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A Discussion

A.1 Related Work

We situate our work amongst existing work on large multimodal language models, programmatic task
generation, and model-adaptive testing and debugging.

Large multimodal language models (MLMs). In recent years, large multimodal language models,
by integrating visual encoders within various pretrained large languages models [94, 36, 11, 95, 83,
64, 86, 92, 56, 8, 12, 59, 75, 13, 80, 56, 63, 50, 85, 70, 5, 84], have progressively driven advancements
in visual-language learning. With ubiquitous open-sourced LLM backbones and the increasing data
for visual instruction tuning. Models like InstructBlip [18], QwenVL [6], LLaVA [58], InternVL [14],
etc, have achieved unprecedented visual understanding performance in nearly all kind of visual tasks.
Not only for static images, in the filed of video, by adding temporal information into the training
and fine-tuning process. Models like VideoLLaMA [100], VideoChatGPT [65], ChatUnivi [42],
VideoLLaVA [55], and VideoChat2 [53] have extended their capabilities to encompass video. These
models, take both visual content and language as input and output language, are being considered as
a new type of foundation model. The rise of large multimodal models has catalyzed the evolution
of multimodal benchmarks [22, 93, 99, 49, 101, 78, 38, 66, 102, 87, 23, 9, 103, 17, 37, 27, 57, 71,
61], making them both broader and deeper. On the breadth axis, works such as MMBench[60],
SEED-Bench [52, 51] and MMMU [97] provide comprehensive and integrated VQA benchmarks
to evaluate a model’s performance overally. On the depth axis, efforts like MathVista [62], Blink
[24], MultipanelVQA [21], and Lance [77] focus on specific areas of visual tasks, such as spatial
reasoning, multipanel images understanding, counterfactual images understanding, etc. To evaluate
the models’ ability in specific domains or tasks.

Programmatic task generation. Leveraging program to generate scalable and controllable bench-
mark data to evaluate models has been explored in various tasks, Within the task of VQA. Early
attempts like the CLEVR [43] dataset, which generates simple 3D shapes to test models’ visual
reasoning, GQA dataset[39], using programs to generate questions from real images have achieved
great success. The advent of vision models has given them the ability to tackle more complicated and
compositional vision tasks, and the need for comprehensive and complex programmatic benchmarks
has emerged. SimVQA[10], integrated 3D models and simulated 3D environments, to generate photo-
realistic, multi-physics synthetic scenarios with questions. Moreover, leveraging the advantages of
programmatic benchmark generation, such as those used in 3DB [48], allows for precise targeting
and identification of subgroups where models underperform.

Model-adaptive testing and debugging. In the past decades, we used the static "training set,
test set" paradigm to evaluate the model’s performance. However, as the foundation models are all
trained on a wide spectrum of datasets, this paradigm might face overfitting and data contamination
issues, which makes it hard to evaluate the performance of a model fairly and truly. Model-adaptive
testing and debugging, consequently, emerges to solve this problem. The key idea is 1): dynamically
update the test data to prevent overfitting and data contamination. Dynabench [46], for instance, uses
human and model collaboration to create challenging benchmarks. Additionally, LatestEval [54]
uses the latest texts to evaluate the model, avoiding training data overlap, and [96] automates dataset
updates through stylistically similar samples generated by LLMs. 2): adaptively identify subgroups
where models underperform and adjust task ratios accordingly. AdaVision [26], an interactive
tool for iterative testing and refinement of computer vision models, pinpoints and addresses their
systematic failures with user involvement. Moreover, [88]’s 3S Testing employs synthetic data to
focus evaluations on minority subgroups and distributional shifts. Lifelong Benchmarks [76] proposes
dynamically expanding benchmarks and an innovative algorithm to handle the increasing data and
evaluation demands efficiently.

A.2 Limitation

Programmatically generated tasks can be unrealistic and biased. Programmatically generated
tasks can lack the complexity and variability found in real-world data. These tasks might not capture
the nuances of real-world scenarios, leading to models that perform well on synthetic data but
fail in practical applications. The constraints and rules defined in the code may oversimplify the
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tasks, making them easier for models to solve compared to real-world tasks. This can result in
overestimating a model’s capabilities. The rules and logic used to generate tasks can inadvertently
introduce biases. For example, if the code disproportionately generates certain types of objects or
scenarios, the model may not be adequately tested on a diverse range of tasks.

Designing the task space is challenging. Identifying and defining the relevant attributes for each
task type (e.g., object recognition) requires deep domain knowledge and understanding of what aspects
are critical for evaluating model performance. The task space must be comprehensive enough to
cover various scenarios but not so complex that it becomes infeasible to manage or evaluate. Striking
this balance is a significant challenge. The task space should be designed to ensure comprehensive
coverage of all relevant scenarios and diversity in the types of tasks. This requires meticulous planning
and consideration of all possible task variations.

Adding new task generators requires coding skills. Adding new task generators involves pro-
gramming and understanding the underlying framework used for task generation. This requires
technical expertise, which may not be available for all communities and can be a barrier for non-
technical researchers who might have valuable insights and ideas for new tasks but lack the coding
ability to implement them.

Query results approximation can be inaccurate. Efficient query results approximation within
certain budgets might sometimes yield inaccurate results, especially when the budget limits are
constrained. This inaccuracy can stem from several factors. First, the models that embed tasks
into vectors may not fully capture all the details and nuances between different tasks. Second, the
algorithms used for querying might have inherent limitations or room for improvement, affecting the
precision of the results. Addressing these issues requires ongoing refinement of both the task em-
bedding models and the query algorithms to enhance their ability to deliver accurate approximations
under varying computational budgets.

A.3 Potential negative social impact

Misuse for malicious benchmarks. TASK-ME-ANYTHING’s ability to generate a vast number of
tasks could be misused to create benchmarks specifically designed to trick or expose vulnerabilities in
AI systems. Malicious actors might use this capability to create benchmarks that mislead researchers
or lead to the development of AI models with undesirable biases or vulnerabilities.

Reinforcement of biases and discrimination. If TASK-ME-ANYTHING’s task generators are not
carefully designed and curated, they could inadvertently perpetuate existing biases present in the
source data. This could lead to the development of AI models that are biased against certain groups
of people or perpetuate harmful stereotypes.

Overreliance on synthetic tasks. The focus on synthetic task generation could lead to a disconnect
between evaluation results and real-world performance. Overreliance on synthetic tasks might create
a false sense of progress and hinder the development of AI models that can effectively address
real-world challenges.

Data contamination. Fine-tuning models on synthetic tasks generated by TASK-ME-ANYTHING
could lead to data contamination, where the model learns to exploit the specific patterns and biases of
the synthetic data rather than generalizing to real-world scenarios. This could result in models that
perform well on synthetic benchmarks but poorly in practical applications.

Access and fairness. While TASK-ME-ANYTHING aims to democratize AI evaluation, the tech-
nical expertise required to implement new task generators could create barriers for researchers and
practitioners from underrepresented groups, leading to a lack of diverse perspectives and potentially
reinforcing existing inequalities.

A.4 Future work

Supporting natural language user queries. We plan to enable natural language queries, allowing
users to specify evaluation needs in plain language. This will leverage language models to translate
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instructions into actionable query commands, making the system more accessible and user-friendly.
This enhancement will democratize access to model evaluation, streamline the process, and reduce
barriers for non-technical users, fostering a more inclusive evaluation ecosystem.

