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Abstract
Multi-view clustering is an important task in multimedia and ma-

chine learning. In multi-view clustering, multi-view spectral clus-

tering is one kind of the most popular and effective methods. How-

ever, existing multi-view spectral clustering ignores the fairness

in the clustering result, which may cause discrimination. To tackle

this problem, in this paper, we propose an innovative Fair Multi-

view Spectral Clustering (FMSC) method. Firstly, we provide a new

perspective of fairness from the graph theory viewpoint, which

constructs a relation between fairness and the average degree in

graph theory. Secondly, based on this relation, we design a novel

fairness-aware regularized term, which has the same form as the

ratio cut in spectral clustering. Thirdly, we seamlessly plug this

fairness-aware regularized term into the multi-view spectral clus-

tering, leading to our one-stage FMSC, which can directly obtain

the final clustering result without any post-processing. We also

conduct extensive experiments compared with state-of-the-art fair

clustering and multi-view clustering methods, which shows that

our method can achieve better fairness.

CCS Concepts
• Computing methodologies→ Cluster analysis.
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1 Introduction
Multi-view clustering is a fundamental problem in multimedia

processing and machine learning. It aims to learn a consensus clus-

tering result from multiple views or modalities of data and has

attracted much attention in recent years [5, 6, 57, 58]. Among these

methods, since spectral clustering [9, 44, 47] is a popular and ef-

fective graph based method that shows promising performance in

clustering on single-view data, it has been widely extended to the

multi-view clustering setting. For example, Kumar et al. proposed

a multi-view spectral clustering by co-regularizing across multi-

ple views [19]; Li et al. proposed a large-scale multi-view spectral

clustering method based on the bipartite graph [21].

Notice that, in real-world scenarios, clustering is often used in ap-

plications involving humans such as crime analysis [30] and social

networks [40], and thus we should make sure that the clustering

result is fair and would not cause any discrimination. In the real

world, there are some specific groups, such as females, which may

suffer from potential discrimination and need to be protected. These

groups are called protected groups. Therefore, one kind of the most

important fairness in clustering is group fairness [3], which aims

to partition data into several clusters where no clusters contain a

disproportionately small number of data in some specific protected

groups. Although the existing multi-view spectral clustering meth-

ods often achieve good performance on clustering accuracy, none

of them consider the fairness of the clustering, and thus may still

cause discrimination on some specific groups.

https://doi.org/10.1145/3664647.3681162
https://doi.org/10.1145/3664647.3681162
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To address this issue, in this paper, we propose a novel fair

multi-view spectral clustering method that focuses on the fairness

of the result. Since spectral clustering is a graph based method,

which tries to find a graph cut to partition data, we also study the

fairness from the graph theory perspective. Here we follow a classic

definition of group fairness (i.e., Definition 1), which is proposed

in [3]. Different from other works that directly use this definition,

we observe and construct a new relation between this definition

and the average degree in graph theory. We theoretically prove that

minimizing the average degree can obtain a fair result that follows

this definition. Based on this theoretical observation, we design a

novel and effective fairness-aware regularized term.

Notice that, since our regularized term is designed from a graph

theory viewpoint, it has the same form as spectral clustering. We

can naturally and seamlessly integrate this fairness-aware regu-

larized term and the multi-view spectral clustering into a unified

framework, leading to a simple yet elegant Fair Multi-view Spectral

Clustering (FMSC) method. Notice that conventional multi-view

spectral clustering methods are often two-stage methods, which

need to learn the continual spectral embedding first and then dis-

cretize the spectral embedding to the final clustering result with

post-processing like kmeans and spectral rotation. In two-stage

methods, the post-processing is separated from the learning method

and cannot guarantee the clustering accuracy or fairness. There-

fore, the two stages cannot be boosted by each other to achieve

a good solution. Different from the two-stage methods, since our

fairness-aware regularized term is designed directly from the graph

partition perspective, it is a one-stage method that directly obtains

the final clustering result from multiple views considering both the

clustering accuracy and fairness without any post-processing.

The contributions of this paper are summarized as follows:

• Fair multi-view clustering is an underexplored problem. To

the best of our knowledge, we are the first to propose a fair

multi-view spectral clustering method.

• We provide a new perspective on fairness. We construct a

relation between fairness and average degree to offer a new

explanation of fairness from the graph theory viewpoint.

• We carefully design a new fair-awareness regularized term

and integrate it into the multi-view spectral clustering seam-

lessly, forming an elegant and effective fair multi-view spec-

tral clustering framework.

• The extensive experiments on benchmark data sets demon-

strate the effectiveness and superiority of the proposedmethod.

2 related works and preliminaries
Throughout this paper, we use a bold uppercase letter and a bold

lowercase letter to denote a matrix and a vector, respectively. Given

amatrixM, we use𝑀𝑖 𝑗 to denote its (𝑖, 𝑗)-th element.We denoteM𝑖 .

andM.𝑖 as the 𝑖-th row and column vector of matrixM, respectively.

2.1 Multi-View Clustering
Multi-view clustering aims to apply consistency and complemen-

tary information of multiple views to learn a consensus clustering

result. In recent years, numerous multi-view clustering methods

have been proposed [14, 17, 24, 32, 53, 61, 62, 65]. For example, Kang

et al. designed a linear-time large-scale multi-view subspace clus-

tering method based on bipartite graphs [17]; Nie et al. introduced a

self-weighted method to determine weights for each view based on

their importance [32]; Tao et al. proposed a multi-view clustering

approach through ensemble clustering [43]; Liang et al. proposed

a robust multi-view clustering approach that can reach the global

optimal solution [25]; Zhang et al. proposed a side-constrained

multi-view graph clustering method by combining pairwise con-

straints into a multiple graph fusion framework [55]. Zhou et al.

designed a learnable graph filter for multi view clustering [61].

Among these methods, multi-view spectral clustering is one of

the most popular methods due to its effectiveness [23, 41, 49, 62, 64].

For example, Tang et al. integrated spectral embedding and k-means

into a unified framework to obtain discrete cluster labels [41]; Xia

et al. proposed a multi-view spectral clustering method by low-rank

and sparse decomposition [49]; Qiang et al. clustered on similarity

matrix to obtain discrete indicator matrix [39].

Although these multi-view spectral clustering methods have

achieved promising performance, none of them considers the fair-

ness of the clustering result. To tackle this problem, we propose a

novel fair multi-view spectral clustering method in this paper.

