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A Detailed Results

A.1 Quantitative Results: Forecasting Glancing Behavior

Table 3 depicts the NLL and head orientation error metrics for our experiments on the task of
forecasting glancing behavior using synthetic data. All models are evaluated under the random
context regime and no-pool configuration. The sinusoids are interpreted to represent a horizontal
head rotation between —90° and 90°. To provide further insight into model performance, in Figure 4
we plot the MAE in predicted and expected mean forecasts averaged over ¢, against the phase of
the sinusoids in the dataset. We observe that the SP-GRU error plot is smoother with respect to small
phase changes, with lower errors overall.

Table 3: Mean (Std.) Metrics on the Synthetic Glancing Behavior Dataset. The metrics are averaged over
timesteps; mean and std. are then computed over sequences. Lower is better. Boldface indicates best overall.

NLL Head Ori. MAE (°)
Baseline
NP-latent —0.281 (0.239) 19.631 (7.260)
Ours

SP-latent (MLP) ~ —0.361 (0.197) 19.461 (7.049)
SP-latent (GRU) —0.552 (0.230)  18.55 (7.109)

NP-latent (Baseline) SP-latent, MLP (Ours) SP-latent, GRU (Ours)

Head Ori. MAE (°)

B NPVAVA
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phase phase phase

Figure 4: Error in forecast mean and expected mean orientation (average of the two ground-truth futures) for
every sequence in the Synthetic Glancing dataset. Each sequence is denoted by the phase of the sinusoid.

A.2 Per Timestep Metrics

In Figure 5 we plot the evaluation metrics per timestep averaged over sequences in the Synthetic
Glancing Behavior dataset. In Figure 6 we do the same for sequences in the Haggling Test Sets.

s o o—"—"
o s /o Y - 3.0 \ / \ ./o
8\ X
~—"* &
/ £ / ¢
o] S————— / 10 /.\././ \.

o

NLL
value
',
\\.\
Expected Head Ori

®-

-—0———@

10 1 12 13 14 15 16 17 18 19 10 1 12 13 14 15 16 17 18 19
timestep timestep

—e— NP-latent (Baseline) SP-latent, MLP (Ours) ~ —@— SP-latent, GRU (Ours)  —=— ground-truth NLL

Figure 5: Mean Per Timestep Metrics over the Sequences in the Synthetic Glancing Dataset. NLL is
expected to increase over timesteps where ground-truth futures diverge, being —oco when the future is certain.
Head orientation error is computed between the predicted mean and the expected mean (average of the two
ground-truth futures). We observe that the SP-GRU model performs best, especially when the future is certain,
learning both the best mean and std. over those timesteps.
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Figure 6: Mean Per Timestep Metrics over the Sequences in the Haggling Test Sets. Note that the y-axes
do not share the same scale, except for speaking status accuracy. We observe that the SP-GRU model predicts
smooth futures unlike the MLP models. There is a slight trend that the models get worse at forecasting over the
duration of ¢,s.
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A.3 Ablations

Table 4: Mean (Std.) NLL for the Ablation Experiments with the SP-latent+det GRU Model. The reported
mean and std. are over sequences in the Haggling Test Sets. Lower is better.

Context
Random Fixed-Initial
Full Model —17.38 (50.5) —16.08 (52.2)
Encoding Partner Behavior
no-pool 8.02 (75.5) 12.39 (97.5)
pool-oT —4.67(26.9)  —4.50 (26.7)
No Deterministic Decoding
Shared Social Encoders —30.65 (39.3) —29.45 (40.4)
Unshared Social Encoders —3.81(28.3) —1.79(27.3)

Table 5: Mean (Std.) Errors in Predicted Means for the Ablation Experiments with the SP-latent+det
GRU Model. The reported mean and std. are over sequences in the Haggling Test Sets. Lower is better for all
except for speaking status accuracy.