Expanding the TASK-ME-ANYTHING system. To further enhance the capabilities of TASK-ME-
ANYTHING, we plan to extend it across a broader range of scenarios and model types. This involves
integrating support for various generative models, including language models and visual generative
models, which can fine-tune the evaluation of generation quality. Also, by incorporating new types of
source data, we aim to enrich the diversity and relevance of the tasks generated, ensuring that the
evaluation framework remains robust and comprehensive as foundation model capabilities advance.
Additionally, developing new task generators will enable the creation of tasks that capture emerging
AI challenges and applications, facilitating continuous adaptation to the evolving landscape of AI.
This expansion will empower users from different domains to evaluate models in ways that are highly
specific to their needs, ultimately contributing to more targeted and effective deployment of AI
technologies.

A new workload for database study. TASK-ME-ANYTHING presents new opportunities for
the database community to develop efficient query execution techniques on conceptual relations
containing model inference results (e.g., task accuracy of many models on many tasks) that are
expensive to compute and often unmaterialized when a query is issued. The idea of pre-filtering to
avoid expensive computation has been proven to be effective in some database problems, such as
accelerating similarity joins [67, 41] and video analytics queries [44] where computing the similarity
function or running model inference on videos is expensive during query execution. In a similar vein,
recent work [34, 33, 90] has proposed efficient database indexing and query execution techniques
to navigate the tradeoffs between storing the model inference results on disk and computing them
on-the-fly at query time. Some other efforts [3] have also proposed trading off query result accuracy
for query response time. Another direction for future work is query result diversification. When a
practitioner explores a set of MLMs, datasets, and tasks, they may desire to examine a diverse set of
result items, e.g., tasks that are dissimilar. It would be interesting to how query result diversification
techniques [28, 35] could be adapted in TASK-ME-ANYTHING’s setting.

17



B Details of Task Generation

In this section, we describe the details of the programmatic task generation process in TASK-ME-
ANYTHING. We focus on tasks of multiple-choice visual questions answering, including both image
question answering (ImageQA) and video question answering (VideoQA).

B.1 Key concepts

First, we introduce several key concepts and definitions in our task generation process.

Task instance, task, and task plan. A task instance is an image/video, question, options, and
ground truth answer tuple that comprises a single evaluation test-case. A task is a conceptual
abstraction consisting of all task instances that share the same question and answer. Tasks are
specified via task plans, which contain the required task metadata and configurations to create the
actual task instances. For example, in tasks involving counting, the task plan specifies the categories
of objects, their total numbers in the scene, and their positions in the image—such as two apples, one
on the top right and one on the bottom left. The task instance then features an actual image of the
target objects and includes a specific question and answer that is consistent with the arrangement of
these objects in the scene. One such task instance might be an image with two apples, the question:
"How many apples are there in the image?", and the answer: "2". Multiple task instances can be
generated from a single task plan because other elements such as the image background and types of
distractor objects can be randomized, as they are not specified in the task plan.

Source data. We refer to source data as the visual data and annotations that are used to generate
task instances, e.g., the 3D objects from Objaverse [20, 19] and their associated annotations or the
real images and scene graphs from GQA [39, 47].

Task generator. Each task generator is a program that, given source data as input, generates task
instances of a certain type. It achieves three main purposes: 1) it defines the schema of the task plan;
2) it can enumerate all possible task plans given the available source data; and 3) given source data
and a specific task plan, it can randomly generate a task instance belonging to the task family defined
by the task plan.

B.2 The generation process

Given the source data and a task generator, one can readily generate a large number of tasks. The
overall generation process consists of the following steps:

Step 1: enumerate the task plans. Once the task generator is implemented, one can use it to
enumerate and return all the possible task plans based on the defined schema and the source data.
As each task plan consists of just the metadata of the task rather than the actual task instances, it is
efficient to enumerate all the task plans and store them as a single table. Note that enumerating all
possible task plans is a one-time job, since the table of task plans can be stored and reused.

Step 2: generate task instances of a task given its task plan. Another core functionality of the
task generator is to generate one task instance given a valid task plan. Note that the task generator
may generate many different task instances because of the randomness, e.g., the negative choices
can be randomly sampled from possible candidates, yet since they are all generated by the same task
generator with the same task plan, they would share the question and ground truth answer and are
considered belonging to the same task.

Properties. This task generation process exhibits several key properties:

• Reproducible: With our task generation process, the tasks are produced as a combination
of the source data and the programs, therefore one can reproduce identical task instances
with the same source data and the random seed of the program.

• Scalable: This task generation process is scalable for two reasons. First, it is memory-
friendly. One only needs to store the source data and the annotations, as well as our
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codebase. Even when one aims to evaluate a model on millions of task instances, since the
task instances are reproducible, one can choose to generate the task instances on the fly
rather than beforehand. Secondly, it is easy to expand the space of task that can be generated.
One can increase the number of possible tasks by either adding new source data or new task
generators.

• Easy to update: Benchmarks can contain unexpected errors, e.g., annotation error [72], so
the task generation process must be easy to update once the error is caught. Since our task
generation process is transparent to the users, once an error is caught, it can immediately be
attributed to either the error of the source data or bugs in the code of the task generators, and
then be fixed. We welcome the whole community to report any flaw in our task generation
process.

• Structured task space: Finally, each task generated by our approach is associated with
a task plan composed of its metadata. This design offers a natural structure for the tasks
so that they can be grouped by certain specifications of task metadata. It enables users to
navigate wanted tasks by querying the table of task plans as querying a normal database.
Also, it facilitates the diagnosis of models according to the task metadata.

Figure 10: An illustration of core concepts and the task generation process.
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C Details of Model Evaluation Protocol

In this section, we introduce how to evaluate MLMs against the task generated by our TASK-ME-
ANYTHING system.

C.1 Model’s accuracy on a task.

We adopt the accuracy of the model on a task to capture the model’s performance. However, one task
can contain numerous concrete task instances. In practice, we randomly generate n task instances for
a task and then use the model’s accuracy on the n task instances as a proxy of the model’s accuracy
on the task.

C.2 Prompt template and option extraction.

For prompt template, to fairly evaluate the model’s performance and enhance the robustness of the
results. We use two versions of prompts: a succinct prompt and a detailed prompt. The succinct
version simply adds ’Select from the following choices’ between the question and the options [24],
while the detailed prompt includes more instructions such as: ’Based on the image/video", and also
enclose the options within parentheses (e.g., “(A) camera (B) telephone”)’ and ends the prompt
with ’Best Option: (’ to guide the model to output the option only. [53] The exact prompt template
can be found in Figure 11." For option extraction, we match the model output to three types of
option representations: 1) option identifier, e.g., “(A)”, 2) option name, e.g., “camera”, and 3) option
identifier and name, e.g., “(A) camera” in order to increase the recall of the option extraction.

Figure 11: Prompt Template.
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D Details of Fine-grained User Query and Query Approximation Algorithms

With TASK-ME-ANYTHING, most user queries regarding model performance can be simply addressed
by identifying the relevant task generators and a subset of the task plans to generate task instances
for model investigation. However, there is a special family of fine-grained user queries regarding
individual tasks and taxonomy concepts that may require a large number of tasks to be appropriately
addressed. For example, the colors that the minimum performance of models M1, M2 is larger
than 50%; such a query involves tasks related to all the color attributes and concerns the models’
performance on each individual color. In this section, we outline four types of such fine-grained user
queries and discuss how to address them with efficient query results approximation.