2.2 Spectral Clustering
Let 𝐺 (V, E) denote a weighted undirected graph with vertice set

V and edge set E, containing 𝑛 vertices. Its weights on edges are

represented by an adjacency matrix W ∈ R𝑛×𝑛
. The objective of

spectral clustering is to partition 𝐺 into 𝑐 unconnected subgraphs

with nonempty vertice subsets {X1,X2, · · · ,X𝑐 } to minimize the

intra-cluster similarity and maximize the inter-cluster similarity.

This is achieved by minimizing the Ratio Cut (Rcut) [45] of 𝐺 :

𝑅𝑐𝑢𝑡 (X1, · · · ,X𝑐 ) =
𝑐∑︁

𝑘=1

𝑐𝑢𝑡

(
X𝑘 ,X𝑘

)
|X𝑘 |

, (1)

where X𝑘 denotes the complement of set X𝑘 .

𝑐𝑢𝑡

(
X𝑘 ,X𝑘

)
=

∑
𝑉𝑖 ∈X𝑘 ,𝑉𝑗 ∈X𝑘

𝑤𝑖 𝑗 is a cut of graph 𝐺 , which de-

notes the summation of the edge weights between X𝑘 and X𝑘 .

Computing 𝑐𝑢𝑡

(
X𝑘 ,X𝑘

)
needs a binary indicator vector y𝑘 ∈

{0, 1}𝑛 , where the 𝑖-th element in y𝑘 is 1 if the 𝑖-th vertice𝑉𝑖 belongs

to X𝑘 . Denoting a diagonal matrix D ∈ R𝑛×𝑛
as a degree matrix,

whose 𝑖-th diagonal element 𝑑𝑖𝑖 =
∑𝑛

𝑗=1𝑤𝑖 𝑗 , we have

𝑐𝑢𝑡

(
X𝑘 , X𝑘

)
=

∑︁
𝑉𝑖 ∈X𝑘

𝑑𝑖𝑖 −𝑐𝑢𝑡 (X𝑘 , X𝑘 ) = y𝑇
𝑘
Dy𝑘 −y𝑇𝑘Wy𝑘 = y𝑇

𝑘
Ly𝑘 ,

where L = D −W is a graph Laplacian matrix [12]. Taking it back

to Eq.(1), we can rewrite Rcut as [38] did:

𝑅𝑐𝑢𝑡 (X1, · · · , X𝑐 ) =
𝑐∑︁

𝑘=1

y𝑇
𝑘
Ly𝑘

y𝑇
𝑘
y𝑘

= Tr

(
Y𝑇 LY

(
Y𝑇 Y

)−1)
=Tr

((
Y𝑇 Y

)− 1

2 Y𝑇 LY
(
Y𝑇 Y

)− 1

2

)
, (2)
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where Y = [y1, . . . , y𝑐 ] ∈ {0, 1}𝑛×𝑐 . For the convenience of opti-

mization, let H = Y
(
Y𝑇Y

)− 1

2

and Eq.(2) can be reformulated as:

min

H=Y(Y𝑇 Y)−
1

2 ,Y∈ Ind

Tr

(
H𝑇 LH

)
, (3)

where Ind is a set of indicator matrices. Eq.(3) is an NP-hard problem

[13]. Existing methods [15, 31, 60] relax it by making H𝑇H = I, and
disregarding the discrete constraints Y ∈ Ind , thereby obtaining

the relaxed objective function:

min

H𝑇H=I
Tr

(
H𝑇 LH

)
. (4)

The optimal H consists of the eigenvectors of L corresponding to

the 𝑐 smallest eigenvalues. After obtaining H, existing methods [16,

37, 50] obtain the final clustering results by some post-processing

discretizing methods such as k-means and spectral rotation on H.

2.3 Fair Clustering
In recent years, fair clustering has received increasing attention in

the artificial intelligence community. Chierichetti et al. first intro-

duced the concept of group fairness in clustering, suggesting that

samples within the same protected group should not be clustered

together [7]. However, the method of [7] is only applicable to two

protected groups. To address this issue, Bera et al. extended the

definition of fairness to multivariate protected groups [3], which is

shown as follows:

Definition 1. (Fairness) [3] Let X ∈ R𝑛×𝑑 denote a matrix with
𝑛 instances and 𝑑 attributes or features, which are partitioned into 𝑐
disjoint clusters C = {𝜋1, · · · , 𝜋𝑐 }. Given 𝑡 disjoint protected groups
G1,G2, · · · ,G𝑡 , let 𝜂𝑖 =

| G𝑖 |
𝑛 and 𝜂𝑖 (𝑘) = |𝜋𝑘∩G𝑖 |

|𝜋𝑘 | denote the propor-
tion of group G𝑖 in the whole data and cluster 𝜋𝑘 , respectively. The
fairnesss of the cluster 𝜋𝑘 is defined as:

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (𝜋𝑘 ) = min

(
𝜂𝑖

𝜂𝑖 (𝑘)
,
𝜂𝑖 (𝑘)
𝜂𝑖

)
, ∀𝑖 ∈ {1, · · · 𝑡} (5)

The fairness of the whole clustering result C is defined as:

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (C) = min

𝑘∈{1,· · ·𝑐 }
𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (𝜋𝑘 ) (6)

Remark 1. 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (C) ∈ [0, 1], and the larger 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 (C) is,
the fairer the clustering result is. It shows that a fair clustering result
requires that the proportion of G𝑖 in each cluster (i.e., 𝜂𝑖 (𝑘)) should
be close to the proportion of G𝑖 in the whole data (i.e., 𝜂𝑖 ). When
𝜂𝑖 (𝑘) = 𝜂𝑖 , the 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 will achieve its maximum value.

Based on Definition 1, Kleindessner et al. embedded fairness as

a linear constraint into spectral clustering [18]; Chierichetti et al.

presented a fair decomposition method which partitioned the data

into fair subsets to achieve fair clustering results [7]; Then Backurs

et al. accelerated the fairness decomposition to linear complexity

[2]; Ghadiri et al. proposed a fair k-means which ensured that all

protected groups have the same cluster cost among all clusters [11];

By maximizing and minimizing mutual information, Zeng et al.

embedded fairness constraints into deep clustering [52].

Although these works often achieve good performance, they

were designed for single-view clustering. Fair multi-view cluster-

ing is quite underexplored. Zheng et al. introduced group fairness

into deep multi-view clustering [59]. However, our work is signifi-

cantly different from [59]. Firstly, [59] applies the view contrastive

loss which makes it hard to handle the data with more than two

views and ours can naturally handle arbitrarily multiple views. Sec-

ondly, [59] defines the fair loss with a soft assignment, which has a

gap from the true fairness of Definition 1. Different from this, we

propose a new graph theory perspective of fairness and directly

optimize the discrete cluster assignment which is equivalent to

optimizing the original fairness definition. Our approach is simpler

and more effective. Lastly, [59] is a two-stage method, which first

learns an embedding and then obtains the final clustering result

from the embedding. As analyzed before, the two stages may not

be boosted by each other to achieve the optimal goal, and thus

our method applies a one-stage method to directly obtain the final

clustering result without any post-processing.

