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Abstract

Low-resource languages face a critical chal-
lenge in Al development: creating specialized
conversational systems without access to mas-
sive training corpora. We present a system-
atic methodology for transforming structured
linguistic resources into specialized Al sys-
tems, demonstrating that expert-curated lexical
databases can serve as effective foundations for
conversational Al development. Our approach
converts Hindi WordNet into 1.25 million di-
verse instruction-response pairs, fine-tunes a
12B-parameter language model using resource-
efficient LoRA with 4-bit quantization. Evalua-
tion through a Hindi language learning chatbot
demonstrates that structured-knowledge-based
systems achieve superior pedagogical effective-
ness (91.0 vs. 79.4-83.6 for general-purpose
models) while maintaining competitive seman-
tic performance and exceptional consistency.
The complete pipeline provides a methodology
for developing specialized Al systems for any
languages with WordNet resources. This work
addresses the critical gap in Al accessibility
for low-resource languages, offering a practi-
cal alternative to corpus-intensive approaches
and potentially enabling specialized Al devel-
opment for billions of underserved language
speakers worldwide.

1 Introduction

The democratization of artificial intelligence in-
creasingly depends on developing specialized sys-
tems that can effectively serve diverse linguistic
communities. While recent advances in large lan-
guage models have demonstrated remarkable ca-
pabilities (Hagos et al., 2024), these systems pre-
dominantly excel in high-resource languages with
abundant digital content, leaving billions of speak-
ers of low-resource languages underserved (Zhong
et al., 2024; Hasan et al., 2024). This digital divide
is particularly acute in specialized domains such
as education, where culturally and linguistically

appropriate Al systems are essential for effective
learning outcomes (Li et al., 2024).

Current approaches to developing conversational
Al for low-resource languages face a fundamental
bottleneck: the requirement for massive training
corpora that simply does not exist for most of the
world’s 2,500+ languages (UNESCO, 2010; En-
dangered Languages Project). Traditional method-
ologies for fine-tuning and domain adaptation in
Al assume the availability of vast quantities of
text(Cryst et al., 2025) often only realistic for
high-resource languages. For example, OpenAl
trained GPT-3 with approximately 45TB of text
from multiple sources(Team, 2023), while the Com-
mon Crawl corpus contains hundreds of billions
of words, primarily from diverse web content but
not specifically focused on cultural heritage initia-
tives(Team, 2024). This corpus-scarcity problem
is compounded by the need for specialized domain
knowledge, creating a double barrier that effec-
tively excludes most languages from participating
in the Al revolution.

However, many low-resource languages possess
rich structured linguistic resources that represent
decades of expert scholarly work. WordNets, hi-
erarchy of lexical databases that encode semantic
relationships, definitions, and linguistic structures,
exist for more than 200 languages (Global Word-
Net Association) and contain precisely the type of
expert knowledge needed for specialized Al appli-
cations. BabelNet 5.3 covers 600 languages and is
obtained from the automatic integration of various
multilingual WordNets, while BabelNet 4.0 covers
284 languages and contains about 16 million en-
tries, called Babel synsets (Navigli and Ponzetto,
2010). Despite their potential, these resources re-
main largely unutilized in modern Al development,
treated as static reference materials rather than dy-
namic training foundations. This represents a sig-
nificant missed opportunity for addressing Al ac-
cessibility in multilingual contexts.



We propose a systematic methodology for trans-
forming structured linguistic resources into special-
ized conversational Al systems, offering a prac-
tical alternative to corpus-intensive approaches.
Our pipeline demonstrates that expert-curated lexi-
cal databases can serve as effective foundations
for developing domain-specific Al systems that
outperform general-purpose models in special-
ized contexts while requiring minimal computa-
tional resources. Through a comprehensive case
study developing a Hindi language learning system
from Hindi WordNet (Bhattacharyya, 2010; Bhat-
tacharyya et al., 2008), we validate this approach
across semantic accuracy and pedagogical effec-
tiveness metrics.

The broader implications of this work extend far
beyond our specific implementation. By proving
that structured linguistic knowledge can create supe-
rior specialized Al systems, we establish a method-
ology that could rapidly expand Al accessibility to
hundreds of additional languages. Hindi WordNet
consists of 105460 unique words and 40466 synsets
(Centre for Indian Language Technology, IIT Bom-
bay, 2025) and forms the foundation for other In-
dian language WordNets as they are based on it and
are being linked to it. This approach is particularly
crucial for educational applications in developing
regions, where access to sophisticated Al tutoring
systems is limited by both computational resources
and the lack of linguistically appropriate content
(Redkar et al., 2018).