D.1 Fine-grained user query

We introduce four types of fine-grained user query. By default, the target of a query is the tasks, e.g.,
Top K <task>; one can also query different task metadata or their products, e.g., Top K <category> or
Top K <category × attribute>.

Top-K query. Users may be interested in knowing the tasks or task metadata (e.g., object category)
that the model(s) performs the best or the worst, which can be supported by a Top-K query. An
example Top-K query in natural language is, (E1) Top 10 “how many” tasks ranked by the maximum
performance of the user-specified list of models (the user specifies all models in this case) in
descending order. This query finds the top 10 tasks that all models perform the best, measured by the
maximum performance of the models on each task.

Threshold query. Another useful type of query is the Threshold query, since users may want to
know the tasks or task metadata on which the model’s performance is larger or lower than a given
threshold. An example in natural language is, (E2) The color attributes on which the mean of the
minimum performance of models M1, M2 is larger than 50%. The query first groups tasks by their
color value attribute and then aims to find the groups where the mean of the minimum performance
of M1 and M2 across all tasks in the group is larger than 50%.

Built upon basic queries, one can develop new types of queries to fulfill specific needs, e.g., comparing
models or diagnosing the model. Here, we showcase two advanced queries based on the Threshold
query: model compare and debug.

Model Comparison query. A useful type of query is to support comparing a model to another.
In contrast to the traditional way of comparing models by ranking based on their performance, our
Model Comparison Query supports finding tasks or patterns where one model performs better than the
other by a given threshold. An example query is (E3) The task types on which the mean performance
of model M1 is larger than model M2.

Model Debugging query. Model debugging is an important field of study for model evaluation,
where the goal is to find patterns or subgroups where the model performs significantly worse or better
than its average performance. To fulfill this need, we support Model Debugging Queries by leveraging
the Threshold query with the threshold being a function of the model’s average performance and
a hyperparameter. For example, to find tasks where the model performs significantly worse than
average, we can use the Threshold query and set the threshold to be µ− σ, where µ is the averaged
performance of the model and σ is the standard deviation of the model performance. An example
query is (E4) The tasks on which the performance of model M1 is lower than its average performance
of all tasks by a standard deviation.

Note that these two types of query can be similarly defined based on the Top-K query, e.g., the Model
Debugging query can be the top k tasks that a model performs the worst, and how to define these
queries depends on the user need.

D.2 Query execution

We provide an example of the conceptual query execution process in Figure 12, which illustrates the
steps required to execute query E2. Query E2 requires these steps:
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1. Filter: the query filters the task plans related to “color”.
2. Generate and evaluate: the query needs to generate the tasks given the obtained task plans

and then evaluate model M1 and M2 against these tasks to collect their accuracy for each
task.

3. Aggregate: once we obtain models’ accuracy on every involved task, we perform some
aggregate functions to collect the final results. We first compute the minimum accuracy of
models M1 and M2 on each task. Then we average the obtained minimum accuracy over
tasks within one color value group, to gather the final results for each color value group.

4. Select: for each group, the query checks whether the final result is greater than 0.5 and only
keeps the groups where this filter condition holds.

Figure 12: An illustration of the query execution process.

Incorporating frequent pattern mining. In practice, users may be more interested in knowing the
patterns revealed by the returned tasks than the tasks themselves. Because each task in our system is
associated with a task plan, one can apply frequent pattern mining [32, 91, 31] to extract frequent
patterns from the set of task plans associated with the returned tasks. Note that frequent pattern
mining can be applied to the results of any type of query as long as there is a set of associated task
plans.

D.3 Efficient Query Approximation Algorithms

As the fine-grained user queries may involve a large number of tasks to evaluate and therefore
likely become computationally infeasible due to the compute-intensive nature of MLMs, we study
three algorithms to approximate the query results given a budget of B on the number of tasks to be
evaluated.

Subset proxy. One straightforward approach to approximate the query results is to spend the budget
randomly sampling B tasks and then evaluate the models against them to obtain the results. Then, we
use this sampled subset as a proxy of the whole set of tasks to perform the fine-grained user query.

Fitting. Built upon the subset proxy method, the fitting method uses the evaluation results of the
B randomly sampled tasks to train a model (referred to as function approximator) to approximate
the function of interest, and then apply the model to the rest of the tasks to predict the results. In
particular, the function of interest can be the model’s accuracy function which inputs a task and
predicts the model’s accuracy, or the task aggregate function, e.g., the minimum accuracy of two
models as in query E2. Finally, we perform the query over all the tasks, with both actual evaluation
results on B sampled tasks and values of the remaining predicted by the function approximator.

Active evaluation. The third approach, active evaluation, builds upon the fitting method but
enhances it by strategically selecting tasks to improve the approximation of query results, as opposed
to relying on random sampling. This method utilizes an iterative process, where each step involves
selecting a batch of unevaluated tasks based on predictions made by the current function approximator.
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These tasks are then evaluated, and the results are used to re-fit the function approximator with both
existing and new data until the evaluation budget is exhausted. Ultimately, the query is executed
using a combination of actual results from evaluated tasks and predicted results, similar to the fitting
method. The task selection criteria are tailored to the specific type of query. For the Top-K query, it
selects the top-K tasks most likely to fulfill the user’s inquiry based on the predicted values, because
these tasks are predicted to have the most significant impact on the outcome of the query, and focusing
on them could help learn a function approximator with more accurate predictions in areas that are
likely relevant to the actual query results. For the Threshold query, it selects the tasks whose predicted
values are closest to the threshold, because these tasks are most likely to influence the decision
boundary of the function approximator and thus are critical for accurately determining the boundary’s
position within the task space.

Implementation details. To learn a function approximator to predict the value of interest, we first
need a representation of each task as the input of the approximator. We construct such representation
using the task plan, question, and answer associated with each task. In particular, we convert these
elements into a piece of formulated text and leverage pre-trained embedding models to calculate the
text embedding as the task embedding. We adopt Gaussian Process regressor2 because of its stable
performance in our preliminary experiments, while any regression model is applicable.

2https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.
GaussianProcessRegressor.html
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E Details of TASK-ME-ANYTHING 1.0

In this section, we introduce the task generators implemented in the first version of TASK-ME-
ANYTHING. Inspired by the model cards for model reporting [69], we make a task generator card for
each implemented task generator, including information such as task type, task plan schema, etc.,
available in the appendix, and the template can be found in Figure 13.

Task Generator Card Template
• Basic Information.

– Task Type. The target type of task, e.g., ImageQA
– Question Type. The type of generated question, e.g., "how many"
– Answer Type. The answer type e.g., integer number or object category
– Data Type. The type of visual content, like real images, rendering videos, etc.

• Source Data. The source data and annotations it requires
• Task Plan Schema. The schema of the associated task plans
• Partitions. The partition of the task space.

– Partition 1.

* Template. Template used to generate question if available
* Example. An example of generated test case

• Limitations
• Recommendations

Figure 13: Summary of task generator card sections and suggested prompts for each. Task generator
cards for all the included task generators can be found in Appendix M.

