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Abstract

Low-resource languages face a critical chal-001
lenge in AI development: creating specialized002
conversational systems without access to mas-003
sive training corpora. We present a system-004
atic methodology for transforming structured005
linguistic resources into specialized AI sys-006
tems, demonstrating that expert-curated lexical007
databases can serve as effective foundations for008
conversational AI development. Our approach009
converts Hindi WordNet into 1.25 million di-010
verse instruction-response pairs, fine-tunes a011
12B-parameter language model using resource-012
efficient LoRA with 4-bit quantization. Evalua-013
tion through a Hindi language learning chatbot014
demonstrates that structured-knowledge-based015
systems achieve superior pedagogical effective-016
ness (91.0 vs. 79.4-83.6 for general-purpose017
models) while maintaining competitive seman-018
tic performance and exceptional consistency.019
The complete pipeline provides a methodology020
for developing specialized AI systems for any021
languages with WordNet resources. This work022
addresses the critical gap in AI accessibility023
for low-resource languages, offering a practi-024
cal alternative to corpus-intensive approaches025
and potentially enabling specialized AI devel-026
opment for billions of underserved language027
speakers worldwide.028

1 Introduction029

The democratization of artificial intelligence in-030

creasingly depends on developing specialized sys-031

tems that can effectively serve diverse linguistic032

communities. While recent advances in large lan-033

guage models have demonstrated remarkable ca-034

pabilities (Hagos et al., 2024), these systems pre-035

dominantly excel in high-resource languages with036

abundant digital content, leaving billions of speak-037

ers of low-resource languages underserved (Zhong038

et al., 2024; Hasan et al., 2024). This digital divide039

is particularly acute in specialized domains such040

as education, where culturally and linguistically041

appropriate AI systems are essential for effective 042

learning outcomes (Li et al., 2024). 043

Current approaches to developing conversational 044

AI for low-resource languages face a fundamental 045

bottleneck: the requirement for massive training 046

corpora that simply does not exist for most of the 047

world’s 2,500+ languages (UNESCO, 2010; En- 048

dangered Languages Project). Traditional method- 049

ologies for fine-tuning and domain adaptation in 050

AI assume the availability of vast quantities of 051

text(Cryst et al., 2025) often only realistic for 052

high-resource languages. For example, OpenAI 053

trained GPT-3 with approximately 45TB of text 054

frommultiple sources(Team, 2023), while the Com- 055

mon Crawl corpus contains hundreds of billions 056

of words, primarily from diverse web content but 057

not specifically focused on cultural heritage initia- 058

tives(Team, 2024). This corpus-scarcity problem 059

is compounded by the need for specialized domain 060

knowledge, creating a double barrier that effec- 061

tively excludes most languages from participating 062

in the AI revolution. 063

However, many low-resource languages possess 064

rich structured linguistic resources that represent 065

decades of expert scholarly work. WordNets, hi- 066

erarchy of lexical databases that encode semantic 067

relationships, definitions, and linguistic structures, 068

exist for more than 200 languages (Global Word- 069

Net Association) and contain precisely the type of 070

expert knowledge needed for specialized AI appli- 071

cations. BabelNet 5.3 covers 600 languages and is 072

obtained from the automatic integration of various 073

multilingual WordNets, while BabelNet 4.0 covers 074

284 languages and contains about 16 million en- 075

tries, called Babel synsets (Navigli and Ponzetto, 076

2010). Despite their potential, these resources re- 077

main largely unutilized in modern AI development, 078

treated as static reference materials rather than dy- 079

namic training foundations. This represents a sig- 080

nificant missed opportunity for addressing AI ac- 081

cessibility in multilingual contexts. 082
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We propose a systematic methodology for trans-083