Random Context Fixed-Initial Context
Head Loc. Body Loc.  Head Ori. Body Ori. Speaking Head Loc. Body Loc.  Head Ori. Body Ori. Speaking
MSE (cm)  MSE (cm) MAE (°) MAE (°) Accuracy MSE (cm)  MSE (cm) MAE (°) MAE (°) Accuracy
Full Model 15.84 (5.5) 17.76 (7.5) 20.65 (19.9) 21.73(29.5) 0.671 (0.22) 16.53 (6.0) 18.20 (8.0) 20.74 (19.5) 21.31(28.9) 0.674 (0.22)
Encoding Partner Behavior
no-pool 18.20 (6.7) 18.05 (7.7) 16.76 (12.8) 14.30 (20.9) 0.690 (0.21) 18.64 (6.7) 1845 (7.4) 16.85 (12.9) 14.29(20.5) 0.687 (0.21)
pool-oT 17.42(6.2) 19.31(6.3) 23.39 (24.9) 17.68(26.9) 0.743 (0.21) 17.83(6.2) 19.23(6.3) 23.53(24.3) 17.51(25.7) 0.735(0.22)
No Deterministic Decoding
Shared Social Encoders 15.76 (7.2)  16.34 (6.6) 45.54 (44.6) 21.87 (25.0) 0.644 (0.22) 16.93 (8.1) 17.15(7.0) 45.49 (44.3) 21.83 (24.7) 0.637 (0.22)
Unshared Social Encoders 17.40 (6.9) 18.33 (6.7) 18.62 (14.7) 14.54(20.2) 0.704 (0.23) 18.54(7.9) 19.18(7.1) 18.68 (14.9) 14.44 (20.0) 0.700 (0.23)

B Qualitative Visualizations

B.1 Glancing Behavior

Observed

Type Ill GT Type | GT

R 15
timestep

Figure 7: Forecasting Glancing Behavior for a Sequence in the Context Set. We visualize the same sinusoid
within the context set as plotted in Figure 3 (phase = 4.2), here interpreted as a horizontal head rotation between
—90° and 90°. The bottom three rows depict predictions, with the solid head denoting the mean, and the
translucent heads the std. GT stands for Ground-Truth. The SP models learn better uncertainty estimates,
especially over the timesteps where the future is certain (see timestep 11, for instance).
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Figure 8: Forecasting Glancing Behavior for a Sequence Not in the Context Set. We visualize the same
sinusoid not in the context set as plotted in Figure 3 (phase = 0.005). See the Figure 7 caption for details.
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Figure 9: Forecasts for a Sequence from the Haggling Test Group 170221-b1-group3. Note that these are
features from real-world data visualized using 3D models. Speakers are depicted in orange and listeners in green.
The predicted speaking status mean is visualized as an interpolated shade between the two colors. The translucent
models in the forecasts denote the mean = std. pose and speaking status. We observe that the NP forecasts are
almost completely static. The SP-GRU forecasts are comparatively dynamic with lower uncertainties overall.
The SP-MLP model seems to be learning an overall average orientation, forecasting all participants to be facing
in the direction of the two sellers. Note that the pose changes are far more subtle than in the glancing behavior
dataset. Interaction videos reveal that the participants significantly rely on gaze changes to direct attention. See
Section 7 for a discussion.
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Figure 10: Forecasts for a Sequence from the Haggling Train Group 170224-al-groupl. We see a similar
pattern to the model forecasts as in Figure 9: NP forecasts are static, SP-GRU predicts more dynamic futures,
while the SP-MLP forecast average orientations. A turn change has occurred at the end of the observed window.
‘We observe that the SP-GRU model forecasts an interesting continuation to the turn. It anticipates the buyer
(middle) to quickly interject the last observed speaking seller, before falling silent and directing attention between
the sellers, both of whom it expects to then speak simultaneously. While this is not the ground-truth future in
this instance, we believe that the forecast still indicates that the model is capable of learning believable haggling
turn dynamics from the overall training data. See the Figure 9 for details on the visualization setup.

C Implementation Details

C.1 Neural Architectures

The data dimension for the experiments on the Haggling dataset is 15, while that for the toy glancing
experiment is 1. Table 6 specifies the network architecture hyperparameters for the Haggling dataset
experiments. For the toy experiment, all the hidden and representation dimensions are fixed at 32.

The goal of our experiments is to evaluate the relative impact of our modeling choices on performance,
rather than finding the best possible model for benchmarking. Consequently, we chose a set of
architecture hyperparameters such that the simplest -latent variants have a comparable number of
parameters for cross-family comparison. These hyperparameters were then kept fixed for the variants
within each family for fair intra-family comparison. The hyperparameters we chose resulted from
light tuning through 5-fold cross-validation and showed improved performance for all models, but
improved absolute performance might be obtained through more extensive tuning.