Our key contributions include: (1) a system-
atic methodology for converting structured lexical
databases into specialized conversational training
data while preserving complex semantic relation-
ships; (2) a resource-efficient implementation us-
ing parameter-efficient fine-tuning techniques that
enable deployment in typical educational environ-
ments; and (3) comprehensive evaluation demon-
strating superior performance in specialized do-
mains compared to general-purpose models. The
complete pipeline provides a reproducible template
for developing specialized Al systems for any lan-
guage with structured linguistic resources.

2 Related Work

2.1 The Evolving Role of Al in Education

Large-scale surveys consistently report positive
learning gains from Al interventions while warning
that impact is often measured on single dimensions
rather than intertwined pedagogical, technical, and

human factors. A comprehensive review covering
2010-2020 recommends a multidimensional eval-
uation model” combining technical metrics with
pedagogical design, domain alignment, and learner
affect (Zhai et al., 2021). A conceptual synthesis
categorizes Al’s functions into three roles: new
subject, direct mediator, and supplementary assis-
tant—showing how each reshapes classroom dy-
namics (Xu and Ouyang, 2022). When Al takes
the “new subject” role (e.g., tutoring agent), it can
personalize instruction but must address social pres-
ence and reflection to avoid merely automating
drill-and-practice (Xu and Ouyang, 2022). These
insights frame our approach as maintaining learner
connections to structured knowledge rather than
replacing expert guidance.

2.2 Chatbots for Language Learning

Systematic evidence confirms three recurring af-
fordances of language-learning chatbots: timeli-
ness, ease of access, and personalization, with
pedagogical uses including simulation, helpline,
and recommendation (Huang et al., 2022). Social-
presence analyses show bot self-disclosure encour-
ages longer learner utterances and reduces prac-
tice anxiety (Huang et al., 2022). CLIL field stud-
ies demonstrate high engagement (91% content
mastery agreement, 93% finding dialogue engag-
ing) but only 48% felt language skill improvement,
highlighting content-language objective tensions
(Mageira et al., 2022). These findings motivate our
level-adaptive output balancing vocabulary com-
plexity with curricular content, and post-response
augmentation sustaining engagement beyond nov-
elty effects.

2.3 Conversational Al in Low-Resource
Languages

Low-resource contexts add data scarcity, cultural
nuance, and deployment constraints to Al develop-
ment challenges. Vision papers argue techniques
like Direct Preference Optimization can lower su-
pervision requirements for culturally sensitive Al
companions (Ding et al., 2024). Empirical work ex-
plores lightweight architectures: a Bangla customer
service bot achieves >90% accuracy using n-gram
stemming and CNN classifiers without deep lin-
guistic resources, but lacks structured knowledge
integration and level adaptation (Paul et al., 2019).
Knowledge-enriched FAQ chatbots improve intent
classification through transfer learning but rely on
retrieval rather than generation, limiting conversa-



tional depth (Perdana et al., 2022). These studies
demonstrate feasibility while underscoring gaps:
(1) automatic diverse instruction-response gener-
ation; (2) resource-efficient fine-tuning; and (3)
structured lexical resource coupling (Oyewole et al.,
2024).

2.4 Leveraging WordNet for Educational
Applications

Hindi WordNet has been adapted into Hindi Shab-
damitra, a five-level digital aid exposing gloss sim-
plification and progressively richer semantic rela-
tions to K-12 learners (Redkar et al., 2018). Class-
room pilots show improved concept retention when
learners explore associative networks rather than
flat dictionary entries (Redkar et al., 2018). Word-
Net’s cognitive basis, which represents meaning
as concept networks, aligns with semantic network
vocabulary acquisition theories. Despite this po-
tential, existing conversational systems rarely ex-
ploit such structure beyond initial training. Our ap-
proach bridges this gap by converting synsets into
training examples, maintaining knowledge connec-
tions through post-generation augmentation, and
enabling conversation-to-structure pivoting.