3 Method
In this section, we introduce our FMSC in more detail.

3.1 Fairness-aware Regularized Term
In this paper, we will provide a new perspective of fairness from the

graph theory viewpoint. Since fairness is relative to the protected

groups according to Definition 1, we first introduce the definition

of the protected group graph as follows:

Definition 2. (Protected group graph) Given a data set X =

{x1, · · · , x𝑛} with 𝑛 instances and 𝑡 protected groups G1,G2, · · · ,G𝑡

in X, an undirected and unweighted graph 𝐺𝑝 (V, E𝑝 ) with ver-
tice set V and edge set E𝑝 is a protected group graph of X w.r.t.
G1,G2, · · · ,G𝑡 , ifV consists of𝑛 vertices corresponding to𝑛 instances
in X and there is an edge between the 𝑖-th and 𝑗-th vertices if and
only if x𝑖 and x𝑗 belongs to the same protected group.

Remark 2. Since there is an edge between any instances in the
same protected group according to Definition 2, the protected group
graph consists of 𝑡 disconnected complete subgraphs, and each com-
plete subgraph represents a protected group. We call these complete
subgraphs as protected group subgraphs. For example, considering 10
people where 5 of them belong to one protected group (e.g. male) and
the other 5 people belong to the other protected group (e.g. female),
its protected group graph is shown as Figure 1(a), where the circles
denote males and the squares denote females.

According to Definition 1, fair clustering aims to partition X
into 𝑐 clusters 𝜋1, · · · , 𝜋𝑐 , where the proportion of G𝑖 in each clus-

ter should be close to each other. From the perspective of the pro-

tected group graph, it means that we wish to partition the protected

group graph𝐺𝑝
into 𝑐 cluster subgraphs, where in each cluster sub-

graph, the proportion of instances in each protected group subgraph

should be close to each other. For example, Figure 1(b) shows a

fair partition on the protected group graph. The blue vertices form

one cluster and the green vertices form the other cluster. In the

two clusters, the proportions of instances in two protected group

subgraphs are both 1 : 1.

Notice that the protected group subgraph is still a complete sub-

graph, which means the instances in one protected group subgraph

have links to all other instances in the same subgraph but have

no links to the ones in other subgraphs. If we wish in each cluster



MM’24, October 28 - November 1, 2024, Melbourne, Australia. Rongwen Li et al.

the proportion of instances in each protected group graph should

be close to each other, intuitively, the cluster subgraphs should be

"sparse", which means each cluster subgraph should contain as few

as possible edges.

In graph theory, average degree can be used to evaluate the

"sparsity" or "density" of a graph, whose formal definition is as

follows:

Definition 3. (Average degree) [8] Let 𝐺 (V, E) denote an undi-
rected and unweighted graph. Let |V| and |E | be the number of
vertices and edges, respectively. The average degree of graph 𝐺 is
defined as:

𝑑𝑎𝑣𝑔 (𝐺) =
2|E |
|V| (7)

It is easy to verify that the smaller 𝑑𝑎𝑣𝑔 (𝐺) is, the more sparse

the graph is. Therefore, intuitively, the smaller the total average

degree of all cluster subgraphs is, the fairer the clustering result

is. Figure 1 shows a simple toy example. Figure 1(b) and Figure

1(c) show two partitions on the protected group graph in Figure

1(a). In Figure 1(b), according to Definition 1, we have 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = 1,

which shows that the results are perfectly fair. Its total average

degree of two clusters is 𝑑𝑎𝑣𝑔 (𝐺) = 4

4
+ 12

6
= 3. In Figure 1(c), the

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = 0, which means it is an unfair clustering result. Its total

average degree of two clusters is 𝑑𝑎𝑣𝑔 (𝐺) = 20

5
+ 20

5
= 8, which is

much larger than the one in Figure 1(b).

More formally, we provide the following Theorem, which con-

structs a relation between the fairness and the average degree:

Theorem 1. Given a protected group graph 𝐺𝑝 (V, E𝑝 ) of data
X, we partition it into 𝑐 cluster subgraphs𝐺𝑝

1
, · · · ,𝐺𝑝

𝑐 by partitioning
X into 𝑐 clusters 𝜋1, · · · , 𝜋𝑐 . If the partition minimizes the total aver-
age degree

∑𝑐
𝑘=1

𝑑𝑎𝑣𝑔 (𝐺𝑝

𝑘
), then the corresponding clustering results

achieve the highest of the fairness defined in Definition 1.

Proof. Let G1,G2, · · · ,G𝑡 denote the 𝑡 protected groups of 𝐺𝑝
.

We now compute 𝑑𝑎𝑣𝑔 (𝐺𝑝

𝑘
) for the 𝑘-th cluster. Notice that all

connective components of𝐺𝑝
are still complete subgraphs, and thus

𝐺
𝑝

𝑘
also consists of complete subgraphs. Without loss of generality,

we assume 𝐺
𝑝

𝑘
contains 𝑡 complete subgraphs, and if the number

of connected components of 𝐺
𝑝

𝑘
is 𝑡1 < 𝑡 , we can introduce 𝑡 − 𝑡1

empty subgraphs to make it have 𝑡 complete subgraphs. In each

complete subgraph, there are |𝜋𝑘∩G𝑖 | vertices, which is the number

of instances in the 𝑘-th cluster which are in the 𝑖-th protected

group. Since it is a complete subgraph, the number of edges is

|𝜋𝑘∩G𝑖 | ( |𝜋𝑘∩G𝑖 |−1)
2

. Therefore, the average degree of 𝐺
𝑝

𝑘
is:

𝑑𝑎𝑣𝑔 (𝐺𝑝

𝑘
) =

∑𝑡
𝑖=1 |𝜋𝑘 ∩ G𝑖 | ( |𝜋𝑘 ∩ G𝑖 | − 1)

|𝜋𝑘 |
=

∑𝑡
𝑖=1 |𝜋𝑘 ∩ G𝑖 |2

|𝜋𝑘 |
− 1.