forming structured linguistic resources into special-084

ized conversational AI systems, offering a prac-085

tical alternative to corpus-intensive approaches.086

Our pipeline demonstrates that expert-curated lexi-087

cal databases can serve as effective foundations088

for developing domain-specific AI systems that089

outperform general-purpose models in special-090

ized contexts while requiring minimal computa-091

tional resources. Through a comprehensive case092

study developing a Hindi language learning system093

from Hindi WordNet (Bhattacharyya, 2010; Bhat-094

tacharyya et al., 2008), we validate this approach095

across semantic accuracy and pedagogical effec-096

tiveness metrics.097

The broader implications of this work extend far098

beyond our specific implementation. By proving099

that structured linguistic knowledge can create supe-100

rior specialized AI systems, we establish a method-101

ology that could rapidly expand AI accessibility to102

hundreds of additional languages. Hindi WordNet103

consists of 105460 unique words and 40466 synsets104

(Centre for Indian Language Technology, IIT Bom-105

bay, 2025) and forms the foundation for other In-106

dian language WordNets as they are based on it and107

are being linked to it. This approach is particularly108

crucial for educational applications in developing109

regions, where access to sophisticated AI tutoring110

systems is limited by both computational resources111

and the lack of linguistically appropriate content112

(Redkar et al., 2018).113

Our key contributions include: (1) a system-114

atic methodology for converting structured lexical115

databases into specialized conversational training116

data while preserving complex semantic relation-117

ships; (2) a resource-efficient implementation us-118

ing parameter-efficient fine-tuning techniques that119

enable deployment in typical educational environ-120

ments; and (3) comprehensive evaluation demon-121

strating superior performance in specialized do-122

mains compared to general-purpose models. The123

complete pipeline provides a reproducible template124

for developing specialized AI systems for any lan-125

guage with structured linguistic resources.126

2 Related Work127

2.1 The Evolving Role of AI in Education128

Large-scale surveys consistently report positive129

learning gains from AI interventions while warning130

that impact is often measured on single dimensions131

rather than intertwined pedagogical, technical, and132

human factors. A comprehensive review covering 133

2010-2020 recommends ”a multidimensional eval- 134

uation model” combining technical metrics with 135

pedagogical design, domain alignment, and learner 136

affect (Zhai et al., 2021). A conceptual synthesis 137

categorizes AI’s functions into three roles: new 138

subject, direct mediator, and supplementary assis- 139

tant—showing how each reshapes classroom dy- 140

namics (Xu and Ouyang, 2022). When AI takes 141

the ”new subject” role (e.g., tutoring agent), it can 142

personalize instruction but must address social pres- 143

ence and reflection to avoid merely automating 144

drill-and-practice (Xu and Ouyang, 2022). These 145

insights frame our approach as maintaining learner 146

connections to structured knowledge rather than 147

replacing expert guidance. 148

2.2 Chatbots for Language Learning 149

Systematic evidence confirms three recurring af- 150

fordances of language-learning chatbots: timeli- 151

ness, ease of access, and personalization, with 152

pedagogical uses including simulation, helpline, 153

and recommendation (Huang et al., 2022). Social- 154

presence analyses show bot self-disclosure encour- 155

ages longer learner utterances and reduces prac- 156

tice anxiety (Huang et al., 2022). CLIL field stud- 157

ies demonstrate high engagement (91% content 158

mastery agreement, 93% finding dialogue engag- 159

ing) but only 48% felt language skill improvement, 160

highlighting content-language objective tensions 161

(Mageira et al., 2022). These findings motivate our 162

level-adaptive output balancing vocabulary com- 163

plexity with curricular content, and post-response 164

augmentation sustaining engagement beyond nov- 165

elty effects. 166

2.3 Conversational AI in Low-Resource 167

Languages 168

Low-resource contexts add data scarcity, cultural 169

nuance, and deployment constraints to AI develop- 170

ment challenges. Vision papers argue techniques 171

like Direct Preference Optimization can lower su- 172

pervision requirements for culturally sensitive AI 173

companions (Ding et al., 2024). Empirical work ex- 174

plores lightweight architectures: a Bangla customer 175

service bot achieves >90% accuracy using n-gram 176

stemming and CNN classifiers without deep lin- 177

guistic resources, but lacks structured knowledge 178

integration and level adaptation (Paul et al., 2019). 179

Knowledge-enriched FAQ chatbots improve intent 180

classification through transfer learning but rely on 181

retrieval rather than generation, limiting conversa- 182
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tional depth (Perdana et al., 2022). These studies183

