯ κ) up to error α and enforces ε2

2 -zCDP on all inputs, then it must

have a sample complexity Ω(
√
d
ε

√
logR+ 1

ε

√
log κ)

We instantiate point 2 of our recipe with the following result by Bie et al.:

3. The term comes from the work by Beimel et al. (2013).
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Theorem 28 (Upper bound for semi-private zCDP learning of Gaussians Bie et al. (2022)) There
is a computationally efficient semi-private algorithm that consumes n∗ = Õ

(
d2

α2 + d2

αε

)
private

samples from a d-dimensional Gaussian D and m∗ = d+ 1 public samples from a Gaussian D̂ with
||D, D̂||TV < α to perform Gaussian learning while ensuring ε2

2 -zCDP of the private samples.

Finally, we derive our lower bound.

Theorem 29 (Lower bound on zCDP weak multi-sampling) If an ε2

2 -zCDP algorithm is a weak
(d+ 1, α)-sampler for Nd(≤ R,⪯ κ), then it has sample complexity

Ω̃

((
d2

α2
+

d2

αε

)
+

√
d

ε

√
logR+

1

ε

√
log κ

)

Proof Let cℓ, cu be leading constants in Theorems 27 and 28 respectively. Let p(d, α, ε) be the
polylogarithmic term in Theorem 28. We claim that, for all sufficiently large d,R, κ, 1/α, 1/ε, the
function

s(d,R, κ, α, ε) := cu ·
(
d(d+ 1)

α2
+

d(d+ 1)

αε

)
· p(d, α, ε) + cℓ

2
·

(√
d

ε

√
logR+

1

ε

√
log κ

)
is a lower bound on the sample complexity. If it were not the case, we can use s private samples from
D to generate d+ 1 samples from a Gaussian that is α-close to D (under zCDP). Then we can use
Bie et al.’s algorithm to learn D by feeding it n∗ < s of the private samples and all d+ 1 generated
samples.

Now, for sufficiently large R and κ,

s < cℓ ·

(√
d

ε

√
logR+

1

ε

√
log κ

)
.

But this contradicts the lower bound on zCDP learning without public data.
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Appendix A. Reduction from Unbounded Mean to Bounded Mean for Single
Sampling of Gaussians

Lemma 11 (Reduction for Unbounded Mean) For any d ≥ 1, R > 0, ε > 0, δ ∈ [0, 1), and
α, δ′ ∈ (0, 1). If there exists an (ε, δ ≥ 0)-DP algorithm for α-sampling of Nd(≤ R,⪯ κ) with
sample complexity n(d,R, α, ε, δ), then

• (Pure DP reduction). There exists an (2ε, δ)-DP algorithm for 2α-sampling of Nd(≤ ∞,⪯ κ)
with sample complexity n(d,O(κ

√
d), α, ε, δ) + Õ(d log(d)/ε).

• (Approximate DP reduction). There exists an (2ε, δ + δ′)-DP algorithm for 2α-sampling of
Nd(≤ ∞,⪯ κ) with sample complexity n(d,O(κ

√
d), α, ε, δ) + Õ(

√
d log(d)/ε).

The same holds for both variants of (m,α)-sampling.

Proof [Proof Sketch of Lemma 11]
Accuracy Analysis. The DensestBall algorithm by Ghazi et al. (2020, Theorem 6) is the main

ingredient of this reduction. If there is a ball of radius r that contains a majority of the dataset, then
DensestBall given r as input, outputs a ball of radius O(r) that also contains a majority of the dataset.
Since Σ ⪯ κ · I , we can use a concentration inequality for Gaussians to set r = O(κ

√
d). Let c be

the center of the ball that DensestBall outputs. This algorithm has a guarantee that ||µ − c|| ≤ r
holds with high probability. Shifting each input sample points, X to X− c, reduces to the case where
||µ|| ≤ r i.e., the mean is bounded.