Then the total average degree is:

𝑐∑︁
𝑘=1

𝑑𝑎𝑣𝑔 (𝐺𝑝

𝑘
) =

𝑐∑︁
𝑘=1

𝑡∑︁
𝑖=1

|𝜋𝑘 ∩ G𝑖 |2
|𝜋𝑘 |

− 𝑐 =

𝑡∑︁
𝑖=1

𝑐∑︁
𝑘=1

|𝜋𝑘 ∩ G𝑖 |2
|𝜋𝑘 |

− 𝑐. (8)

Since 𝑐 is a constant, minimizing

∑𝑐
𝑖=1 𝑑𝑎𝑣𝑔 (𝐺

𝑝

𝑘
) is equivalent to

minimizing

∑𝑡
𝑖=1

∑𝑐
𝑘=1

|𝜋𝑘∩G𝑖 |2
|𝜋𝑘 | .

male
female

(a) protected group graph

male
female

(b) fair partition

male
female

(c) unfair partition

Figure 1: The protected group graph and fair/unfair partition
on the protected group graph

Then, according to Cauchy-Schwarz Inequality, we have(
𝑐∑︁

𝑘=1

|𝜋𝑘 ∩ G𝑖 |2
|𝜋𝑘 |

) (
𝑐∑︁

𝑘=1

|𝜋𝑘 |
)
≥

(
𝑐∑︁

𝑘=1

|𝜋𝑘 ∩ G𝑖 |
)
2

= | G𝑖 |2, (9)

which means

𝑡∑︁
𝑖=1

𝑐∑︁
𝑘=1

|𝜋𝑘 ∩ G𝑖 |2
|𝜋𝑘 |

≥
𝑡∑︁
𝑖=1

| G𝑖 |2
𝑛

. (10)

The equation holdswhen
|𝜋1∩G𝑖 |
|𝜋1 | =

|𝜋2∩G𝑖 |
|𝜋2 | = · · · = |𝜋𝑐∩G𝑖 |

|𝜋𝑐 | =
| G𝑖 |
𝑛

for any 𝑖 . Notice that, given any cluster 𝜋𝑘 ,
|𝜋𝑘∩G𝑖 |
|𝜋𝑘 | = 𝜂𝑖 (𝑘) and

| G𝑖 |
𝑛 = 𝜂𝑖 , where 𝜂𝑖 and 𝜂𝑖 (𝑘) are defined in Definition 1. Therefore,

we have that minimizing

∑𝑐
𝑘=1

𝑑𝑎𝑣𝑔 (𝐺𝑝

𝑘
) will lead to 𝜂𝑖 (𝑘) = 𝜂𝑖 ,

and according to Definition 1, this will lead to the maximum of

𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 . This concludes the proof. □

According to Eq.(8), we should minimize

∑𝑡
𝑖=1

∑𝑐
𝑘=1

|𝜋𝑘∩G𝑖 |2
|𝜋𝑘 |

to obtain the fair clustering result. For simplicity, we denote Y ∈
{0, 1}𝑛×𝑐 as the cluster indicator matrix, where 𝑌𝑖 𝑗 = 1 if the 𝑖-th

instance belongs to the 𝑗-th cluster and 𝑌𝑖 𝑗 = 0 otherwise. Similarly,

we also define a protected group indicator matrix P ∈ {0, 1}𝑛×𝑡 ,
where 𝑃𝑖 𝑗 = 1 if the 𝑖-th instance belongs to the 𝑗-th protected

group and 𝑃𝑖 𝑗 = 0 otherwise.

Then, it is easy to verify that the (𝑖, 𝑘)-th element in matrix P𝑇Y
is |𝜋𝑘∩G𝑖 |. Moreover, Y𝑇Y is a diagonal matrix whose𝑘-th diagonal

element is the number of instances in the 𝑘-th cluster, which is |𝜋𝑘 |.
To this end, we have

𝑐∑︁
𝑘=1

𝑡∑︁
𝑖=1

|𝜋𝑘 ∩ G𝑖 |2
|𝜋𝑘 |

=






P𝑇 Y (
Y𝑇 Y

)− 1

2






2
𝐹

= Tr

(
Y𝑇 PP𝑇 Y

(
Y𝑇 Y

)−1)
(11)

Therefore, we obtain our fair-awareness regularized term

Tr

(
Y𝑇 PP𝑇Y

(
Y𝑇Y

)−1)
. According to Theorem 1, minimizing this

regularized term, we can achieve a fair clustering result.

3.2 Fair Multi-View Spectral Clustering
Since our designed fairness-aware regularized term Eq.(11) has the

same form as Rcut defined in Eq.(2), we can naturally and seamlessly

integrate this regularized term into spectral clustering. Notice that

conventional spectral clustering methods often optimize Eq.(4) to

learn a continuous embeddingH and then discretizeH to obtain the

final cluster indicator matrix Y. As analyzed before, this two-stage

method separates the embedding learning and discretizing, and

thus the two stages cannot be boosted by each other to achieve a

good solution.

Different from the two-stage method, since our fairness-aware

regularized term involves the discrete cluster indicator matrix Y,
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we try to directly solve the original Rcut instead of the continuous

approximation.

In more detail, we denote a multi-view data set as

X = {X(1) ,X(2) , · · · ,X(𝑣) } with 𝑣 views, where X(𝑖 ) ∈ R𝑛×𝑑 (𝑖 )
is

the feature matrix of the 𝑖-th view containing 𝑛 instances and 𝑑 (𝑖 )

features. For the 𝑖-th view, we need to construct its Laplacian matrix

L(𝑖 ) . We first compute the similarity matrix S(𝑖 ) ∈ R𝑛×𝑛
of the 𝑖-th

view, whose (𝑝, 𝑞)-th element is 𝑆
(𝑖 )
𝑝𝑞 = 𝑒

−



X(𝑖 )

𝑝. −X(𝑖 )
𝑞.




2
2

2𝜎2 , where 𝜎 is

a bandwidth parameter and is set as the median of the Euclidean

distances of all instance pairs. Then we construct the 𝑘-NN graph

from S(𝑖 ) whose adjacency matrixW(𝑖 )
. If x𝑝 is a neighbor of x𝑞

or x𝑞 is a neighbor of x𝑝 in the 𝑖-th view, then𝑊
(𝑖 )
𝑝𝑞 = 𝑆

(𝑖 )
𝑝𝑞 , and

𝑊
(𝑖 )
𝑝𝑞 = 0 otherwise. For simplicity, we fix the number of neighbors

𝑘 = 5 in the 𝑘-NN graph.

Given W(𝑖 )
, we can compute its Laplacian matrix. Here, we use

the normalized Laplacian: L(𝑖 ) = I − D− 1

2W(𝑖 )D− 1

2 , where D is a

diagonal matrix whose diagonal element 𝐷𝑝𝑝 =
∑𝑛
𝑞=1𝑊

(𝑖 )
𝑝𝑞 .