2.5 Research Gaps and Opportunities

Critical gaps remain for low-resource language
applications: (1) Structured knowledge continu-
ity - chatbots rarely maintain learner connections
to training resources (Huang et al., 2022; Oye-
wole et al., 2024); (2) Level-adaptive generation -
few systems systematically vary vocabulary, syn-
tax, and explanation depth across proficiency lev-
els (Paul et al., 2019); (3) Resource-efficient de-
ployment - approaches often assume cloud-scale
hardware (Ding et al., 2024); and (4) Integrated
scaffolding - studies report novelty effects and
limited long-term gains, indicating the need for
dynamic learning supports (Mageira et al., 2022;
Huang et al., 2022). Our methodology addresses
each gap by coupling structured linguistic resources
with parameter-efficient fine-tuning and real-time
knowledge augmentation.

3 Methodology: Structured-Data-to-Al
Pipeline

Our systematic methodology transforms struc-
tured linguistic databases into specialized conver-
sational Al systems through four integrated stages:
systematic dataset generation, resource-efficient

model fine-tuning, domain-adaptive response gen-
eration, and intelligent knowledge integration. This
pipeline demonstrates that expert-curated lexical
resources can serve as effective foundations for
specialized Al development, offering a practical
alternative to corpus-intensive approaches for low-
resource languages.

3.1 Dataset Creation Pipeline

3.1.1 Structured Knowledge Processing

We systematically convert Hindi WordNet’s struc-
tured semantic data into diverse conversational
training examples. The resource contains 56,928
words with rich semantic relationships including hy-
pernymy, hyponymy, meronymy, antonymy, and
ontological hierarchies. Our automated pipeline
generates four complementary types of instruction-
response pairs designed to preserve the structured
knowledge while creating natural conversational
interactions:

Basic Instructional Examples establish funda-
mental question-answer patterns for core linguistic
concepts:

Instruction: ""OH" chT 31ef R 22"
Response: "0 ot 37 & e’ W SR g i
A"

Complex Multi-Aspect Examples integrate
multiple semantic relationships within single re-
sponses, teaching comprehensive word understand-
ing including definitions, synonyms, examples, and
grammatical categories within complete linguistic
contexts.

Ontological Hierarchy Examples leverage
WordNet’s taxonomic structure to teach categorical
relationships:

Instruction: "fgdl rea 'Terer’ & forg affenzor uar-
IehH AT 82"

Response: " 'TlTa" &l afferzur: Sfiq -> Uier -> Gl
T Ut -> e

Disambiguation Examples address polysemy
by explicitly teaching multiple word meanings with
contextual differentiation, crucial for morphologi-
cally rich languages like Hindi.

3.1.2 Coverage Optimization and Quality
Assurance

Hindi WordNet’s 23 semantic relationship types are
mapped to educational terminology through expert
linguistic consultation. Our coverage optimization
algorithm ensures comprehensive representation
of all relationship types while maintaining peda-
gogical relevance. For words with extensive re-



lationships (>10 related terms), we employ over-
lapping chunking strategies to prevent information
loss while maintaining response coherence.

The pipeline implements intelligent deduplica-
tion using instruction-response hash comparison, re-
moving 847,000 duplicate examples from an initial
2.1 million generated pairs. Final dataset statistics:
1,253,847 unique instruction-response pairs across
four example types, with balanced representation of
semantic relationships and word frequencies. This
systematic approach ensures that structured knowl-
edge is preserved while creating natural conver-
sational training data suitable for specialized Al
development.

3.2 Resource-Efficient Model Specialization

3.2.1 Base Model Selection and Optimization

We select Gemma-3-12B-IT as our foundation
model for its demonstrated multilingual capabilities
and instruction-following performance (Gemma
Team, 2025). To enable deployment in resource-
constrained environments, we implemented 4-bit
quantization using NF4 (Normalized Float 4) with
double quantization (Dettmers et al., 2023), reduc-
ing memory requirements from 48GB to approxi-
mately 12GB while preserving model performance
- a critical consideration for low-resource language
applications where computational resources are lim-
ited.

3.2.2 Parameter-Efficient Fine-Tuning
Configuration

Our specialization employs Low-Rank Adaptation
(LoRA) (Hu et al., 2021) with optimized hyper-
parameters balancing adaptation capability with
efficiency:

* Rank (r): 32, providing sufficient expressive-
ness for domain specialization

» Alpha: 64, ensuring appropriate scaling for
knowledge adaptation

* Target modules: All attention projections and
MLP components for comprehensive adapta-
tion

* Dropout: 0.05 for regularization without over-
fitting

This configuration fine-tunes only 0. 2% of the
total parameters (67M out of 12B), enabling rapid
specialization while preserving pre-trained multilin-
gual knowledge, essential for maintaining general
linguistic competence during domain adaptation.