C.2 Training and Evaluation

We construct batches for training by bucketing samples such that all sequences in a batch share the
same t,ps, and the same ¢y, length. Note that since the MLP models are operationalized by collapsing
the timestep and feature dimensions, the length of £,},s and ¢y, is the same for these models across
batches. However, since the recurrent models can handle sequences of different lengths, we allow for
forecasting different length futures across batches resulting in a few more training batches. Following
the training practices suggested by Le et al. [76], we construct the context set at training as a random
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Table 6: Architecture Hyperparameters for the Haggling Dataset Experiments.

Hyperparameter NP SP-MLP SP-GRU
Sequence Encoder/Decoder

Number of layers 2 2 1

Hidden dim 416 64 320
Partner Pooler ()

Number of MLP layers — 2 2

MLP hidden dim — 64 64

Output dim — 32 32
z Encoder

Number of layers 2 2 2

Hidden dim 64 64 64
Representations

e, r,s, zdim 64 64 64
Multi-Head Attention

Query/Key dim 32 32 32

Number of heads 8 8 8

Number of parameters
in -latent variant

subset of the batch. Consequently, we further constrain samples in a batch to correspond to the same
interacting group (see Section 2 for the underlying meta-learning intuition). For the same reason,
we also ensure that a batch contains unique observed sequences, so that a single observed sequence
does not dominate the aggregation of representations over context. This is because a single observed
sequence has multiple associated future sequences at different offsets, and could show up multiple
times in a batch through random sampling if not handled explicitly.

We optimize the models using Adam [77]. For the NP and SP-MLP models we use a batch size of
128, an initial learning rate of 3e—5, and a weight decay of 5e—4, and a dropout rate of 0.25. For the
MLP-GRU models we use a batch size of 64, an initial learning rate of le—>5, and a weight decay of
le—3. The entire system was implemented using Pytorch [78] and Pytorch Lightning [79]. Every
model was trained on a single NVIDIA GPU on an internal cluster depending on availability; one of
Geforce GTX 970 (4 GB) or 1080 (8 GB), or Quadro P4000 (8 GB).

We validate the hyperparameters using 5-fold cross-validation, in the random context regime. At test,
we use the same context sequences across models for fair comparison. The final model parameters
for testing are obtained by averaging the parameters from the five best models during training. All
testing was done with a batch size of 128 for consistency. All evaluation metrics are computed
after destandardizing the location dimensions (orientation is already denoted by a unit quaternion,
and therefore not standardized). The predicted std. deviations are scaled by the same value as the
predicted means during destandardization.

D Additional Dataset Details

D.1 Synthesized Glancing Behavior Dataset

The set of pristine sinusoids representing the Type I glances is computed by evaluating the sine
function at the bounds of 19 equally spaced partitions of [0, 37 + ¢), for phase values ¢ in [0, 27)
with a step size of 0.001. More concretely, this is the set

g={r:r=sin(z), z = nx(3r+¢)/19, n € {0,1,...19}, $ = px0.001, p € {0,1,...6283}},

which results in 6284 sequences. The Type III glances are represented by identical sinusoids with
clipped amplitudes for the last six timesteps, resulting in the final dataset of 12568 sequences. We
train with batches of 100 sequences, using a randomly sampled 25 % of the batch as context. For
evaluation, we fix 785 randomly sampled phase values as context for all models. For each phase,
samples corresponding to both types of glances are included in the context set, effectively using 25 %
of all samples as context at evaluation.
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D.2 Preprocessing the Panoptic Haggling Dataset

We begin by converting the orientation normals into unit quaternions. While quaternions afford many
benefits over other representations of rotation, their one downside is that they are not injective—the
quaternion q denotes an identical rotation to —q. We address this by constraining every first
quaternion of a sequence to the same hemisphere in quaternion space. To ensure smooth interpolation,
the quaternion at every subsequent frame is chosen to be the one in {q¢, —q;} that is the shortest
distance from q;_; along the unit hypersphere. As discussed in Section 5,we then split the interaction
data into pairs of ¢.,s and tg,; windows to construct the samples for forecasting. Motivated by the
domain focus on the organization of turn-taking, we consider window lengths of 2 seconds supported
by dataset statistics and literature. The dataset duration of contiguous speech follows a mean of 2.13 s
(o = 2.61 s), which is close to the mean measure of 1.68 s found in turn-taking analysis [20, 80]. We
generate sliding windows with an overlap of 0.8, constraining the offset between s and tg, to a
maximum of 5 s. This is to roughly restrict candidate future windows to those starting after two turn
changes. In total, we obtain about 140K observed-future sequence pairs for training, and about 40K
pairs for testing. We standardize the location features to have zero mean and unit variance, using the
train statistics to standardize the test sets.
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