Privacy Analysis. The DensestBall algorithm has both pure DP and approximate DP variants.
Let us assume we run the pure DP (approximate DP) variant with privacy budget ε (or (ε, δ′)
respectively). We are given that (ε, δ)-DP algorithm for the bounded mean case exists. Using basic
composition gives us that the algorithm for the unbounded mean case is (2ε, δ)-DP (or 2ε, δ+ δ′)-DP
respectively.

The pure DP variant of DensestBall has a sample complexity of Õ(d log(d)/ε) whereas the
approximate DP variant has a sample complexity of Õ(

√
d log(d)/ε) which is reflected in the final

sample complexity.

Appendix B. DP Weak Multi-Sampling for Finite Distributions, with Hints

Previously, we assumed that all distributions in consideration D ∈ D have support S where S ⊆ [k].
Here, we consider cases where other information about S is known. We effectively reduce to the
known support case by using established algorithms to identify a superset of the support.

The central idea is that as long as we can find an interval which contains more than 1−α fraction
of the probability mass of the distribution D, we can run ShuRR on that interval.

B.1. Contiguous and Bounded Support

Some contiguous interval of width k contains S. In this case, we use the classic stability-based
histogram algorithm of Bun et al. (2016)—which we call noise-and-threshold—to find the mode v
of D and then run ShuRR assuming [v − k, v + k] is the support. The number of samples to find v
is O(kε log

1
δ ).
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Algorithm 5: Multi-Sampler for Contiguous and Bounded Support
Parameters: ε, δ > 0
Input: n samples X1, . . . Xn from a distribution whose support lies in some contiguous interval

of width k
Output: m samples X̂1, . . . , X̂m

Run the noise-and-threshold algorithm using the first O(kε log
1
δ ) input samples.

Let T ⊂ Z be the set of integers that the above identified as having nonzero frequency
if T = ∅ then

return ⊥
end
Let v be the integer in T with the largest estimated frequency
return ShuRR(X), with support [v − k, v + k]

B.2. Bounded Support

We assume only |S| ≤ k.
Option 1 (non-adaptive): Run the noise-and-threshold algorithm to identify a subset E of the

support, such that the items that are missing each have mass at most α/k so that the distribution
conditioned on E is within α of the original. The number of samples to do this is O( k

αε log(k/δ))

Algorithm 6: Multi-Sampler for Bounded Support Size
Parameters: ε, δ > 0, α
Input: n samples X1, . . . Xn from a distribution whose support size |S| ≤ k.
Output: m samples X̂1, . . . , X̂m

Run the noise-and-threshold algorithm using the first O( k
αε log

k
δ ) input samples.

Let E ⊂ Z be the set of integers that the above identified as having nonzero frequency
if E = ∅ then

return ⊥
end
return ShuRR(X), with support E

Option 2 (adaptive): Find an element v from the support of D using the noise-and-threshold
algorithm, then run the above-threshold algorithm to find h such that [v−h, v+h] contains 1−O(α)
fraction of samples, then run ShuRR assuming [v− h, v+ h] is the support. The number of samples
to find v is O(kε log

1
δ ). The number of samples to find h is O(1ε log

w
α ), where the value of w is

determined within the algorithm. The number of samples given to ShuRR is O(m+ h
αε log

1
δ )

B.3. Known width of confidence interval

Some contiguous interval of width w contains both the mode v and 1−O(α) of the mass of D.
For example, consider shifted binomials, w ≈

√
k log(1/α) ). In this case, we use [v−w, v+w]

as the support. The number of samples to find v is O(wε log 1
δ ) and the number of samples consumed

by ShuRR is O(m+ w
αε log

1
δ ). If we also knew |S| ≤ k then v can be found with O(minw,k

ε log 1
δ ).
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Algorithm 7: ShuRR+