demonstrate feasibility while underscoring gaps:184

(1) automatic diverse instruction-response gener-185

ation; (2) resource-efficient fine-tuning; and (3)186

structured lexical resource coupling (Oyewole et al.,187

2024).188

2.4 Leveraging WordNet for Educational189

Applications190

Hindi WordNet has been adapted into Hindi Shab-191

damitra, a five-level digital aid exposing gloss sim-192

plification and progressively richer semantic rela-193

tions to K-12 learners (Redkar et al., 2018). Class-194

room pilots show improved concept retention when195

learners explore associative networks rather than196

flat dictionary entries (Redkar et al., 2018). Word-197

Net’s cognitive basis, which represents meaning198

as concept networks, aligns with semantic network199

vocabulary acquisition theories. Despite this po-200

tential, existing conversational systems rarely ex-201

ploit such structure beyond initial training. Our ap-202

proach bridges this gap by converting synsets into203

training examples, maintaining knowledge connec-204

tions through post-generation augmentation, and205

enabling conversation-to-structure pivoting.206

2.5 Research Gaps and Opportunities207

Critical gaps remain for low-resource language208

applications: (1) Structured knowledge continu-209

ity - chatbots rarely maintain learner connections210

to training resources (Huang et al., 2022; Oye-211

wole et al., 2024); (2) Level-adaptive generation -212

few systems systematically vary vocabulary, syn-213

tax, and explanation depth across proficiency lev-214

els (Paul et al., 2019); (3) Resource-efficient de-215

ployment - approaches often assume cloud-scale216

hardware (Ding et al., 2024); and (4) Integrated217

scaffolding - studies report novelty effects and218

limited long-term gains, indicating the need for219

dynamic learning supports (Mageira et al., 2022;220

Huang et al., 2022). Our methodology addresses221

each gap by coupling structured linguistic resources222

with parameter-efficient fine-tuning and real-time223

knowledge augmentation.224

3 Methodology: Structured-Data-to-AI225

Pipeline226

Our systematic methodology transforms struc-227

tured linguistic databases into specialized conver-228

sational AI systems through four integrated stages:229

systematic dataset generation, resource-efficient230

model fine-tuning, domain-adaptive response gen- 231

eration, and intelligent knowledge integration. This 232

pipeline demonstrates that expert-curated lexical 233

resources can serve as effective foundations for 234

specialized AI development, offering a practical 235

alternative to corpus-intensive approaches for low- 236

resource languages. 237

3.1 Dataset Creation Pipeline 238

3.1.1 Structured Knowledge Processing 239

We systematically convert Hindi WordNet’s struc- 240

tured semantic data into diverse conversational 241

training examples. The resource contains 56,928 242

words with rich semantic relationships including hy- 243

pernymy, hyponymy, meronymy, antonymy, and 244

ontological hierarchies. Our automated pipeline 245

generates four complementary types of instruction- 246

response pairs designed to preserve the structured 247

knowledge while creating natural conversational 248

interactions: 249

Basic Instructional Examples establish funda- 250

mental question-answer patterns for core linguistic 251

concepts: 252

Instruction: "'प्रेम' का अथ� क्या है?" 253

Response: "'प्रेम' का अथ� है: गहरा स्नेह और लगाव की 254

भावना।" 255

Complex Multi-Aspect Examples integrate 256

multiple semantic relationships within single re- 257

sponses, teaching comprehensive word understand- 258

ing including definitions, synonyms, examples, and 259

grammatical categories within complete linguistic 260

contexts. 261

Ontological Hierarchy Examples leverage 262

WordNet’s taxonomic structure to teach categorical 263

relationships: 264

Instruction: "�हंदी शब्द 'गुलाब' के �लए वग�करण पदा- 265

नुक्रम क्या है?" 266

Response: "'गुलाब' का वग�करण: जीव -> पौधा -> फूल 267

वाला पौधा -> गुलाब" 268

Disambiguation Examples address polysemy 269

by explicitly teaching multiple word meanings with 270

contextual differentiation, crucial for morphologi- 271

cally rich languages like Hindi. 272

3.1.2 Coverage Optimization and Quality 273

Assurance 274

HindiWordNet’s 23 semantic relationship types are 275

mapped to educational terminology through expert 276

linguistic consultation. Our coverage optimization 277

algorithm ensures comprehensive representation 278

of all relationship types while maintaining peda- 279

gogical relevance. For words with extensive re- 280
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lationships (>10 related terms), we employ over-281