3.2.3 Training Configuration and Efficiency

Our training employs distributed setup with gradi-
ent accumulation achieving effective batch sizes
of 8 across available hardware. Key parameters
include 2e-5 learning rate with cosine scheduling
(Loshchilov and Hutter, 2019), 15% warmup steps,
gradient clipping at 0.5 for stability (Pascanu et al.,
2013), and 3 training epochs with early stopping.
The complete training process requires approxi-
mately 40 hours on 2xNVIDIA A100 80G GPUs,
demonstrating practical feasibility for educational
institutions and research organizations in develop-
ing regions.

3.3 Domain-Adaptive Response Generation

3.3.1 Proficiency Level Modeling

We implement systematic level adaptation aligned
with educational curricula, defining five distinct
proficiency levels with specific linguistic charac-
teristics:

« UTAfAa (Beginner): Simple vocabulary,
short sentences (2-3), concrete examples

« greafdeh (Intermediate): Standard vocabu-
lary, medium sentences (4-5), practical exam-
ples

» 2 (Proficient): Rich vocabulary, detailed
explanations (6-8 sentences), varied examples

* 39d (Advanced): Sophisticated vocabulary,
complex structures (8-10 sentences), abstract
concepts

« fatus (Expert): Technical terminology,
comprehensive analysis (10+ sentences), in-
terdisciplinary connections

3.3.2 Safety and Appropriateness Integration

Given educational deployment contexts, we im-
plement comprehensive safety measures ensuring
age-appropriate content, restricting responses to
educational domains, and including fallback mech-
anisms for inappropriate queries (Gehman et al.,
2020). Our prompt engineering maintains linguis-
tic sophistication appropriate to each proficiency
level while ensuring consistent educational appro-
priateness.

3.3.3 Dynamic Response Adaptation

The system adapts response characteristics through
structured prompt templates specifying vocabulary
complexity, sentence length, explanation depth,



and example types based on proficiency level.
This ensures consistent educational appropriateness
while maintaining conversational naturalness, a crit-
ical balance for effective specialized Al systems.

This complete pipeline demonstrates that struc-
tured linguistic resources can effectively serve as
foundations for specialized Al system develop-
ment, offering a practical methodology for creating
domain-specific conversational systems without
requiring massive training corpora—particularly
valuable for low-resource language contexts where
such data is unavailable.

4 Results

4.1 Evaluation Setup and Metrics

We conducted a rigorous comparative evaluation
using 40 carefully designed Hindi language ques-
tions spanning five proficiency levels (STIH to
fa=iw=). Expert linguists created golden reference
answers for each question-level combination, re-
sulting in 200 reference responses. We obtained
responses from five models—our Shabdabot, GPT-
4.1 (OpenAl, 2025), Claude-Sonnet-4 (Anthropic,
2025), Gemini-2.5Pro (Gemini Team, 2025), and
Gemma-3-12B-IT (Gemma Team, 2025)—using
identical prompts and system settings to ensure fair
comparison.

To eliminate evaluation bias, all responses were
anonymized during metric calculation. We em-
ployed two complementary evaluation metrics de-
signed to assess both semantic accuracy and peda-
gogical effectiveness:

Semantic Answer Similarity (SAS) measures
the semantic fidelity between model responses
and expert-created golden answers. This met-
ric employs the multilingual sentence trans-
former paraphrase-multilingual-MiniL M-L12-v2
(Reimers and Gurevych, 2020) to generate vector
embeddings for both model responses and reference
answers. Semantic similarity is calculated using
cosine similarity between these embeddings, pro-
ducing scores ranging from 0 to 1, where higher
values indicate greater semantic alignment with
expert-authored content. The multilingual model
was specifically chosen for its demonstrated effec-
tiveness in cross-lingual semantic similarity tasks
and strong performance on Hindi text. This metric
captures how well models preserve the core mean-
ing and factual content of expert responses, inde-
pendent of stylistic or pedagogical considerations.