Run the noise-and-threshold algorithm on X .
Let T ⊂ Z be the set of integers that the above identified as having nonzero frequency in X
if T = ∅ then

return ⊥
end
Let v be the integer in T with the largest estimated frequency
for w ∈ {16, 32, 64, 128, . . . } do

Let Y be 8
εα ln 2w

α new i.i.d. samples from D
Run above-threshold (Dwork and Roth, 2014) on Y with threshold 1− α & queries
f0, f1, . . . , fw, where f∆ is the fraction of Y that lie in [v −∆, v +∆]

Break out of for-loop if above-threshold responded ⊤ at some iteration h
end
Let Z be m+O( h

ε2
log 1

δ ) new i.i.d. samples from D
return ShuRR(Z), with support [v − h, v + h]

B.4. Sub-Gaussian distribution

In this case, the distribution D is a discrete sub-Gaussian distribution over Z with known variance
proxy σ.

Due to the sub-Gaussian property of D, most of the probability mass is concentrated in an
interval I of size 2σ centered at the true mean µ of D. In our algorithm, we divide Z into bins of size
O(σ). The interval I mentioned above will intersect at most 2 bins. Running the noise-and-threshold
using these bins will help us identify these two bins giving us a rough estimate of where µ lies. Now,
we can extend this rough estimate of where µ lies on both sides by O(σ log 1/α) to create a new
interval which contains at least 1− α fraction of the probability mass of D. We then run ShuRR
using this new interval.

B.5. Techniques

Finding at least one element from the support of a distribution

Lemma 30 Given X a set of n = O(kε log
1
δ ) i.i.d samples from a distribution D with support

size ≤ k, the probability that the noise-and-threshold algorithm finds at least one element from the
support with non-zero frequency is at least 1− 2δ.

Proof No element from the support will be reported if noise-and-threshold erases all elements of the
support that were present among the the n input samples. An element will be dropped if its noised
count falls beneath a threshold t = O(1ε log

1
δ ). So it suffices to argue that there is some element of

the support that has noisy count greater than t, except with probability ≤ 2δ.
Observe that the mode of D has probability mass ≥ 1/k. By a multiplicative Chernoff bound,

our choice of n ensures the mode will have count exceeding 2t in X , except with probability ≤ δ.
We also know that adding Laplace noise to 2t will result in a value less than t, except with probability
≤ δ. A union bound completes the proof.

Finding all the heavy elements from the support of a distribution
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Given a distribution D, we define heavy elements from the support of D as elements which have
probability mass at least α/k.

Lemma 31 Given X a set of n = O( k
αε log

1
δ ) i.i.d samples from a distribution D with support size

≤ k, the probability that the noise-and-threshold algorithm run with privacy parameters ε, δ/k finds
every heavy element of D with non-zero frequency is at least 1− 2δ.

Proof Consider any arbitrary heavy element e in the support of D. For noise-and-threshold to report
e, the noisy count of e must be non-zero. We know an element will be dropped if it’s count is less
than the threshold of t = O(1ε log

k
δ )

Notice that, since e is a heavy element, it’s probability mass is at least α/k. Using the same logic
as in the previous lemma, we can use a multiplicative Chernoff bound to show that our choice of n
ensures that e will have count which exceeds 2t in X . except with probability δ/k. We also know that
adding Laplace noise to 2t will result in a value less than t, except with probability ≤ δ/k. A union
bound over these two events, tells us that noise-and-threshold will find e, except with probability
2δ/k.

There can be at most k heavy elements in the support, as the support size ≤ k. Union bounding
over at most k heavy elements completes the proof.

Appendix C. Weak Multi-Sampling for k-ary distributions using ShuRR

Theorem 13 There exists a choice of f : R+ → R+ such that, for any 0 < ε, δ, α < 1 and
m ∈ N, ShuRR is (ε, δ)-DP and performs weak (m,α)-sampling with sample complexity n =
O
(
m+ k

αε2
log 1

δ

)
. There is another f which ensures ε-DP for ε > 1; the sample complexity

becomes O
(
m+ k

αε log
1
δ

)
.