lapping chunking strategies to prevent information282

loss while maintaining response coherence.283

The pipeline implements intelligent deduplica-284

tion using instruction-response hash comparison, re-285

moving 847,000 duplicate examples from an initial286

2.1 million generated pairs. Final dataset statistics:287

1,253,847 unique instruction-response pairs across288

four example types, with balanced representation of289

semantic relationships and word frequencies. This290

systematic approach ensures that structured knowl-291

edge is preserved while creating natural conver-292

sational training data suitable for specialized AI293

development.294

3.2 Resource-Efficient Model Specialization295

3.2.1 Base Model Selection and Optimization296

We select Gemma-3-12B-IT as our foundation297

model for its demonstrated multilingual capabilities298

and instruction-following performance (Gemma299

Team, 2025). To enable deployment in resource-300

constrained environments, we implemented 4-bit301

quantization using NF4 (Normalized Float 4) with302

double quantization (Dettmers et al., 2023), reduc-303

ing memory requirements from 48GB to approxi-304

mately 12GB while preserving model performance305

- a critical consideration for low-resource language306

applications where computational resources are lim-307

ited.308

3.2.2 Parameter-Efficient Fine-Tuning309

Configuration310

Our specialization employs Low-Rank Adaptation311

(LoRA) (Hu et al., 2021) with optimized hyper-312

parameters balancing adaptation capability with313

efficiency:314

• Rank (r): 32, providing sufficient expressive-315

ness for domain specialization316

• Alpha: 64, ensuring appropriate scaling for317

knowledge adaptation318

• Targetmodules: All attention projections and319

MLP components for comprehensive adapta-320

tion321

• Dropout: 0.05 for regularization without over-322

fitting323

This configuration fine-tunes only 0. 2% of the324

total parameters (67M out of 12B), enabling rapid325

specialization while preserving pre-trained multilin-326

gual knowledge, essential for maintaining general327

linguistic competence during domain adaptation.328

3.2.3 Training Configuration and Efficiency 329

Our training employs distributed setup with gradi- 330

ent accumulation achieving effective batch sizes 331

of 8 across available hardware. Key parameters 332

include 2e-5 learning rate with cosine scheduling 333

(Loshchilov and Hutter, 2019), 15% warmup steps, 334

gradient clipping at 0.5 for stability (Pascanu et al., 335

2013), and 3 training epochs with early stopping. 336

The complete training process requires approxi- 337

mately 40 hours on 2×NVIDIA A100 80G GPUs, 338

demonstrating practical feasibility for educational 339

institutions and research organizations in develop- 340

ing regions. 341

3.3 Domain-Adaptive Response Generation 342

3.3.1 Proficiency Level Modeling 343

We implement systematic level adaptation aligned 344

with educational curricula, defining five distinct 345

proficiency levels with specific linguistic charac- 346

teristics: 347

• प्राथ�मक (Beginner): Simple vocabulary, 348

short sentences (2-3), concrete examples 349

• माध्य�मक (Intermediate): Standard vocabu- 350

lary, medium sentences (4-5), practical exam- 351

ples 352

• कुशल (Proficient): Rich vocabulary, detailed 353

explanations (6-8 sentences), varied examples 354

• उन्नत (Advanced): Sophisticated vocabulary, 355

complex structures (8-10 sentences), abstract 356

concepts 357

• �वशेषज्ञ (Expert): Technical terminology, 358

comprehensive analysis (10+ sentences), in- 359

terdisciplinary connections 360

3.3.2 Safety and Appropriateness Integration 361

Given educational deployment contexts, we im- 362

plement comprehensive safety measures ensuring 363

age-appropriate content, restricting responses to 364

educational domains, and including fallback mech- 365

anisms for inappropriate queries (Gehman et al., 366

2020). Our prompt engineering maintains linguis- 367

tic sophistication appropriate to each proficiency 368

level while ensuring consistent educational appro- 369

priateness. 370

3.3.3 Dynamic Response Adaptation 371

The system adapts response characteristics through 372

structured prompt templates specifying vocabulary 373

complexity, sentence length, explanation depth, 374
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and example types based on proficiency level.375