Then we combine the Laplacian matrices of all views with weight

𝛼2
𝑖
∈ [0, 1] to obtain the consensus Laplacian matrix

∑𝑣
𝑖=1 𝛼

2

𝑖
L(𝑖 ) .

Take this consensus Laplacian matrix into Eq.(2), we obtain the

discrete multi-view spectral clustering:

min

Y,𝜶
Tr

(
Y𝑇

(
𝑣∑︁
𝑖=1

𝛼2

𝑖 L
(𝑖 )

)
Y

(
Y𝑇 Y

)−1)
,

𝑠 .𝑡 . Y ∈ {0, 1}𝑛×𝑐 ,
𝑐∑︁

𝑘=1

𝑌𝑝𝑘 = 1,

𝑣∑︁
𝑖=1

𝛼𝑖 = 1 , 𝛼𝑖 ≥ 0. (12)

Taking our fairness-aware regularized term Eq.(11) into the dis-

crete multi-view spectral clustering, we obtain the final objective

function of our FMSC:

min

Y,𝜶
Tr

(
Y𝑇

(
𝑣∑︁
𝑖=1

𝛼2

𝑖 L
(𝑖 ) + 𝜆PP𝑇

)
Y

(
Y𝑇 Y

)−1)
,

𝑠 .𝑡 . Y ∈ {0, 1}𝑛×𝑐 ,
𝑐∑︁

𝑘=1

𝑌𝑝𝑘 = 1,

𝑣∑︁
𝑖=1

𝛼𝑖 = 1 , 𝛼𝑖 ≥ 0, (13)

where 𝜆 is a balance hyper-parameter to control the trade-off be-

tween the clustering accuracy and the fairness. Larger 𝜆 will lead

to a fairer clustering result.

3.3 Optimization
The problem in Eq.(13) involves two variables, Y and 𝜶 . We provide

an alternative algorithm for optimization.

3.3.1 Optimization of Y. When fixing 𝜶 , the subproblem w.r.t. Y
can be rewritten as follows:

min

Y

𝑐∑︁
𝑘=1

Y𝑇
.𝑘
BY.𝑘

Y𝑇
.𝑘
Y.𝑘

𝑠 .𝑡 . Y ∈ {0, 1}𝑛×𝑐 ,
𝑐∑︁

𝑘=1

𝑌𝑝𝑘 = 1 (14)

where B =
∑𝑣
𝑖=1 𝛼

2

𝑖
L(𝑖 ) + 𝜆PP𝑇 . Notice that there is only one 1 in

each row of Y, and thus we can solve Y row by row. When optimiz-

ing the 𝑖-th row, we replace this rowwith [1, 0, . . . , 0], [0, 1, 0, . . . , 0],
..., [0, . . . , 0, 1], respectively, and find the one which leads to the

minimum of the objective function. Then we set the 𝑖-th row as

this row vector. Wang et al. provide an efficient way to optimize

the 𝑖-th row of Y by reducing the computation redundancy [46].

In more detail, when optimizing the 𝑖-th row, we first compute

the current {Y𝑇
.𝑘
BY.𝑘 }𝑐𝑘=1 and {Y𝑇

.𝑘
Y.𝑘 }𝑐𝑘=1, and save these values

for the later calculation. As suggested by [46], we introduce some

auxiliary matrices with the same size as Y: {Y(𝑠 ) }𝑐
𝑠=1

and Y(0)
,

where Y(𝑠 )
is a binary matrix with only the 𝑠-th element in the 𝑖-th

row is 1 and the rest elements of the 𝑖-th row are 0s, and all elements

in the 𝑖-th row of Y(0)
are 0s. The other rows (i.e., except the 𝑖-th

row) of Y(𝑠 )
and Y(0)

are identical to Y. We can see that, minimizing

Eq.(14) is to find a Y(𝑠 )
to minimize the objective function. Notice

that only the 𝑖-th rows in {Y(𝑠 ) }𝑐
𝑠=1

are different from each other

and other rows are the same. Therefore, to find the optima Y(𝑠 )
, we

only need to compute the different parts in the objective function

[46], which is:

L
(
Y(𝑠 )

)
=

Y(𝑠 )𝑇
.𝑠 BY(𝑠 )

.𝑠

Y(𝑠 )𝑇
.𝑠 Y(𝑠 )

.𝑠

− Y(0)𝑇
.𝑠 BY(0)

.𝑠

Y(0)𝑇
.𝑠 Y(0)

.𝑠

, (15)

Assuming that the𝑚-th element in the 𝑖-th row of the current Y
is 1, to compute L

(
Y(𝑠 )

)
, we need to discuss two cases whether 𝑠

is equal to𝑚. If 𝑠 =𝑚, we have Y(𝑠 ) = Y and Y(0)
.𝑠 = Y.𝑠 − 𝜹 , where

𝜹 ∈ R𝑛
is a column vector with the 𝑖-th element being 1 and the

rest elements being 0s. Therefore, Eq.(15) can be computed as:

L
(
Y(𝑠 )

)
=

Y𝑇.𝑠BY.𝑠
Y𝑇.𝑠Y.𝑠

−
Y𝑇.𝑠BY.𝑠 − 2Y𝑇.𝑠B.𝑖 + 𝐵𝑖𝑖

Y𝑇.𝑠Y.𝑠 + 1

(16)

If 𝑠 ≠ 𝑚, we have Y(0)
.𝑠 = Y.𝑠 and Y(𝑠 )

.𝑠 = Y.𝑠 + 𝜹 . Eq.(15) can be

calculated as:

L
(
Y(𝑠 )

)
=

Y𝑇.𝑠BY.𝑠 + 2Y𝑇.𝑠B.𝑖 + 𝐵𝑖𝑖

Y𝑇.𝑠Y.𝑠 + 1

−
Y𝑇.𝑠BY.𝑠
Y𝑇.𝑠Y.𝑠

. (17)

Notice that, {Y𝑇.𝑠BY.𝑠 }𝑐𝑠=1 and {Y𝑇.𝑠Y.𝑠 }𝑐𝑘=1 have already been

computed at first and do not need to be computed anymore. There-

fore, Eq. (16) or Eq.(17) can be computed efficiently. Then, we obtain

the optimal value of Y(𝑠 )
, denotes as Y(𝑠∗ )

, where 𝑠∗ represents the
optimal position of element 1 in the 𝑖-th row. We set Y = Y(𝑠∗ )

.