For shuffled randomized response, Feldman et al. (2021) express the privacy parameter of the
shuffled output as a function of ε0 and target δ:

Lemma 32 (Amplification-by-Shuffling of Rand. Response Feldman et al. (2021)) ShuRR guar-
antees (ε1, δ)-DP, where

ε1 = log

(
1 + 8(exp(ε0) + 1)

(√
k + 1

k
· log 4/δ

n
· 1

exp(ε0) + k − 1
+

k + 1

kn

))
.

Our algorithm sets ε0 such that this ε1 bound is itself bounded by the desired ε.
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Proof [Proof of Thm. 13] To bound the privacy parameter, we first apply the bound log(1 + x) ≤ x:

ε1 ≤ 8(exp(ε0) + 1)

(√
k + 1

k
· log 4/δ

n
· 1

exp(ε0) + k − 1
+

k + 1

kn

)

≤ 8(exp(ε0) + 1)

(√
3

2
· log 4/δ

n
· 1

exp(ε0) + 1
+

3

2n

)
(k ≥ 2)

= 8

(√
3

2
· log 4/δ

n
· (exp(ε0) + 1) +

3

2n
(exp(ε0) + 1)

)

= 8 ·

(√
3

2
· log 4/δ

n
· f

2(ε) · n
ln(4/δ)

+
3

2n
· f

2(ε) · n
ln(4/δ)

)
(Choice of ε0)

= 8
√

3/2 · f(ε) + 12

ln(4/δ)
· f2(ε)

When f(ε) = ε/(16
√
3/2) and ε < 1, the above is bounded by ε/2 + ε2/32 < ε. When

f(ε) =
√
ε/(16

√
3/2) and ε > 1, it is bounded by

√
ε/2 + ε/32 < ε.

It remains to prove that that Algorithm 2 performs weak multi-sampling. Identical to the prior
theorem, the TV distance between D and the outcome of randomized response on X ∼ D is the
mixture weight k−1

k−1+exp(ε0)
. By substituting the new ε0 value, we have

k − 1

k − 1 + exp(ε0)
=

k − 1

k − 1 + f2(ε)·n
ln(4/δ) − 1

=
k − 1

k + f2(ε)·n
ln(4/δ) − 2

(4)

We will bound the above by α in the regime where n ≥ k ln(4/δ)
αf2(ε)

.

(4) ≤ k − 1

k + k
α − 2

≤ k − 1

k/α
< α

The first inequality comes from substituting the bound on n. The second comes from the fact that
k ≥ 2.

Our final sample complexity bound is therefore max
(
m, k ln(4/δ)

αf2(ε)

)
. The big-Oh bound in the

theorem statement simply collapses the maximum into a summation. Also note that 1/f2(ε) is
O(1/ε2) for ε < 1 and O(1/ε) otherwise.

Appendix D. Gaussians with Bounded Covariance

In this section, we show the existence of single sampling algorithms for Gaussians with bounded
covariance i.e. Nd(≤ ∞,≤ κ) under zCDP . We show that an approximate DP algorithm proposed
by Ghazi et al. (2023, Algorithm 3) satisfies zCDP. Weak and strong multi-sampling algorithms can
be derived by way of Lemmas 8 and 9.

Theorem 33 (Bounded Mean) For any finite κ > 0, there exists an ε2

2 -zCDP algorithm that

performs α-sampling for Nd(≤ R,≤ κ) with sample complexity Õ
(
R2

√
d+d3/2

αε2

)
.
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Algorithm 8: Bounded Covariance Gaussian Single-Sampler (Ghazi et al., 2023, Algorithm 3)

Input: X1, . . . , Xn1 , Xn1+1, . . . , Xn1+2n2 ∈ Rd

Output: y ∈ Rd

Parameters: B, σ > 0, n1, n2 ∈ N
{X̂i ← Xi ·min

(
B

∥Xi∥2
, 1
)
}i∈[n1+2n2]