E.1 Source data

3D objects with annotations. We start by selecting objects from Objaverse-LVIS, the subset of
Objaverse 1.0 [20] that has been annotated with LVIS [30] categories. From the set of 47K objects
spanning 1,230 categories that comprise Objaverse-LVIS, we select 1,996 objects spanning 337
categories. These objects were manually chosen for their high quality and strong category alignment.
We use Blender [15], an open-source ray-tracing software, to render each object from a uniform set of
surrounding viewpoints and, following manual verification, only keep renderings where the object’s
category and attributes are discernible. This gives us a set of viewpoint annotations that we also use
when constructing 3D scenes, as they allow us to ensure that the object’s category and attributes are
perceivable from the camera.

Real images and videos with Scene Graph. We also collect real images and videos with scene
graph [47] as part of our source data. In particular, we collect real images with scene graphs from the
GQA dataset [47, 39] and real videos with scene graphs from the AGQA dataset [40, 81].

Additionally, we normalized the object terms across all source data and built a taxonomy containing
927 concepts and 965 edges using Wikidata and human filtering to avoid concept conflicts in options,
such as listing both "apple" and "fruit" as choices.

E.2 Task generators for different scenarios

E.2.1 2D sticker image

The first scenario of TASK-ME-ANYTHING is 2D sticker image, where we compose task instance
images by compositing pre-rendered object images into a 2x2 or 3x3 grid. Such a simple type of
image already enables the generation of basic types of visual questions regarding recognizing object
categories and attributes, spatial relations, and counting. For example, one task could be how many
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red telephones are there in the image?. We list the task generators implemented for 2D sticker image
and the statistics in Table 2.

Table 2: 2D sticker image

Task generator Example question Example answer # of tasks

how many
How many blue objects are there in the image? 2 494
How many tables are there in the image? 4 6,136
How many pink beverages are there in the image? 2 27,027

what What is the object in the bottom middle part of the image? folding chair 33,163
What is the object to the left of the telephone? table lamp 61,648,184

where Where is the apple in the image? back left 33,163
Where is the vacuum cleaner with respect to the backpack? left 61,648,184

what attribute What is the material of the object in the middle part of the image? plastic 27,027
What is the color of the object to the left of the silverware? gold 50,175,008

where attribute Where is the white object in the image? top right 27,027
Where is the gray object with respect to the lollipop? top 50,175,008

Total number of tasks: 223,800,421

E.2.2 3D tabletop scene

Although 2D sticker image is a useful setting for generating task instances with speed, the artificial
way in which the scenes are constructed through image compositing limits their realism. A real-world
scene would come from objects existing in a shared 3D space that is rendered through the perspective
of a single camera. As such, in 2D sticker image we are unable to understand the effects of depth,
lighting and occlusion on image understanding. To remedy this, we introduce 3D tabletop scene, a
setting analogous to 2D sticker image, wherein objects are arranged on a plane in a shared 3D scene
and rendered from a fixed camera viewpoint. This allows us to port all of the task generators from 2D
sticker image while also allowing us to test 3D-specific capabilities such as relative depth.

ImageQA. Another way to generate similar yet more realistic images is to compose a 3D tabletop
scene using the objects, and then render a 2D image [43]. For this 3D tabletop scene, we can reuse
task generators of 2D sticker image with some minor modifications regarding the spatial relations.
For example, the spatial relation of "in the bottom of" would become "in front of". In addition, we
identify two families of task generators unique to 3D scenes: tasks regarding the size and distance
of objects, which are not suitable for the 2D scenario discussed above. We list the task generators
implemented for ImageQA of 3D tabletop scene and the statistics in Table 3.

VideoQA. In addition to the aforementioned ImageQA tasks, we also build VideoQA tasks for
3D tabletop scene. We leverage two temporal attributes, rotation and movement, which can only be
identified via video, to construct video-specific task generators and evaluate the models’ performance
in understanding temporal dynamics. To generate these videos, we keep the same layout of the 3D
tabletop scene as ImageQA, but change the positions and angles of the objects across different frames
of the video to make the objects move and rotate. Our task generators then target the model’s ability
to understand these temporal changes in object position and orientation. We list the task generators
implemented for VideoQA of 3D tabletop scene and the statistics in Table 4.

E.2.3 Real images/videos with scene graphs

We also leverage existing manually-annotated scene graph data, i.e., GQA and AGQA, to construct
task generators. For ImageQA, because there are three types of nodes in the scene graph for images,
i.e., object, relation, and attribute, we accordingly implement three task generators to evaluate models’
capability in recognizing these basic visual elements. Similarly, the scene graph for videos consists of
three types of nodes, i.e., object, relation, and action, we implement three task generators regarding
these visual elements. We list the task generators implemented for ImageQA and VideoQA leveraging
scene graphs and the statistics in Table 5&6.
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Table 3: 3D tabletop scene with images

Task generator Example question Example answer # of tasks

how many
How many blue objects are there in the image? 6 494
How many plates are there in the image? 5 6,136
How many black furnitures are there in the image? 4 27,027

what What is the object in the front right part of the image? scale 33,163
What is the object to the right of the mobile computer? bucket 61,648,184

where Where is the vacuum cleaner in the image? back left 33,163
Where is the vacuum cleaner with respect to the wine glass? left 61,648,184

what attribute What is the color of the object in the back left part of the image? red 27,027
What is the material of the object behind the plate? wood 50,175,008

where attribute Where is the wood object in the image? front right 27,027
Where is the white object with respect to the trophy? left 50,175,008

what size What is the smallest object in the image? spatula 20,408

what attribute size What is the color of the smallest object in the image? black 16,632

where size Where is the largest object in the image? back left 20,408
Where is the smallest object in the image with respect to the car? front 56,906,016

what distance What is the object that is farthest from the optical instrument? juice 61,648,184

what attribute distance What is the color of the object that is closest to the statue? beige 50,175,008

where distance Where is the object that is farthest from the bread in the image? middle 61,648,184

Total number of tasks: 454,235,261

Table 4: 3D tabletop scene with videos

Task generator Example question Example answer # of tasks

what rotate video What is the object that is rotating counterclockwise in the video? pants 20,408
What is the rotating object in the video? jewelry 20,408

what attribute rotate video What is the color of the object that is rotating clockwise in the video? beige 16,632
What is the color of the rotating object in the video? yellow 16,632

where rotate video Where is the stepladder with respect to the rotating object in the video? back 51,631,112
Where is the object that is rotating counterclockwise with respect to the microscope in the video? front left 62,221,736

what move video What is the object that is moving left in the video? serving tray 40,816
What is the moving object in the video? barrel 40,816

what attribute move video What is the color of the object that is moving left in the video? black 33,264
What is the color of the moving object in the video? white 33,264

where move video Where is the object that is moving down located in the video? back right 40,816
Where is the moving object located in the video? back right 40,816

Total number of tasks: 114,176,720

Table 5: Real images with Scene Graph

Task generator Example question Example answer # of tasks

what object What is the flat object that is on the brown and wood table? paper 25,169

what attribute What is the material of the smooth object that is to the right of the yellow container? plastic 20,554

what relation What is the relation from the standing object, which the colorful and long snowboard is to the right of,
to the blue and long object, which is to the left of the patterned skis? holding 23,241

Total number of tasks: 68,964

Table 6: Real videos with Scene Graph.