If 𝑠∗ =𝑚, it means that Y does not change, and we can directly

compute the (𝑖 +1)-th row. If 𝑠∗ ≠𝑚, we need to update the current

Y𝑇
.𝑘
BY.𝑘 and y𝑇

𝑘
y𝑘 for 𝑘 ∈ {𝑚, 𝑠∗} before optimizing the (𝑖 + 1)-th

row. We can update these values as follows:

Y𝑇.𝑚BY.𝑚 = Y(0)𝑇
.𝑚 BY(0)

.𝑚 , Y𝑇.𝑚Y.𝑚 = Y(0)𝑇
.𝑚 Y(0)

.𝑚 , (18)

Y𝑇.𝑠∗BY.𝑠∗ = Y(𝑠∗ )𝑇
.𝑠∗ BY(𝑠∗ )

.𝑠∗ , Y𝑇.𝑠∗Y.𝑠∗ = Y(𝑠∗ )𝑇
.𝑠∗ Y(𝑠∗ )

.𝑠∗ , (19)

Notice that these updations are also efficient because all values on

the right-hand sides have already been computed.

3.3.2 Optimization of 𝜶 . When fixing Y, we have following sub-
problem w.r.t. 𝜶 :

min

𝜶

𝑣∑︁
𝑖=1

𝛼2𝑖 𝑒𝑖 , 𝑠 .𝑡 .

𝑣∑︁
𝑖=1

𝛼𝑖 = 1, 𝛼𝑖 ≥ 0, (20)

where 𝑒𝑖 = Tr

(
Y𝑇 L(𝑖 )Y

(
Y𝑇Y

)−1)
, according to Cauchy-Schwarz

Inequality, we obtain the closed-form solution of 𝛼𝑖 as:

𝛼𝑖 =
𝑒−1
𝑖∑𝑣

𝑗=1 𝑒
−1
𝑗

. (21)
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Algorithm 1 Fair Multi-View Spectral Clustering

Input: Multi-view data X = {X(1) ,X(2) , · · · ,X(𝑣) }, protected
groups G1, · · · ,G𝑇 , fairness hyper-parameter 𝜆.

1: Construct the Laplacian matrix L(𝑖 ) for each view. Construct

the one-hot protected group matrix P.
2: Initialize 𝛼𝑖 =

1

𝑣 .

3: repeat
4: Update Y by solving Eq.(14).

5: Update 𝜶 by Eq.(21).

6: until Converges
Output: The final partition matrix Y.

3.4 Algorithm and Discussion
Algorithm 1 summarizes the process of our FMSC. The detailed

pseudo-code of the algorithm is shown in Appendix. Both updating

Y or 𝜶 make the objective function decrease monotonically and it

has a lower bound. Therefore, the algorithm can always converge.

In practice, it often converges very fast (often within ten iterations).

Now we analyze the time complexity. Since we need to construct

𝑘-NN graphs, the time complexity is 𝑂
(
𝑛2𝑑𝑣

)
. Optimizing Y has

a time complexity of 𝑂
(
𝑛2𝑐

)
[46]. Computing 𝜶 has a complexity

of 𝑂 (𝑛). Therefore, the bottleneck is to construct the 𝑘-NN graph

whose time complexity is 𝑂
(
𝑛2𝑑𝑣

)
. Although the time complexity

seems a little high, it is often fast in practice and there exist many

speedup methods for the 𝑘-NN graph construction.

4 Experiments
In this section, we conduct experiments to demonstrate the effec-

tiveness of our proposed method.

4.1 Data Sets
We conduct experiments on eight real and synthetic fair multi-view

data sets, including Yale [4], ORL [27], COIL
1
, Scene

2
, Jaffe [29],

Har [1], HCV
3
, and Credit Card [59]. Yale and ORL are two multi-

view face image data sets for fair clustering. In Yale, individuals

wearing glasses form one protected group, while those without

glasses form the other protected group as [20] did. In ORL, varia-

tions in a person’s facial orientation, e.g., facing front or slightly

sideways, form different protected groups [20]. Jaffe, Har, HCV,

and Credit Card are single-view data sets for fair clustering. We

generate multiple views as the previous works did. Specifically,

for Credit Card and HCV, following [59], we generate two views

using non-linear functions (i.e., Sigmoid and Relu). For Jaffe, besides

the original view, we employ pre-trained ResNet-50, VGG-16, and

autoencoders with various hidden layer sizes to obtain five addi-

tional views [35]. Similar to Jaffe, we generate two views for Har

by using two autoencoders with different sizes of the hidden layer

and form the three views together with the original view as [10]

did. For natural multi-view data sets COIL and Scene, following

[51], we randomly assign each instance to a protected group with a

Bernoulli distribution whose 𝑝 = 0.5 to form two protected groups.

Details of the data sets are shown in Table 1.

1
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

2
https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177

3
https://archive.ics.uci.edu/dataset/571/hcv+data

Table 1: Description of the data sets.
Data sets #Samples#Clusters #Features Protected Groups

Yale 165 15 9/512/50 w/o glasses (2)

Har 10299 6 400/1000/561 Person Identity (30)

ORL 400 40 4096/3304/6750 Facial Orientation (2)

Credit Card 5000 5 22/22 Gender (2)

Jaffe 213 10 200/400/600/800/1000/676 Expression (7)

Hcv 615 5 13/13 Gender (2)

COIL 1440 20 1024/3304/6750 Synthetic Binary (2)

Scene 4485 15 20/59/40 Synthetic Binary (2)

4.2 Experimental Setup
We compare our method with 9 state-of-the-art multi-view cluster-

ing methods including AMGL [33], AWP [34], CGD [42], COMVSC

[56], SMSC [15], OPLFMVC [28], CGL [22], EMVGC [48], and

RCAGL [26]; a deep fair multi-view clustering method Fair-MVC

[59]; and 3 single-view fair clustering methods including SpFC [18],

VFC [63], and FFC [36]. For the single-view fair clustering methods,

we concatenate the features of all views to form one single view

and run them on this view. In our method, we tune 𝜆 in the range[
10

−5, 101
]
. For other methods, we tune the hyper-parameters as

suggested in their respective papers. For all methods on all data

sets, the number of clusters is set as the true number of classes. We

utilize Accuracy (ACC) and Normalized Mutual Information (NMI)

to evaluate the clustering performance. Besides, we also employ

balance (Bal) [54] and Minimal Normalized Conditional Entropy

(MNCE) [52] to evaluate fairness. Specifically, Bal is defined as:

Bal (C) = min

𝑘

(
𝑁min

𝑘

𝑁max

𝑘

)
∈ [0, 1], (22)

where 𝑁𝑚𝑖𝑛
𝑘

and 𝑁𝑚𝑎𝑥
𝑘

represent the number of instances in the

smallest and the largest (in size) protected groups in cluster 𝜋𝑘 ,

respectively. MNCE is defined as:

MNCE =

min𝑘

(
−∑

𝑖
| G𝑖∩𝜋𝑘 |
|𝜋𝑘 | log

| G𝑖∩𝜋𝑘 |
|𝜋𝑘 |

)
−∑

𝑖
| G𝑖 |
𝑛 log

| G𝑖 |
𝑛

∈ [0, 1] . (23)

For all metrics, the larger the value is, the better the result is.