This ensures consistent educational appropriateness376

while maintaining conversational naturalness, a crit-377

ical balance for effective specialized AI systems.378

This complete pipeline demonstrates that struc-379

tured linguistic resources can effectively serve as380

foundations for specialized AI system develop-381

ment, offering a practical methodology for creating382

domain-specific conversational systems without383

requiring massive training corpora—particularly384

valuable for low-resource language contexts where385

such data is unavailable.386

4 Results387

4.1 Evaluation Setup and Metrics388

We conducted a rigorous comparative evaluation389

using 40 carefully designed Hindi language ques-390

tions spanning five proficiency levels (प्राथ�मक to391

�वशेषज्ञ). Expert linguists created golden reference392

answers for each question-level combination, re-393

sulting in 200 reference responses. We obtained394

responses from five models—our Shabdabot, GPT-395

4.1 (OpenAI, 2025), Claude-Sonnet-4 (Anthropic,396

2025), Gemini-2.5Pro (Gemini Team, 2025), and397

Gemma-3-12B-IT (Gemma Team, 2025)—using398

identical prompts and system settings to ensure fair399

comparison.400

To eliminate evaluation bias, all responses were401

anonymized during metric calculation. We em-402

ployed two complementary evaluation metrics de-403

signed to assess both semantic accuracy and peda-404

gogical effectiveness:405

Semantic Answer Similarity (SAS) measures406

the semantic fidelity between model responses407

and expert-created golden answers. This met-408

ric employs the multilingual sentence trans-409

former paraphrase-multilingual-MiniLM-L12-v2410

(Reimers and Gurevych, 2020) to generate vector411

embeddings for bothmodel responses and reference412

answers. Semantic similarity is calculated using413

cosine similarity between these embeddings, pro-414

ducing scores ranging from 0 to 1, where higher415

values indicate greater semantic alignment with416

expert-authored content. The multilingual model417

was specifically chosen for its demonstrated effec-418

tiveness in cross-lingual semantic similarity tasks419

and strong performance on Hindi text. This metric420

captures how well models preserve the core mean-421

ing and factual content of expert responses, inde-422

pendent of stylistic or pedagogical considerations.423

Level Adaptation Quality (LAQ) assesses ped-424

agogical effectiveness and appropriateness for ed- 425

ucational contexts through expert evaluation. We 426

employed Claude-Sonnet-4 as an automated expert 427

judge, chosen for its demonstrated reliability in ed- 428

ucational content evaluation and ability to process 429

Hindi text with cultural and linguistic nuance. The 430

LAQ evaluation employs a comprehensive rubric 431

that evaluates five pedagogical criteria: (1) Peda- 432

gogical Clarity - how easily the target learner can 433

understand the explanation; (2) Factual accuracy - 434

correctness and precision of provided information; 435

(3) Relevance & Examples—appropriateness and 436

quality of examples for the proficiency level; (4) 437

Language Appropriateness—suitability of vocabu- 438

lary, syntax, and tone for the intended learner; and 439

(5) Educational Value - general utility as a teaching 440

tool for the specific proficiency level. Each cri- 441

terion receives a score from 0-20 points, yielding 442

total scores from 0-100, with higher scores indicat- 443

ing superior educational effectiveness. To ensure 444

evaluation reliability, we provided detailed scoring 445

rubrics with level-specific criteria and conducted 446

consistency validation across multiple evaluation 447

runs. 448

These complementary metrics enable compre- 449

hensive assessment of both semantic competence 450

and domain-specific effectiveness, addressing the 451

critical question of whether specialized systems can 452