Level Adaptation Quality (LAQ) assesses ped-

agogical effectiveness and appropriateness for ed-
ucational contexts through expert evaluation. We
employed Claude-Sonnet-4 as an automated expert
judge, chosen for its demonstrated reliability in ed-
ucational content evaluation and ability to process
Hindi text with cultural and linguistic nuance. The
LAQ evaluation employs a comprehensive rubric
that evaluates five pedagogical criteria: (1) Peda-
gogical Clarity - how easily the target learner can
understand the explanation; (2) Factual accuracy -
correctness and precision of provided information;
(3) Relevance & Examples—appropriateness and
quality of examples for the proficiency level; (4)
Language Appropriateness—suitability of vocabu-
lary, syntax, and tone for the intended learner; and
(5) Educational Value - general utility as a teaching
tool for the specific proficiency level. Each cri-
terion receives a score from 0-20 points, yielding
total scores from 0-100, with higher scores indicat-
ing superior educational effectiveness. To ensure
evaluation reliability, we provided detailed scoring
rubrics with level-specific criteria and conducted
consistency validation across multiple evaluation
runs.

These complementary metrics enable compre-
hensive assessment of both semantic competence
and domain-specific effectiveness, addressing the
critical question of whether specialized systems can
maintain linguistic accuracy while achieving supe-
rior pedagogical outcomes compared to general-
purpose models.

4.2 Overall Performance Analysis

The results reveal a critical insight for specialized
Al development: while GPT-4.1 achieved highest
semantic similarity to expert-created answers, our
structured-knowledge-based system dramatically
outperformed all models in domain-specific effec-
tiveness with a 91.0 LAQ score—an 11.6-point
advantage over the second-best model and a re-
markable 12.6% improvement over its base model
(see Table 1).

4.3 Proficiency Level Performance Patterns

Figure 1 illustrates semantic performance across
proficiency levels, revealing distinct patterns sup-
porting our structured-knowledge approach. Table
2 provides the detailed scores.

Critical Finding: Shabdabot uniquely peaks at
the 39d (Advanced) level, achieving highest per-
formance among all models at this level. The per-
formance decline at the fa=I9aT (Expert) level re-



Table 1: Overall Model Performance

Model SAS Score SAS Rank LAQ Score LAQ Rank Consistency (o)
GPT-4.1 0.762 1st 79.4 Sth 7.4
Shabdabot 0.731 2nd 91.0 1st 1.0
Gemma-3-12B-IT 0.728 3rd 80.8 4th 2.4
Claude-Sonnet-4 0.712 4th 81.9 3rd 6.4
Gemini-2.5Pro 0.705 5th 83.6 2nd 5.7

Table 2: SAS Performance by Proficiency Level

Level Shabdabot GPT-4.1 Gemma-3-12B-IT Claude-Sonnet-4 Gemini-2.5Pro
rfieh 0.714 0.736 0.721 0.683 0.728
areafie 0.753 0.793 0.747 0.748 0.781
Rl 0.741 0.791 0.748 0.761 0.763
IAd 0.759 0.757 0.737 0.703 0.691
IERLE] 0.688 0.735 0.686 0.663 0.563

ntic Similarity Score

Semas

050
T (Primary) AR (Secondary)

—.— GPT-4.1

Figure 1: SAS Analysis visualization across proficiency
levels.

flects training data characteristics—our structured-
knowledge conversion emphasized educational
clarity over lengthy academic discourse typical of
expert-level responses.

The LAQ evaluation demonstrates Shabdabot’s
exceptional consistency across all proficiency lev-
els:

* Primary to Expert levels: 83.0-83.8 (stan-
dard deviation: 0.37)

* Best performer: All five proficiency levels

 Stability: Unlike general-purpose models
showing significant performance degradation
with difficulty increases

4.4 Statistical Significance and Reliability
Analysis

One-way ANOVA confirmed significant differ-
ences between models (£(4,995) = 5.491,p <
0.001). Key findings include:

* Semantic Performance: GPT-4.1 vs. Shabd-
abot significant difference (p = 0.019, Co-
hen’s d = 0.236) (Diener, 2010), while Shabd-
abot vs. Gemma-3-12B-IT showed non-
significant difference (p = 0.819), indicating
preserved semantic competence during spe-
cialization.