4.3 Experimental Results
Table 2 shows the results of multi-view clustering methods, where

the red and blue texts indicate the best and second-best results,

respectively. As introduced before, Fair-MVC can only handle data

sets with two views, and thus it can only run results on Credit Card

and Hcv data sets. It shows that our method outperforms other

multi-view clustering methods w.r.t. the fairness metrics (i.e., Bal

and MNCE) on all data sets. Even compared with the fair multi-view

clustering method Fair-MVC, ours still achieves fairer results. It

well shows the superiority of our fairness-aware regularized term,

demonstrating our motivation for fairness. Besides this, our method

is still comparable with or even better than other methods w.r.t.

clustering performance (i.e., ACC and NMI) on most data sets.

Table 3 shows the comparison results with the single-view fair

clustering methods. Considering the high spatial complexity in

the initial stage of FFC, we randomly select some permutations

from all initialized permutation combinations. It can be seen that

our method performs better than the single-view fair clustering

https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://figshare.com/articles/dataset/15-Scene_Image_Dataset/7007177
https://archive.ics.uci.edu/dataset/571/hcv+data
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Table 2: Comparison results with multi-view clustering methods on all data sets. Red texts indicate the best results, and blue
texts indicate the second-best results.

Data sets AMGL AWP CGD COMVSC SMSC OPLFMVC CGL EMVGC RCAGL Fair-MVC FMSC

Yale

ACC 0.394 0.606 0.533 0.702 0.709 0.721 0.697 0.448 0.721 - 0.761

NMI 0.475 0.641 0.577 0.755 0.718 0.740 0.759 0.517 0.787 - 0.840

Bal 0 0 0 0 0 0 0 0 0 - 0.100

MNCE 0 0 0 0 0 0 0 0 0 - 0.580

COIL

ACC 0.794 0.462 0.793 0.657 0.826 0.470 0.556 0.398 0.657 - 0.804

NMI 0.883 0.652 0.879 0.755 0.918 0.640 0.731 0.552 0.808 - 0.890

Bal 0.531 0.700 0.531 0.516 0.531 0.636 0.583 0.428 0.428 - 0.764

MNCE 0.931 0.977 0.931 0.925 0.931 0.964 0.949 0.881 0.881 - 0.987

Jaffe

ACC 0.826 0.787 0.860 0.861 0.849 0.751 0.770 0.511 0.530 - 0.865

NMI 0.826 0.78 0.832 0.851 0.815 0.781 0.838 0.554 0.633 - 0.842

Bal 0 0 0 0 0 0 0 0 0 - 0.500

MNCE 0.356 0.562 0.842 0.872 0.556 0.645 0.564 0.516 0.354 - 0.987

ORL

ACC 0.627 0.782 0.537 0.527 0.74 0.737 0.845 0.487 0.655 - 0.840

NMI 0.780 0.875 0.699 0.712 0.884 0.863 0.921 0.597 0.839 - 0.912

Bal 0 0.111 0 0 0.147 0.140 0.080 0 0.114 - 0.200

MNCE 0 0.369 0 0 0.390 0.382 0.361 0 0.372 - 0.500

Scene

ACC 0.327 0.297 0.422 0.192 0.401 0.315 0.419 0.370 0.334 - 0.390

NMI 0.302 0.260 0.380 0.133 0.404 0.288 0.383 0.335 0.294 - 0.401

Bal 0 0.809 0.788 0 0.771 0.822 0.717 0.806 0 - 0.881

MNCE 0 0.992 0.990 0 0.988 0.993 0.980 0.991 0 - 0.997

Har

ACC 0.366 0.395 0.565 0.353 0.557 0.511 0.417 0.552 0.550 - 0.628

NMI 0.399 0.353 0.603 0.368 0.605 0.380 0.398 0.525 0.565 - 0.609

Bal 0 0 0 0 0 0 0 0 0 - 0.180

MNCE 0.261 0.916 0.221 0.325 0.288 0.893 0.277 0.865 0.478 - 0.971

Credit Card

ACC 0.380 0.371 0.371 0.286 0.261 0.297 0.252 0.366 0.266 0.396 0.382

NMI 0.151 0.122 0.134 0.064 0.043 0.050 0.042 0.155 0.058 0.246 0.160

Bal 0.547 0.626 0.553 0.527 0.113 0.545 0.234 0.576 0.524 0.591 0.687

MNCE 0.96 0.985 0.962 0.952 0.613 0.959 0.644 0.970 0.951 0.972 0.999

Hcv

ACC 0.375 0.361 0.253 0.378 0.413 0.400 0.374 0.317 0.457 0.462 0.487

NMI 0.019 0.029 0.021 0.093 0.115 0.106 0.028 0.025 0.120 0.129 0.133

Bal 0 0 0 0.126 0.286 0.012 0 0 0.312 0.596 0.625

MNCE 0 0 0 0.772 0.843 0.413 0 0 0.953 0.994 0.998

Table 3: Comparison with fair clustering methods. Red texts
indicate the best results

Methods

Yale COIL

ACC NMI Bal MNCE ACC NMI Bal MNCE

SpFC 0.714 0.771 0.095 0.561 0.840 0.935 0.526 0.924

VFC 0.690 0.730 0.100 0.580 0.729 0.799 0.636 0.964

FFC 0.739 0.789 0.083 0.516 - - - -

FMSC 0.761 0.840 0.100 0.580 0.804 0.890 0.764 0.987

Methods

Jaffe ORL

ACC NMI Bal MNCE ACC NMI Bal MNCE

SpFC 0.861 0.824 0.111 0.675 0.641 0.784 0 0

VFC 0.751 0.797 0.333 0.927 0.607 0.777 0 0

FFC 0.798 0.865 0.200 0.945 - - - -

FMSC 0.865 0.842 0.500 0.987 0.840 0.912 0.200 0.500

Methods

Scene Har

ACC NMI Bal MNCE ACC NMI Bal MNCE

SpFC 0.308 0.296 0.647 0.966 0.547 0.587 0 0

VFC 0.274 0.284 0.681 0.973 0.578 0.583 0 0.672

FFC 0.317 0.329 0.250 0.721 0.670 0.564 0.079 0.966

FMSC 0.390 0.401 0.881 0.997 0.628 0.609 0.180 0.971

Methods

Credit Card Hcv

ACC NMI Bal MNCE ACC NMI Bal MNCE

SpFC 0.299 0.103 0.602 0.978 0.474 0.102 0.501 0.981

VFC 0.378 0.235 0.576 0.970 0.396 0.039 0 0

FFC 0.388 206 0.566 0.967 0.341 0.044 0.084 0.409

FMSC 0.382 0.160 0.687 0.999 0.487 0.133 0.625 0.998
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term.