maintain linguistic accuracy while achieving supe- 453

rior pedagogical outcomes compared to general- 454

purpose models. 455

4.2 Overall Performance Analysis 456

The results reveal a critical insight for specialized 457

AI development: while GPT-4.1 achieved highest 458

semantic similarity to expert-created answers, our 459

structured-knowledge-based system dramatically 460

outperformed all models in domain-specific effec- 461

tiveness with a 91.0 LAQ score—an 11.6-point 462

advantage over the second-best model and a re- 463

markable 12.6% improvement over its base model 464

(see Table 1). 465

4.3 Proficiency Level Performance Patterns 466

Figure 1 illustrates semantic performance across 467

proficiency levels, revealing distinct patterns sup- 468

porting our structured-knowledge approach. Table 469

2 provides the detailed scores. 470

Critical Finding: Shabdabot uniquely peaks at 471

the उन्नत (Advanced) level, achieving highest per- 472

formance among all models at this level. The per- 473

formance decline at the �वशेषज्ञ (Expert) level re- 474
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Table 1: Overall Model Performance

Model SAS Score SAS Rank LAQ Score LAQ Rank Consistency (σ)

GPT-4.1 0.762 1st 79.4 5th 7.4

Shabdabot 0.731 2nd 91.0 1st 1.0

Gemma-3-12B-IT 0.728 3rd 80.8 4th 2.4

Claude-Sonnet-4 0.712 4th 81.9 3rd 6.4

Gemini-2.5Pro 0.705 5th 83.6 2nd 5.7

Table 2: SAS Performance by Proficiency Level

Level Shabdabot GPT-4.1 Gemma-3-12B-IT Claude-Sonnet-4 Gemini-2.5Pro

प्राथ�मक 0.714 0.736 0.721 0.683 0.728

माध्य�मक 0.753 0.793 0.747 0.748 0.781

कुशल 0.741 0.791 0.748 0.761 0.763

उन्नत 0.759 0.757 0.737 0.703 0.691

�वशेषज्ञ 0.688 0.735 0.686 0.663 0.563

Figure 1: SAS Analysis visualization across proficiency

levels.

flects training data characteristics—our structured-475

knowledge conversion emphasized educational476

clarity over lengthy academic discourse typical of477

expert-level responses.478

The LAQ evaluation demonstrates Shabdabot’s479

exceptional consistency across all proficiency lev-480

els:481

• Primary to Expert levels: 83.0-83.8 (stan-482

dard deviation: 0.37)483

• Best performer: All five proficiency levels484

• Stability: Unlike general-purpose models485

showing significant performance degradation486

with difficulty increases487

4.4 Statistical Significance and Reliability 488

Analysis 489

One-way ANOVA confirmed significant differ- 490

ences between models (F (4, 995) = 5.491, p < 491

0.001). Key findings include: 492

• Semantic Performance: GPT-4.1 vs. Shabd- 493

abot significant difference (p = 0.019, Co- 494

hen’s d = 0.236) (Diener, 2010), while Shabd- 495

abot vs. Gemma-3-12B-IT showed non- 496

significant difference (p = 0.819), indicating 497

preserved semantic competence during spe- 498

cialization. 499

Reliability Advantage: Figure 2 highlights 500

our approach’s critical advantage—Shabdabot 501

achieved exceptional consistency with σ = 1.0 502

compared to 7.4 for GPT-4.1, representing an 86% 503

improvement in predictability. Reliability metrics 504

are detailed in Table 3. 505

Table 3: Reliability Metrics Comparison

Model

LAQ

Std Dev

High Perf.

(>90%)

Shabdabot 1.0 93%

Gemma-3-12B-IT 2.4 0%

Gemini-2.5Pro 5.7 6%

Claude-Sonnet-4 6.4 5.5%

GPT-4.1 7.4 0%
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Figure 2: Performance vs. Consistency scatter plot.

4.5 Domain Specialization Effectiveness506

Figure 3 demonstrates Shabdabot’s superior perfor-507

mance across all pedagogical criteria:508

• Pedagogical Clarity: 18.2/20 (Highest509

among all models)510

• Factual Accuracy: 18.5/20 (Competitive511

with leading models)512

• Relevance & Examples: 18.1/20 (Contextu-513

ally appropriate)514

• Language Appropriateness: 18.4/20 (Edu-515

cationally optimized)516

• Educational Value: 17.8/20 (Highest utility517

for learning)518

Figure 3: Radar Chart of Performance Across Pedagog-

ical Criteria.