Task generator Example question Example answer # of tasks

what object video What is the spatial relation of the person to the closet while the person closing a closet? floor 428,342

what relation video What is the object that the person is behind after the person watching something in a mirror? behind 211,983
What is the person doing to the blanket before the person putting a phone somewhere? touching 216,359

what action video What action is the person doing while laughing at something? sitting at a table 335,386

Total number of tasks: 1,192,070

E.3 TASK-ME-ANYTHING-UI

The ultimate goal of our query-centric model evaluation framework is to allow diverse users, includ-
ing ML practitioners and non-technical users, to understand foundation models’ capabilities and
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Figure 14: TASK-ME-ANYTHING-UI Interface.

limitations comprehensively and dynamically by answering their various case-specific queries. To
achieve this overarching goal, we further break it down into three subgoals and aim to design an
interactive end-user interface to achieve these goals:

G1: Support understanding of the overall task space and model performance;

G2: Enable deeper understanding of models through query-centric visualization of model performance
(especially for common queries);

G3: Facilitate model debugging via discovery of surprising results.

To achieve these goals, we implemented a graphical user interface3 with Gradio’s [1] framework and
used Altair [89, 79] for all the visualizations. In this section, we describe our interface in detail and
how its components aim to address our design goals. Then, we present several case studies using this
interface in the next section. Our interface consists of four major components organized as different
tabs:

Overall. As the name suggests, the Overall tab is designed to help users understand the overall task
distribution and model performance (G1). It consists of two horizontal sections for visualizing overall
task distribution ( A ) and models’ overall performance ( B ) respectively. Section A displays a pie
chart of the distribution of all tasks by metadata based on user’s choice of task metadata, while Section
B visualizes certain models’ aggregated performance in either a bar plot or heat map according to
user-selected models, aggregation method and task metadata. We choose these common chart types in
hopes of supporting straightfoward understanding of the overall task space and model performance.

3https://huggingface.co/spaces/zixianma/TaskMeAnything-UI
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Task embedding. In addition to the overall task distribution, we also include the Task Embedding
tab to allow users to visualize all tasks at once in a 2D embedding space (G1). Concretely, the
Embedding tab plots the 2D embeddings of all tasks reduced by UMAP as dots in a scatter plot ( C ).
Further, we add a descriptive tooltip for each dot that displays an example image or video along with
the corresponding question-answer pair for this task ( D ). By visualizing all tasks in one plot and
enabling detail of individual tasks on demand at the same time, we hope the interface can help users
understand the entire task space well on both high and low levels.

Fine-grained user query. Most importantly, our interface supports query-centric visualizations
of model performance under the Query-centric tab. While the space of possible user queries can
be infinite, we define four common user queries: top k, threshold, model comparison and model
debugging (Section 2.3) and support corresponding visualizations ( E ). As these queries involve
selecting a subset of tasks for visualization, we include a “Find tasks/task metadata” button to first
select the relevant tasks based on the user query and return these tasks in a table ( F ). If the user
selects task metadata, they will have the option to visualize models’ performance on the selected task
metadata ( G ). If the user chooses to find individual tasks however, they can additionally visualize
the task distribution by some metadata, or find frequent patterns among tasks. By specifying a query
first and visualizing models’ performance only on selected tasks/task metadata, users can gain a more
targted understanding of models based on what they are interested in (G1). In particular, the model
debugging query can help the user find buggy model behaviors by identifying tasks/task metadata
where the model’s performance is lower than its global average accuracy by a large margin i.e. one
standard deviation (G2).

Surprisingness. Last but not least, we include the Surprisingness tab to help users uncover tasks
where models achieve surprisingly good or bad performance compared to their performance on
similar tasks (G3). We define the “surprisingness” of a model M on a particular task Ti as the
following: For a task, Ti and its K nearest neighbors tasks {T ′

j}, we compute the surprisingness
score as

sMi =
1

K

K∑
j=1

(
sim(Ti, T

′
j)× (f(Ti,M)− f(T ′

j ,M))
)

(1)

A higher score indicates the model M is much better at task Ti than the neighbor tasks, while a lower
score means M is worse at Ti than the neighbors.

Under the Surprisingness tab, we display the tasks where the model achieves the highest surprisingness
scores in a bar chart ( H ). We also make the bar chart interactive so that the user can select a particular
surprising task. Then, the scatter plot on the side visualizes this model’s performance on the user-
selected task accordingly along with the k most similar tasks in the 2D embedding space ( I ). With
this interactive visualization of surprising tasks, we hope to allow users to uncover unexpected model
behaviors quickly.
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F Details of Model and Human Performance on Random Task Instances

In this section, we present the full results of our evaluation on TASK-ME-ANYTHING-RANDOM with
18 MLMs and human anntators.

F.1 Raw results of Figure 4

Table 7: TASK-ME-ANYTHING-RANDOM-ImageQA. The model performance on random subsets
of ImageQA tasks using both the detailed prompt and the succinct prompt. Numbers in parentheses
are the number of task instances for each set.

2D sticker image 3D tabletop scene Scene Graph
(1,500) (3,300) (900)

Detailed prompt Succinct prompt Detailed prompt Succinct prompt Detailed prompt Succinct prompt

Human 99.40 99.73 97.33

INSTRUCTBLIP-7B 28.27 0.60 34.48 0.45 68.33 0.11

INSTRUCTBLIP-13B 28.34 23.87 33.12 24.73 65.22 66.11

QWEN-VL 33.40 13.33 33.48 15.91 68.78 12.56

QWEN-VL-CHAT 40.40 35.87 38.88 39.36 78.33 79.45

LLAVA-7B 37.93 41.87 37.55 39.24 62.00 75.22

LLAVA-13B 45.60 43.20 43.97 42.39 79.22 82.78

INTERNVL-CHAT-1.5-24B 58.60 57.40 61.06 59.64 84.67 82.33

LLAVA-NEXT-34B 62.80 62.33 56.33 58.06 85.66 84.89

GEMINI-PRO 30.60 31.47 33.03 31.09 56.78 60.89

QWEN-VL-MAX 55.46 53.33 53.49 55.06 85.67 89.33

GPT4V 34.60 52.40 36.73 47.55 73.44 71.78

GPT4O 45.33 54.80 46.00 58.61 76.33 77.34

Table 8: TASK-ME-ANYTHING-RANDOM-VideoQA. The model performance on random subsets
of VideoQA tasks using both the detailed prompt and the succinct prompt. Numbers in parentheses
are the number of task instances for each set.