Reliability Advantage: Figure 2 highlights
our approach’s critical advantage—Shabdabot
achieved exceptional consistency with ¢ = 1.0
compared to 7.4 for GPT-4.1, representing an 86%
improvement in predictability. Reliability metrics
are detailed in Table 3.

Table 3: Reliability Metrics Comparison

LAQ  High Perf.
Model Std Dev  (>90%)
Shabdabot 1.0 93%
Gemma-3-12B-IT 2.4 0%
Gemini-2.5Pro 5.7 6%
Claude-Sonnet-4 6.4 5.5%
GPT-4.1 7.4 0%
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Figure 2: Performance vs. Consistency scatter plot.

4.5 Domain Specialization Effectiveness
Figure 3 demonstrates Shabdabot’s superior perfor-

mance across all pedagogical criteria:

* Pedagogical Clarity:
among all models)

18.2/20 (Highest

* Factual Accuracy:
with leading models)

18.5/20 (Competitive

* Relevance & Examples: 18.1/20 (Contextu-
ally appropriate)

* Language Appropriateness: 18.4/20 (Edu-
cationally optimized)

* Educational Value: 17.8/20 (Highest utility
for learning)

Performance by Criteria (Radar Chart)

Factual Accuracy

i2dagdgical Clarity

Pedagogical Value

Figure 3: Radar Chart of Performance Across Pedagog-
ical Criteria.

4.6 Structured-Knowledge Impact Analysis

Direct comparison between our system and its
base model reveals the effectiveness of structured-
knowledge specialization, as shown in Table 4.

Table 4: Specialization Impact

Gemma-3 Improve-

Metric 12B-IT Shabdabot ment
Semantic

Comp. 0.728 0.731 +0.4%
Domain

Effect. 80.8 91.0 +12.6%
Consistency  2.40 1.00 +58%
Advanced

SAS 0.737 0.759 +2.9%

Educ.

Failures 0 0 Maintained

4.7 Key Insights for Low-Resource Language
Al

Our evaluation provides several critical insights for
developing specialized Al systems using structured
linguistic resources:

* Specialization Without Semantic Loss: Our
approach achieves superior domain perfor-
mance while maintaining general semantic
competence, demonstrating that structured
knowledge can enhance rather than limit Al
capabilities.

* Consistency Advantage: The 58% improve-
ment in consistency over the base model in-
dicates structured knowledge integration pro-
duces more predictable, reliable systems—cru-
cial for educational and professional applica-
tions.

* Resource Efficiency Validation: Superior
domain performance while requiring only
16GB RAM proves that structured-knowledge
approaches can create effective specialized
systems without massive computational re-
sources.

* Level-Adaptive Success: Stable performance
across proficiency levels with peak perfor-
mance at advanced levels validates systematic
level adaptation based on structured linguistic
principles.

These results demonstrate that our methodology
successfully transforms structured lexical databases
into specialized conversational Al systems that
outperform general-purpose models in domain-
specific applications while maintaining practical
deployability—validating the broader potential for



extending sophisticated Al capabilities to low-
resource languages through structured linguistic
resources.

5 Discussions

Our results provide compelling evidence that struc-
tured linguistic resources can serve as effective
foundations for developing specialized Al systems,
offering a practical pathway for extending sophis-
ticated conversational capabilities to low-resource
languages. The performance patterns illuminate
fundamental insights: while general-purpose mod-
els like GPT-4.1 achieve higher semantic simi-
larity to expert-created responses, our structured-
knowledge-based system dramatically outperforms
in domain-specific effectiveness (91.0 vs. 79.4-
83.6 LAQ scores). This challenges the prevailing
assumption that general-purpose models are opti-
mal for specialized applications.

The exceptional consistency achieved by our
approach (86% improvement in reliability) ad-
dresses critical concerns for practical Al deploy-
ment, particularly in educational contexts where
unpredictable responses can confuse learners. This
reliability stems from systematic structured knowl-
edge integration, where responses are grounded in
expert-curated linguistic relationships rather than
statistical patterns in web text. Our methodology’s
resource efficiency—requiring only 16GB RAM
while achieving superior domain performance—di-
rectly addresses practical barriers preventing low-
resource language communities from accessing so-
phisticated Al technologies.

The broader implications extend far beyond our
specific implementation. With WordNets available
for over 200 languages (Global WordNet Associ-
ation) and similar structured linguistic resources
existing for many others, our methodology could
potentially enable specialized Al development for
billions of speakers currently underserved by exist-
ing Al technologies. The approach suggests new di-
rections for Al development methodology, demon-
strating that expert-curated structured knowledge
can serve as complementary or alternative founda-
tions for creating specialized systems.