4.6 Structured-Knowledge Impact Analysis519

Direct comparison between our system and its520

base model reveals the effectiveness of structured-521

knowledge specialization, as shown in Table 4.522

Table 4: Specialization Impact

Metric
Gemma-3
12B-IT Shabdabot

Improve-

ment

Semantic
Comp. 0.728 0.731 +0.4%
Domain
Effect. 80.8 91.0 +12.6%

Consistency 2.4σ 1.0σ +58%
Advanced
SAS 0.737 0.759 +2.9%

Educ.
Failures 0 0 Maintained

4.7 Key Insights for Low-Resource Language 523

AI 524

Our evaluation provides several critical insights for 525

developing specialized AI systems using structured 526

linguistic resources: 527

• Specialization Without Semantic Loss: Our 528

approach achieves superior domain perfor- 529

mance while maintaining general semantic 530

competence, demonstrating that structured 531

knowledge can enhance rather than limit AI 532

capabilities. 533

• Consistency Advantage: The 58% improve- 534

ment in consistency over the base model in- 535

dicates structured knowledge integration pro- 536

duces more predictable, reliable systems—cru- 537

cial for educational and professional applica- 538

tions. 539

• Resource Efficiency Validation: Superior 540

domain performance while requiring only 541

16GB RAM proves that structured-knowledge 542

approaches can create effective specialized 543

systems without massive computational re- 544

sources. 545

• Level-Adaptive Success: Stable performance 546

across proficiency levels with peak perfor- 547

mance at advanced levels validates systematic 548

level adaptation based on structured linguistic 549

principles. 550

These results demonstrate that our methodology 551

successfully transforms structured lexical databases 552

into specialized conversational AI systems that 553

outperform general-purpose models in domain- 554

specific applications while maintaining practical 555

deployability—validating the broader potential for 556
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extending sophisticated AI capabilities to low-557