Z ∼ N(0, σ2 · I)
y ← Z + 1

n1

(∑
i∈[n1]

Xi

)
+
√

1−1/n1

2n2

(∑
i∈[n2]

(Xn1+2i−1 −Xn1+2i)
)

return y

Ghazi et al. (2023) provide an optimal approximate DP algorithm (their Algorithm 2) to perform
single-sampling for Nd(≤ R,≤ κ) with sample complexity Θ̃

(
d
ε

)
. However, this algorithm uses

the ”propose-test-release” paradigm of Dwork and Lei (2009) and can’t be ε2/2-zCDP. They also
provide a separate approximate DP algorithm (their Algorithm 3) for the same problem which uses
the Gaussian Mechanism with a worse sample complexity of Õ

(
d3/2

αε2

)
(Ghazi et al., 2023, Theorem

C.1). We show that it satisfies zCDP.
Proof We will use the same set of parameters that Ghazi et al. used. In particular, let n1 = n2,
B = Õ

(
R+
√
d
)

and σ2 = α
4
√
d

. Note that the accuracy analysis proceeds exactly the same way as
presented in Ghazi et al. For the privacy analysis, the final expression being returned in the algorithm,
before adding the noise Z ∼ N(0, σ2I), has a global sensitivity ∆ = B√

n
. For ε2

2 -zCDP, we need

σ2 ≥ ∆2

ε2
=⇒ α

4
√
d
≥ B2

nε2
=⇒ n ≥ 4

√
dB2

αε2
=⇒ n = Õ

(
R2
√
d+ d3/2

αε2

)
.

Corollary 34 (Unbounded Mean) For any finite κ > 0, there exists an ε2

2 -zCDP that performs

α-sampling for Nd(≤ ∞,≤ κ) with sample complexity Õ
(
d3/2

αε2

)
.

Proof This follows from theorem 33, the pure DP reduction of lemma 11, and the fact that any pure
DP algorithm also satisfies zCDP.

Appendix E. The Euclidean-Laplace distribution

E.1. Validity of density function

Lemma 35 For any scale parameter b > 0 and dimensionality d ∈ N, the Euclidean-Laplace’s
density function integrates to 1.

Proof Recall that the density function is

FELap(b)(η) =
Γ(d/2)

2πd/2bdΓ(d)
· exp

(
−
∥η∥2
b

)
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We will perform the integral along polar coordinates. That is to say, we integrate over the surface of
the (d− 1)-sphere of radius r and then integrate over all r > 0. For neatness, we define

f(r) :=
Γ(d/2)

2πd/2bdΓ(d)
· exp

(
−r

b

)
.

So the integral is ∫
r>0

f(r) · rd−1 · 2πd/2

Γ(d/2)︸ ︷︷ ︸
surface area

dr

=
1

bdΓ(d)
·
∫
r>0

exp(−r/b) · rd−1dr (5)

Let t := r/b so that dr = b dt. By substitution,

(5) =
1

bdΓ(d)

∫ ∞

t=0
exp(−t) · (bd−1td−1) · b dt

=
1

Γ(d)

∫ ∞

t=0
td−1e−t dt

= 1

The last step comes from the definition of the Gamma function.

E.2. Sampling algorithm

Lemma 1 Suppose there exists a Gaussian oracle that, when given σ > 0, produces a sample from
N(0, σ2). Also suppose there exists a Gamma oracle that, when given shape parameter k > 0 and
scale parameter θ > 0, produces a sample from Γ(k, θ). Then there exists an algorithm that, when
given b > 0, produces a sample from d-dimensional ELap(b) by making 1 call to the Gamma oracle
and d calls to the Gaussian oracle.

Proof The algorithm is simple:

1. Sample the radius r from the Gamma distribution with parameters k = d and θ = b.

2. Sample {vi}i∈[d] independently from N(0, 1).

3. Create v̂ := v
∥v∥2

, a uniformly random point on the unit sphere in d dimensions.