3D tabletop scene Scene Graph
(1,800) (900)

Detailed prompt Succinct prompt Detailed prompt Succinct prompt

Human 98.33 99.33

VIDEO-CHATGPT-7B 21.44 21.39 30.45 25.67

VIDEO-LLAVA-7B 26.00 38.78 32.11 56.67

VIDEOCHAT2-7B 30.61 28.55 37.89 32.89

VIDEO-LLAMA-2-7B 23.78 16.33 36.34 31.67

VIDEO-LLAMA-2-13B 22.67 20.23 30.78 28.45

CHAT-UNIVI-7B 29.72 25.95 50.11 45.00

CHAT-UNIVI-13B 28.17 25.67 45.22 39.89

INTERNVL-CHAT-1.5-24B 38.33 31.67 68.11 56.33

LLAVA-NEXT-34B 40.06 41.17 67.55 63.44

GEMINI-PRO 31.78 30.11 50.00 45.78

QWEN-VL-MAX 38.89 39.39 69.11 66.78

GPT4V 30.95 36.83 59.11 62.67

GPT4O 35.67 41.72 69.56 66.22
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F.2 A breakdown of Table 7

Table 9: 2D sticker image

how many what what attribute where where attribute

DP SP DP SP DP SP DP SP DP SP

Human 100.00 98.00 100.00 100.00 99.00

INSTRUCTBLIP-7B 23.67 0.00 24.33 0.00 39.67 0.00 27.00 1.00 26.67 2.00

INSTRUCTBLIP-13B 26.67 30.67 23.67 24.33 41.67 40.67 23.67 22.00 26.00 1.67

QWEN-VL 30.67 9.00 36.67 9.00 47.00 17.67 27.33 15.00 25.33 16.00

QWEN-VL-CHAT 39.67 24.67 42.67 42.67 54.67 52.00 31.67 33.00 33.33 27.00

LLAVA-7B 42.00 40.67 40.00 45.67 48.67 49.67 31.00 39.00 28.00 34.33

LLAVA-13B 49.33 48.33 46.00 46.67 58.33 55.33 39.67 32.67 34.67 33.00

INTERNVL-CHAT-1.5-24B 57.67 60.67 62.00 55.00 75.33 72.33 51.33 49.33 46.67 49.67

LLAVA-NEXT-34B 68.33 64.67 63.33 62.67 72.00 70.67 57.33 58.33 53.00 55.33

GEMINI-PRO 33.33 34.33 32.67 38.00 32.33 33.00 26.67 28.33 28.00 23.67

QWEN-VL-MAX 58.33 45.00 57.00 59.67 71.33 68.33 48.33 47.33 42.33 46.33

GPT4V 40.00 68.67 40.67 50.33 41.00 60.33 25.67 42.67 25.67 40.00

GPT4O 44.67 53.67 50.33 62.33 60.00 67.00 36.00 45.67 35.67 45.33

Table 10: 3D tabletop scene part 1

how many what what attribute where where attribute

DP SP DP SP DP SP DP SP DP SP

Human 99.00 100.00 100.00 99.00 100.00

INSTRUCTBLIP-7B 32.67 0.00 28.00 0.00 45.00 0.00 25.67 1.00 27.00 2.33

INSTRUCTBLIP-13B 32.00 32.33 22.67 23.33 42.67 0.00 28.67 25.33 23.00 24.67

QWEN-VL 32.33 11.00 28.00 8.67 50.67 19.67 22.67 18.33 24.67 15.00

QWEN-VL-CHAT 45.00 33.33 32.33 33.33 55.00 57.00 21.67 24.00 29.67 32.33

LLAVA-7B 38.67 39.33 32.67 40.33 57.00 54.00 27.00 27.67 26.00 26.00

LLAVA-13B 46.67 48.33 40.67 41.00 60.33 56.00 34.33 32.67 36.00 32.67

INTERNVL-CHAT-1.5-24B 67.00 67.00 60.33 56.33 68.33 65.67 54.67 55.67 46.67 46.00

LLAVA-NEXT-34B 63.67 63.33 49.67 50.67 71.33 71.33 48.33 51.00 40.33 49.00

GEMINI-PRO 40.00 38.67 32.67 25.00 31.33 34.67 28.00 31.00 27.67 28.00

QWEN-VL-MAX 65.00 60.67 54.67 55.33 63.67 61.33 42.33 44.00 32.67 37.33

GPT4V 41.67 66.67 31.67 37.67 41.33 54.67 25.00 39.00 25.67 28.33

GPT4O 45.00 64.33 47.33 58.67 57.33 68.67 37.67 45.33 30.67 44.33

Table 11: 3D tabletop scene part 2

what distance where distance what attribute distance what size where size what attribute size

DP SP DP SP DP SP DP SP DP SP DP SP

Human 100.00 99.00 100.00 100.00 100.00 100.00

INSTRUCTBLIP-7B 17.67 0.00 38.33 0.00 51.00 0.00 30.33 0.00 32.33 1.67 51.33 0.00

INSTRUCTBLIP-13B 23.67 24.33 29.33 29.00 48.00 1.67 35.67 37.00 25.33 24.00 53.33 50.33

QWEN-VL 25.33 8.67 26.33 14.00 50.33 19.67 34.67 14.00 21.33 19.00 52.00 27.00

QWEN-VL-CHAT 25.00 24.00 25.67 28.33 56.67 56.00 43.00 48.67 31.00 30.67 62.67 65.33

LLAVA-7B 28.00 30.67 26.33 25.67 49.67 48.67 43.00 44.67 29.33 34.67 55.33 60.00

LLAVA-13B 33.67 29.33 26.00 23.67 57.67 55.33 48.33 48.33 34.67 35.67 65.33 63.33

INTERNVL-CHAT-1.5-24B 52.33 36.00 39.00 47.00 69.67 68.67 73.33 73.67 57.67 57.67 82.67 82.33

LLAVA-NEXT-34B 48.00 45.33 34.33 40.67 75.00 74.00 62.33 62.00 49.00 52.67 77.67 78.67

GEMINI-PRO 39.33 31.00 25.33 24.33 38.33 36.00 34.33 29.67 26.67 26.67 39.67 37.00

QWEN-VL-MAX 39.00 53.00 2.67 35.67 65.00 66.67 72.33 69.67 45.33 50.00 75.67 72.00

GPT4V 39.33 46.67 21.67 19.00 43.33 64.33 46.00 54.00 22.33 37.67 66.00 75.00

GPT4O 44.67 62.33 24.00 41.67 58.33 65.33 57.67 73.00 32.33 44.67 71.00 76.33
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Table 12: Real images with Scene Graph

what attribute what object what relation

DP SP DP SP DP SP

Human 96.00 99.00 97.00

INSTRUCTBLIP-7B 65.67 0.00 79.00 0.00 60.33 0.33

INSTRUCTBLIP-13B 66.33 68.67 84.33 80.00 45.00 49.67

QWEN-VL 64.00 4.33 83.33 8.67 59.00 24.67

QWEN-VL-CHAT 69.67 69.00 87.00 86.67 78.33 82.67

LLAVA-7B 70.00 65.33 85.00 84.33 31.00 76.00

LLAVA-13B 72.67 70.33 90.00 90.00 75.00 88.00

INTERNVL-CHAT-1.5-24B 80.00 77.33 94.67 92.00 79.33 77.67

LLAVA-NEXT-34B 78.33 75.33 93.33 95.33 85.33 84.00

GEMINI-PRO 51.00 50.67 71.00 68.67 48.33 63.33

QWEN-VL-MAX 76.67 81.33 93.67 96.00 86.67 90.67

GPT4V 69.33 67.00 82.67 79.33 68.33 69.00

GPT4O 68.00 67.67 83.00 81.67 78.00 82.67
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F.3 A breakdown of Table 8

Table 13: 3D tabletop scene

what attribute move what attribute rotate what move what rotate where move where rotate