resource languages through structured linguistic558

resources.559

5 Discussions560

Our results provide compelling evidence that struc-561

tured linguistic resources can serve as effective562

foundations for developing specialized AI systems,563

offering a practical pathway for extending sophis-564

ticated conversational capabilities to low-resource565

languages. The performance patterns illuminate566

fundamental insights: while general-purpose mod-567

els like GPT-4.1 achieve higher semantic simi-568

larity to expert-created responses, our structured-569

knowledge-based system dramatically outperforms570

in domain-specific effectiveness (91.0 vs. 79.4-571

83.6 LAQ scores). This challenges the prevailing572

assumption that general-purpose models are opti-573

mal for specialized applications.574

The exceptional consistency achieved by our575

approach (86% improvement in reliability) ad-576

dresses critical concerns for practical AI deploy-577

ment, particularly in educational contexts where578

unpredictable responses can confuse learners. This579

reliability stems from systematic structured knowl-580

edge integration, where responses are grounded in581

expert-curated linguistic relationships rather than582

statistical patterns in web text. Our methodology’s583

resource efficiency—requiring only 16GB RAM584

while achieving superior domain performance—di-585

rectly addresses practical barriers preventing low-586

resource language communities from accessing so-587

phisticated AI technologies.588

The broader implications extend far beyond our589

specific implementation. With WordNets available590

for over 200 languages (Global WordNet Associ-591

ation) and similar structured linguistic resources592

existing for many others, our methodology could593

potentially enable specialized AI development for594

billions of speakers currently underserved by exist-595

ing AI technologies. The approach suggests new di-596

rections for AI development methodology, demon-597

strating that expert-curated structured knowledge598

can serve as complementary or alternative founda-599

tions for creating specialized systems.600

Several limitations suggest important considera-601

tions for future applications. Performance patterns602

at expert levels indicate that extending to highly603

technical domains may require additional strategies604

for handling complex, lengthy responses. Long-605

term educational impact studies would provide cru-606

cial validation of actual learning outcomes versus 607

measured response quality. Themethodology’s suc- 608

cess with Hindi suggests broad applicability, but 609

validation across different language families would 610

strengthen confidence in cross-linguistic generaliz- 611

ability. 612

Despite these limitations, our work establishes 613

a foundational methodology for democratizing AI 614

development in multilingual contexts, providing a 615

practical framework for extending sophisticated AI 616

capabilities to underserved linguistic communities 617

worldwide. 618

6 Conclusion 619

This work establishes a systematic methodology for 620

transforming structured linguistic resources into 621

specialized conversational AI systems, address- 622

ing critical barriers to AI development in low- 623

resource language contexts. Our key finding re- 624

veals that structured-knowledge-based specializa- 625

tion achieves superior domain effectiveness (91.0 626

LAQ score) compared to leading general-purpose 627

models (79.4-83.6) while maintaining competitive 628

semantic performance and exceptional consistency. 629

The 58% improvement in reliability over base mod- 630

els, establishes structured approaches as highly suit- 631

able for practical deployment. 632

The methodology’s resource efficiency—requir- 633

ing only 16GB RAM—directly addresses practical 634

barriers preventing low-resource language commu- 635

nities from accessing sophisticated AI technolo- 636

gies. By demonstrating that 1.25 million structured 637

examples can create specialized systems superior 638

to models trained on billions of general examples, 639

we establish a viable development pathway for the 640

200+ languages with WordNet resources and po- 641

tentially broader structured linguistic databases. 642

This work provides a practical framework for 643

democratizing AI development in multilingual con- 644

texts, offering a reproducible methodology that 645

could rapidly expand specialized AI capabilities to 646

billions of underserved language speakers. While 647

limitations exist—particularly in handling highly 648

technical discourse and need for long-term educa- 649

tional impact validation—our results demonstrate 650

that structured linguistic knowledge can effectively 651

complement or substitute for corpus-intensive ap- 652

proaches in specialized domains. This represents a 653

significant step toward more equitable AI develop- 654

ment that leverages decades of linguistic scholar- 655

ship to serve diverse global populations. 656
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7 Limitations657

While our results demonstrate the effectiveness of658

structured-knowledge approaches for specialized659

AI development, several limitations warrant con-660

sideration:661

Training Data Coverage: Our automated662

pipeline emphasized educational clarity and con-663

ciseness, potentially underrepresenting the verbose,664

technically dense responses characteristic of expert-665

level academic discourse. This limitation is evident666

in the performance decline at the �वशेषज्ञ (Expert)667

level, where semantic similarity to lengthy expert-668

authored responses becomes more challenging de-669

spite maintained pedagogical effectiveness.670

Domain and Language Scope: Our evalua-671

tion focuses exclusively on Hindi language edu-672

cation. While Hindi’s morphological richness sug-673

gests broader applicability, systematic validation674

across different language families (agglutinative,675

isolating, etc.) and domains beyond linguistic ed-676

ucation is needed to establish cross-linguistic and677

cross-domain generalizability.678

Resource Dependencies: The methodology679

requires existing structured linguistic resources680

(WordNets or equivalent databases). While such re-681

sources exist for 200+ languages, this dependency682

limits immediate applicability to languages lacking683

expert-curated lexical databases.684

Long-term Impact Assessment: Our evalua-685

tion measures immediate response quality and ped-686

agogical appropriateness rather than actual learning687

outcomes. Longitudinal studies in authentic edu-688

cational environments would provide crucial vali-689

dation of the system’s effectiveness in promoting690

sustained learning and knowledge retention.691

Evaluation Methodology: The LAQ assess-692

ment relies on Claude-Sonnet-4 as an expert judge,693

which, while systematic and consistent, may intro-694

duce model-specific biases. Human expert evalu-695

ation would strengthen confidence in pedagogical696

effectiveness assessments.697

Scalability Considerations: While our ap-698

proach proves effective for Hindi WordNet’s scope699

(40,466 synsets), performance characteristics with700

significantly larger structured resources or vocab-701

ulary coverage remain to be systematically evalu-702

ated.703

These limitations suggest important directions704

for future work while not diminishing the core con-705

tribution of demonstrating that structured linguistic706

resources can effectively serve as foundations for707

specialized AI development in low-resource lan- 708

guage contexts. 709
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