4. Output rv̂

Now we need to show that rv̂ is distributed as ELap(b). As implied by (5) in the preceding
proof, the distribution of the ℓ2 norm of η ∼ ELap(b) has density

1

bdΓ(d)
· exp(−r/b) · rd−1
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at value r > 0. But also note that the Gamma distribution with parameters k and θ has density

xk−1e−x/θ

Γ(k)θk

at value x > 0. The two are isomorphic.
The proof is complete by observing that, conditioned on any norm r, the distribution of an

ELap(b) variable is spherically symmetric.

E.3. Tail bound

We focus on bounding the tail of the norm of a Euclidean-laplace random variable:

Lemma 17 For any α ∈ (0, 1) and η ∼ ELap(b), P
[
∥η∥2 > db ln d

α

]
≤ α.

First, we prove that norm of a E-L r.v. follows a Gamma distribution. Then recall how to express
a Gamma random variable as a sum of exponential random variables. Finally, we employ a tail bound
on that sum.

Lemma 36 Let η ∈ Rd such that η ∼ ELap(b), then ∥η∥2 ∼ Gamma(d, 1/b)

Proof FELap(b)(η) depends on the norm of η i.e. ||η||2 and is independent of the direction η̂. Thus
the probability density of the norm ||η||2 at distance r from the origin, denoted by F (r), can be found
by integrating FELap(b)(η) over all η that lie on the surface of d− 1 dimensional sphere of radius r
denoted by Sd−1(r). Since the pdf FELap(b) is constant over the surface of the sphere Sd−1(r), F (r)
is equal to the probability density of η where ||η||2 = r times the surface area of Sd−1(r).

F (r) =
Γ(d/2)

2πd/2bdΓ(d)
· exp

(
−r

b

)
︸ ︷︷ ︸

probability density FELap(b) at distance r

× 2πd/2rd−1

Γ(d/2)︸ ︷︷ ︸
surface area of Sd−1(r)

=
rd−1

Γ(d)bd
exp

(
−r

b

)

Notice that the pdf above is the pdf of the Gamma distribution with shape paramter d and rate
parameter 1/b.

Fact 37 If X ∼ Gamma(k, λ) where k is the shape parameter and λ is the rate parameter then
X can be expressed as the sum of k independent and identically distributed random variables
X1, . . . , Xk where each Xi follows an exponential distribution with paramter λ i.e. Xi ∼ Exp(λ)
for all i ∈ [k].

Lemma 38 Let X ∼ Gamma(k, λ) then,

Pr (X > t) ≤ k · exp
(
−λt

k

)
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Proof We know from fact 37 that X can be decomposed into independent and identically distributed
random variables X1, . . . Xk such that each Xi ∼ Exp(λ). For X to be greater than the threshold t,
at least one of the k Xi’s has to be greater than t/k by a simple averaging argument. Thus,

Pr (X > t) ≤ Pr (At least one Xi > t/k)

The probability that Xi > t/k can be calculated from its CDF expression.

Pr (Xi > t/k) = 1−Pr (Xi ≤ t/k) = 1−CDFExp(λ)(t/k) = 1−
(
1− exp

(
−λt

k

))
= exp

(
−λt

k

)
Union bounding over all the k random variables, we get

Pr (At least one Xi > t/k) ≤ k · Pr (Xi > t/k) = k · exp
(
−λt

k

)
Thus, we get

Pr (X > t) ≤ k · exp
(
−λt

k

)

We are now ready to complete our proof.
Proof [Proof of Lemma 17] Lemma 36 tells us that ∥η∥2 ∼ Gamma(d, 1/b). Using Lemma 38, we
get that

Pr (∥η∥2 > t) ≤ d · exp
(
− t

db

)
Substituting t = db log

(
d
α

)
completes the proof.
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