DP SP DP SP DP SP DP SP DP SP DP SP

Human 100.00 100.00 98.00 92.00 100.00 100.00

VIDEO-CHATGPT-7B 27.00 24.33 27.00 28.33 18.33 19.00 15.67 18.67 27.33 26.33 13.33 11.67

VIDEO-LLAVA-7B 28.33 54.00 25.00 49.33 26.00 34.00 26.67 35.33 25.00 31.33 25.00 28.67

VIDEOCHAT2-7B 46.67 48.33 41.33 47.67 29.00 22.33 27.67 19.67 17.00 14.00 22.00 19.33

VIDEO-LLAMA-2-7B 28.67 24.00 27.67 25.00 22.33 19.00 23.33 16.00 20.00 7.33 20.67 6.67

VIDEO-LLAMA-2-13B 29.67 26.67 32.33 32.00 18.33 17.67 19.33 17.67 17.67 14.67 18.67 12.67

CHAT-UNIVI-7B 36.67 27.67 35.33 39.67 27.67 20.33 28.33 24.00 25.67 24.00 24.67 20.00

CHAT-UNIVI-13B 33.67 31.33 33.67 37.00 24.33 22.67 29.33 28.00 25.33 16.33 22.67 18.67

INTERNVL-CHAT-1.5-24B 52.33 43.00 56.00 49.33 26.67 21.00 31.33 22.67 31.67 28.00 32.00 26.00

LLAVA-NEXT-34B 57.67 56.67 59.00 62.67 28.00 29.33 30.67 29.67 32.33 32.33 32.67 36.33

GEMINI-PRO 39.33 38.67 40.33 37.67 30.67 28.67 27.33 25.33 27.67 29.67 25.33 20.67

QWEN-VL-MAX 56.33 52.67 67.33 67.00 29.00 30.00 34.00 35.33 26.00 25.00 20.67 26.33

GPT4V 43.67 51.00 46.67 57.33 28.00 29.33 29.67 32.00 22.00 26.00 15.67 25.33

GPT4O 47.67 46.00 54.67 62.67 27.33 31.00 34.33 38.67 27.00 36.33 23.00 35.67

Table 14: Real videos with Scene Graph

what action what object what relation

DP SP DP SP DP SP

Human 100.00 98.00 100.00

VIDEO-CHATGPT-7B 19.67 16.33 37.00 29.67 34.67 31.00

VIDEO-LLAVA-7B 29.67 58.33 31.33 62.67 35.33 49.00

VIDEOCHAT2-7B 36.33 26.33 44.33 42.67 33.00 29.67

VIDEO-LLAMA-2-7B 33.67 21.33 37.67 40.00 37.67 33.67

VIDEO-LLAMA-2-13B 30.33 23.67 39.00 36.00 23.00 25.67

CHAT-UNIVI-7B 44.67 37.67 57.33 47.67 48.33 49.67

CHAT-UNIVI-13B 38.33 25.00 58.67 52.00 38.67 42.67

INTERNVL-CHAT-1.5-24B 72.33 52.33 73.00 54.33 59.00 62.33

LLAVA-NEXT-34B 67.00 60.00 67.33 65.33 68.33 65.00

GEMINI-PRO 54.33 39.67 55.00 53.00 40.67 44.67

QWEN-VL-MAX 67.33 68.67 69.67 68.00 70.33 63.67

GPT4V 53.67 56.67 57.67 58.67 66.00 72.67

GPT4O 64.67 62.33 66.00 60.00 78.00 76.33
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G Details of Model Performance on TaskMeAnything 2024 benchmark

In this section, we present the full results of our evaluation on TASK-ME-ANYTHING-2024 with 18
MLMs.

G.1 Raw results of Figure 9

Table 15: TASK-ME-ANYTHING-2024-ImageQA. The model performance on the ImageQA split
of TASK-ME-ANYTHING-2024. Numbers in parentheses are the number of task instances for each
set.

2D sticker image 3D tabletop scene Scene Graph
(1,500) (3,300) (900)

Detailed prompt Succinct prompt Detailed prompt Succinct prompt Detailed prompt Succinct prompt

INSTRUCTBLIP-7B 25.34 0.31 26.89 0.06 38.17 0.33

INSTRUCTBLIP-13B 19.46 0.26 20.13 0.10 41.91 1.09

QWEN-VL 22.06 10.26 22.05 11.16 37.61 10.40

QWEN-VL-CHAT 21.81 19.93 20.07 24.03 45.63 48.99

LLAVA-7B 25.25 23.97 21.62 20.59 40.74 37.74

LLAVA-13B 22.94 19.75 22.44 17.93 41.31 36.75

INTERNVL-CHAT-1.5-24B 19.46 19.06 20.27 21.78 38.51 35.75

LLAVA-NEXT-34B 19.61 20.28 20.46 22.08 43.11 43.19

GEMINI-PRO 22.79 21.85 23.04 22.85 30.55 32.16

QWEN-VL-MAX

GPT4V 20.11 21.86 20.99 21.34 39.93 38.79

GPT4O 21.06 26.93 18.52 29.73 38.07 41.57

Table 16: TASK-ME-ANYTHING-2024-VideoQA. The model performance on the VideoQA split of
TASK-ME-ANYTHING-2024. Numbers in parentheses are the number of task instances for each set.

3D tabletop scene Scene Graph
Detailed prompt Succinct prompt Detailed prompt Succinct prompt

VIDEO-CHATGPT-7B 16.10 15.20 15.84 15.80

VIDEO-LLAVA-7B 25.19 22.35 29.03 20.98

VIDEOCHAT2-7B 23.00 20.20 20.29 13.47

VIDEO-LLAMA-2-7B 21.25 13.87 22.13 14.50

VIDEO-LLAMA-2-13B 20.49 16.94 19.42 14.33

CHAT-UNIVI-7B 21.57 18.99 24.74 18.82

CHAT-UNIVI-13B 21.78 18.22 24.54 19.04

INTERNVL-CHAT-1.5-24B 22.07 20.26 17.58 13.99

LLAVA-NEXT-34B 19.11 20.00 16.56 18.07

GEMINI-PRO 20.38 20.31 17.36 15.97

QWEN-VL-MAX

GPT4V 20.07 21.86 15.71 14.34

GPT4O 20.25 21.73 14.01 14.05
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G.2 A breakdown of Table 15