Several limitations suggest important considera-
tions for future applications. Performance patterns
at expert levels indicate that extending to highly
technical domains may require additional strategies
for handling complex, lengthy responses. Long-
term educational impact studies would provide cru-

cial validation of actual learning outcomes versus
measured response quality. The methodology’s suc-
cess with Hindi suggests broad applicability, but
validation across different language families would
strengthen confidence in cross-linguistic generaliz-
ability.

Despite these limitations, our work establishes
a foundational methodology for democratizing Al
development in multilingual contexts, providing a
practical framework for extending sophisticated Al
capabilities to underserved linguistic communities
worldwide.

6 Conclusion

This work establishes a systematic methodology for
transforming structured linguistic resources into
specialized conversational Al systems, address-
ing critical barriers to Al development in low-
resource language contexts. Our key finding re-
veals that structured-knowledge-based specializa-
tion achieves superior domain effectiveness (91.0
LAQ score) compared to leading general-purpose
models (79.4-83.6) while maintaining competitive
semantic performance and exceptional consistency.
The 58% improvement in reliability over base mod-
els, establishes structured approaches as highly suit-
able for practical deployment.

The methodology’s resource efficiency—requir-
ing only 16GB RAM—directly addresses practical
barriers preventing low-resource language commu-
nities from accessing sophisticated Al technolo-
gies. By demonstrating that 1.25 million structured
examples can create specialized systems superior
to models trained on billions of general examples,
we establish a viable development pathway for the
200+ languages with WordNet resources and po-
tentially broader structured linguistic databases.

This work provides a practical framework for
democratizing Al development in multilingual con-
texts, offering a reproducible methodology that
could rapidly expand specialized Al capabilities to
billions of underserved language speakers. While
limitations exist—particularly in handling highly
technical discourse and need for long-term educa-
tional impact validation—our results demonstrate
that structured linguistic knowledge can effectively
complement or substitute for corpus-intensive ap-
proaches in specialized domains. This represents a
significant step toward more equitable Al develop-
ment that leverages decades of linguistic scholar-
ship to serve diverse global populations.



7 Limitations

While our results demonstrate the effectiveness of
structured-knowledge approaches for specialized
Al development, several limitations warrant con-
sideration:

Training Data Coverage: Our automated
pipeline emphasized educational clarity and con-
ciseness, potentially underrepresenting the verbose,
technically dense responses characteristic of expert-
level academic discourse. This limitation is evident
in the performance decline at the faSIw=T (Expert)
level, where semantic similarity to lengthy expert-
authored responses becomes more challenging de-
spite maintained pedagogical effectiveness.

Domain and Language Scope: Our evalua-
tion focuses exclusively on Hindi language edu-
cation. While Hindi’s morphological richness sug-
gests broader applicability, systematic validation
across different language families (agglutinative,
isolating, etc.) and domains beyond linguistic ed-
ucation is needed to establish cross-linguistic and
cross-domain generalizability.

Resource Dependencies: The methodology
requires existing structured linguistic resources
(WordNets or equivalent databases). While such re-
sources exist for 200+ languages, this dependency
limits immediate applicability to languages lacking
expert-curated lexical databases.

Long-term Impact Assessment: Our evalua-
tion measures immediate response quality and ped-
agogical appropriateness rather than actual learning
outcomes. Longitudinal studies in authentic edu-
cational environments would provide crucial vali-
dation of the system’s effectiveness in promoting
sustained learning and knowledge retention.

Evaluation Methodology: The LAQ assess-
ment relies on Claude-Sonnet-4 as an expert judge,
which, while systematic and consistent, may intro-
duce model-specific biases. Human expert evalu-
ation would strengthen confidence in pedagogical
effectiveness assessments.

Scalability Considerations: While our ap-
proach proves effective for Hindi WordNet’s scope
(40,466 synsets), performance characteristics with
significantly larger structured resources or vocab-
ulary coverage remain to be systematically evalu-
ated.

These limitations suggest important directions
for future work while not diminishing the core con-
tribution of demonstrating that structured linguistic
resources can effectively serve as foundations for

specialized Al development in low-resource lan-
guage contexts.
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