Figure 2: The distribution of the protected groups in each
cluster on Har data set. The size and color of a bubble denote
the number of instances.

methods w.r.t. both clustering performance and fairness on most

data sets. It is because we effectively ensemble the information from

multiple views to improve the final clustering performance, which

is consistent with the motivation of multi-view learning. Even

when compared with the fairness metrics, ours still outperforms

these fair methods, which shows the superiority of our designed

fairness-aware regularized term.

To further show the effects of our fair-aware regularized term, we

visualize the distribution of instances in each protected group and
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Figure 3: NMI and MNCE on ORL and Jaffe data sets w.r.t.
different values of 𝜆.

each cluster. Figure 2 shows the visualization results on the Har data

set. The X-axis and Y-axis denote the clusters and protected groups,

respectively. The size and color of a bubble denotes the number of

instances in a protected group and a cluster |𝜋𝑘 ∩ G𝑖 |. Figure 2 (a)
and (b) visualize the results without and with the fairness-aware

regularized term, respectively. We can find that the distribution

of protected groups in clusters 4,5, and 6 in Figure 2 (a) is very

imbalanced, which means the results without the fairness-aware

regularized term are unfair according to Definition 1. In Figure 2(b),

we can see that the distribution of protected groups in all clusters

is balanced, which means the results are much fairer than the one

without the regularized term. This result well demonstrates the

effectiveness of our proposed fairness-aware regularized term.

4.4 Ablation Study
We conduct the ablation study to show the effectiveness of our

fairness-aware regularized term and the one-stage clustering strat-

egy. Specifically, we denote FMSC-nf as FMSCwithout the fairness-

aware regularized term, which means we set 𝜆 = 0; we denote

FMSC-ts as the two-stage method that obtains a consensus spectral

embedding first, and then discretizes the embedding with spectral

rotation together with our fairness-aware regularized term to obtain

final discrete clustering results. Table 4 shows the results. It shows

that, compared with the two-stage method, our FMSC achieves

better clustering performance w.r.t. ACC and NMI. This is because

spectral clustering is only used in the first stage of FSMC-ts, and

in the second stage of FSMC-ts, it does not control the clustering

accuracy. The fairness of FSMC-ts is comparable with our FSMC

because in the second stage of FSMC-ts, it also directly uses our

fairness-aware regularized term to control the fairness. Despite this,

our FSMC also outperforms it on some data sets, demonstrating

the superiority of our one-stage clustering strategy.

When compared with FSMC-nf, FSMC performs better w.r.t. the

fairness (i.e., Bal and MNCE) on all data sets. It well demonstrates

the effectiveness of our designed fairness-aware regularized term.

However, it is interesting to see that, on some data sets, such as Yale

Table 4: Ablation Study on all data sets. Red texts indicate
the best results

Methods

Yale COIL

ACC NMI Bal MNCE ACC NMI Bal MNCE

FMSC-nf 0.773 0.851 0 0 0.809 0.913 0.531 0.936

FMSC-ts 0.732 0.806 0.100 0.580 0.775 0.831 0.821 0.995

FMSC 0.761 0.840 0.100 0.580 0.804 0.890 0.764 0.987

Methods

Jaffe ORL

ACC NMI Bal MNCE ACC NMI Bal MNCE

FMSC-nf 0.850 0.831 0 0.670 0.830 0.905 0.102 0.469

FMSC-ts 0.812 0.783 0.449 0.971 0.803 0.872 0.192 0.631

FMSC 0.865 0.842 0.500 0.987 0.840 0.912 0.200 0.500

Methods

Scene Har

ACC NMI Bal MNCE ACC NMI Bal MNCE

FMSC-nf 0.398 0.412 0.840 0.994 0.637 0.680 0 0

FMSC-ts 0.336 0.348 0.912 0.997 0.538 0.527 0.116 0.923

FMSC 0.390 0.401 0.881 0.997 0.628 0.609 0.180 0.971

Methods

Credit Card Hcv

ACC NMI Bal MNCE ACC NMI Bal MNCE

FMSC-nf 0.390 0.165 0.550 0.964 0.258 0.020 0 0

FMSC-ts 0.334 0.125 0.681 0.998 0.445 0.092 0.625 0.998

FMSC 0.382 0.160 0.687 0.999 0.487 0.133 0.625 0.998

and COIL, when removing the fairness regularized term, FMSC-nf

achieves better performance w.r.t. ACC and NMI compared to our

FMSC. It is reasonable. Notice that, when computing ACC and NMI,

we need to use the ground truth of the data. However, on some data

sets, the ground truth may be naturally unfair. When we impose

the fairness-aware regularized term on these data sets, we can only

achieve a trade-off between accuracy and fairness, which means

we should sacrifice the clustering accuracy to achieve fairness.

4.5 Efficiency Results
Due to the limited space, we show the convergence curves of our

method and the running time of all methods on all data sets in the

Appendix. Our method typically converges within 10 iterations. In

terms of running time efficiency, our method is comparable with

state-of-the-art methods, and even faster than many methods such

as COMVSC and SMSC.

4.6 Hyper-parameter Study
Figure 3 shows the NMI and MNCE on ORL and Jaffe data sets

with different values of 𝜆 within

[
10

−5, 101
]
. The results on other

data sets are similar. As 𝜆 increases, fairness (i.e., MNCE) gradually

improves, while clustering performance (i.e., NMI) may decrease,

which is consistent with our previous analysis. 𝜆 controls the trade-

off between the clustering accuracy and fairness and when 𝜆 = 0.1

we can obtain a relatively good trade-off.

5 CONCLUSION
This paper proposed a novel one-stage fair multi-view spectral

clustering method. We offered a new observation and explanation

of fairness from the graph theory viewpoint to construct a relation

between fairness and the average degree. Based on this observation,

we designed a new fairness-aware regularized term that has the

same form as spectral clustering. Therefore, we can naturally and

seamlessly plug it into multi-view spectral clustering, leading to

our FMSC method. Extensive experiments have been conducted to

demonstrate the superiority of our proposed method. The ablation

study also demonstrates the effectiveness of our designed fairness-

aware regularized term.
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