Table 17: 2D sticker image

how many what what attribute where where attribute

DP SP DP SP DP SP DP SP DP SP

INSTRUCTBLIP-7B 28.71 0.00 10.91 0.12 32.86 0.00 26.39 1.04 27.84 0.37

INSTRUCTBLIP-13B 17.64 0.00 8.54 0.12 31.57 0.00 22.34 0.93 17.22 0.24

QWEN-VL 29.68 4.01 12.22 5.10 31.46 12.79 20.60 13.66 16.36 15.75

QWEN-VL-CHAT 30.54 20.80 11.03 11.51 31.22 33.45 20.49 16.20 15.75 17.70

LLAVA-7B 31.87 32.12 9.96 11.03 29.93 24.06 26.04 24.19 28.45 28.45

LLAVA-13B 34.79 39.17 11.27 9.61 31.46 24.41 16.90 12.85 20.27 12.70

InternVL-Chat-24B 24.21 29.08 12.46 9.49 36.62 28.17 11.57 17.94 12.45 10.62

LLaVA-Next-34B 27.98 25.18 9.61 8.90 35.45 40.14 11.34 14.58 13.68 12.58

Gemini-Pro 29.68 30.66 16.37 16.37 26.53 26.88 20.25 17.13 21.12 18.19

QWEN-VL-MAX

GPT4V 25.18 35.04 11.15 10.20 27.82 35.45 20.02 17.25 16.36 11.36

GPT4O 28.47 39.78 11.86 16.49 32.04 39.20 20.72 24.77 12.21 14.41

Table 18: 3D tabletop scene part 1

how many what what attribute where where attribute

DP SP DP SP DP SP DP SP DP SP

INSTRUCTBLIP-7B 27.14 0.00 23.08 0.00 13.24 0.00 29.10 0.00 28.33 0.34

INSTRUCTBLIP-13B 14.64 0.00 22.03 0.00 12.41 0.00 21.53 0.23 18.32 0.11

QWEN-VL 32.26 10.24 20.63 5.48 26.36 11.35 16.15 12.94 15.02 13.20

QWEN-VL-CHAT 38.45 28.81 18.07 22.14 26.24 32.98 8.93 14.66 10.47 17.18

LLAVA-7B 19.64 17.14 15.85 21.45 15.01 19.62 25.66 17.98 23.09 15.13

LLAVA-13B 29.76 33.69 19.81 16.20 16.08 15.60 21.53 9.05 22.07 10.58

InternVL-Chat-24B 20.71 29.05 10.02 7.11 22.70 31.32 13.75 5.96 17.06 9.10

LLaVA-Next-34B 31.55 34.88 22.73 22.61 16.08 16.90 8.25 11.00 8.42 13.08

Gemini-Pro 33.10 35.12 17.02 18.18 23.17 25.77 20.85 18.33 21.05 20.02

QWEN-VL-MAX

GPT4V 27.50 32.74 20.98 18.88 17.61 26.60 15.58 5.96 18.66 6.71

GPT4O 24.52 40.00 13.99 14.80 14.30 30.85 7.90 14.20 8.65 17.41

Table 19: 3D tabletop scene part 2

what distance where distance what attribute distance what size where size what attribute size

DP SP DP SP DP SP DP SP DP SP DP SP

INSTRUCTBLIP-7B 21.36 0.23 37.90 0.00 26.89 0.00 19.10 0.00 35.19 0.12 34.43 0.00

INSTRUCTBLIP-13B 20.90 0.11 30.37 0.68 15.24 0.00 15.21 0.00 20.86 0.00 29.91 0.00

QWEN-VL 15.25 8.47 24.54 14.95 22.68 9.54 19.22 7.18 18.40 15.93 31.99 13.43

QWEN-VL-CHAT 15.25 24.07 16.89 22.15 19.45 19.21 19.34 22.02 14.44 26.67 33.21 34.43

LLAVA-7B 16.38 22.71 27.17 19.06 17.84 21.93 16.30 16.79 31.85 26.91 29.06 27.72

LLAVA-13B 26.44 23.50 16.55 9.93 19.21 19.58 17.88 18.49 28.40 12.84 29.06 27.72

InternVL-Chat-24B 11.86 10.96 20.89 31.05 22.18 31.35 23.11 26.89 18.27 11.23 42.37 45.54

LLaVA-Next-34B 33.45 29.72 14.16 15.18 18.46 19.83 23.36 25.79 11.85 13.70 36.75 40.17

Gemini-Pro 25.20 22.49 16.55 20.21 33.33 29.12 19.22 19.10 19.38 18.15 24.54 24.91

QWEN-VL-MAX

GPT4V 21.69 19.66 12.79 11.19 25.90 42.26 17.40 20.32 15.43 7.28 37.36 43.10

GPT4O 17.85 22.26 8.22 23.40 33.21 55.27 19.34 33.70 14.44 26.05 41.27 49.08
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Table 20: Scene Graph

what attribute what object what relation

DP SP DP SP DP SP

Human 96.00 99.00 97.00

INSTRUCTBLIP-7B 40.21 0.12 31.09 0.26 43.21 0.60

INSTRUCTBLIP-13B 43.06 0.47 37.55 0.53 45.12 2.26

QWEN-VL 38.91 2.25 42.03 3.95 31.90 25.00

QWEN-VL-CHAT 46.38 48.04 43.48 48.22 47.02 50.71

LLAVA-7B 44.72 35.23 50.72 44.53 26.79 33.45

LLAVA-13B 40.21 33.21 52.17 45.85 31.55 31.19

InternVL-Chat-24B 26.81 25.74 44.66 34.26 44.05 47.26

LLaVA-Next-34B 27.40 29.30 55.73 54.68 46.19 45.60

Gemini-Pro 27.88 27.28 26.88 26.35 36.90 42.86

QWEN-VL-MAX

GPT4V 34.40 32.03 34.78 30.17 50.60 54.17

GPT4O 28.94 30.25 37.42 37.68 47.86 56.79
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G.3 A breakdown of Table 16

Table 21: 3D tabletop scene

what attribute move what attribute rotate what move what rotate where move where rotate

DP SP DP SP DP SP DP SP DP SP DP SP

VIDEO-CHATGPT-7B 23.03 20.21 20.80 19.98 8.87 7.07 12.28 13.33 19.29 19.17 12.31 11.47

VIDEO-LLAVA-7B 26.10 36.01 22.81 24.47 23.86 11.75 23.86 16.14 27.84 20.15 26.64 25.57

VIDEOCHAT2-7B 29.72 30.39 29.67 25.18 16.07 12.71 15.20 10.76 18.56 21.00 28.79 21.15

VIDEO-LLAMA-2-7B 22.89 21.02 24.11 17.73 17.87 11.63 18.95 12.75 21.00 10.50 22.70 9.56

VIDEO-LLAMA-2-13B 26.91 21.15 25.30 17.73 14.39 13.55 16.61 15.56 20.63 16.36 19.12 17.32

CHAT-UNIVI-7B 28.65 26.24 23.76 21.28 14.51 11.51 14.39 12.40 20.63 21.98 27.48 20.55

CHAT-UNIVI-13B 26.77 24.63 24.70 20.45 16.55 12.35 18.25 12.51 19.66 19.05 24.73 20.31

INTERNVL-CHAT-1.5-24B 34.00 32.93 40.31 30.73 10.19 8.75 11.93 9.36 12.94 16.61 23.06 23.18

LLAVA-NEXT-34B 31.33 33.33 35.82 36.05 11.39 12.11 13.68 15.09 10.38 10.26 12.07 13.14

GEMINI-PRO 31.46 34.14 26.83 24.70 8.03 11.51 13.33 11.93 19.78 18.93 22.82 20.67

QWEN-VL-MAX

GPT4V 27.58 33.60 27.42 36.41 11.99 12.11 14.39 12.75 22.34 20.15 16.73 16.13

GPT4O 30.39 33.33 33.22 47.99 9.47 7.55 8.65 6.32 22.83 18.32 16.97 16.85

Table 22: Scene Graph

what action what object what relation

DP SP DP SP DP SP

VIDEO-CHATGPT-7B 6.83 9.31 10.09 10.46 30.59 27.63

VIDEO-LLAVA-7B 28.27 11.19 24.23 22.63 34.59 29.11

VIDEOCHAT2-7B 16.49 11.07 24.85 14.39 19.52 14.95

VIDEO-LLAMA-2-7B 18.26 9.66 19.93 10.33 28.20 23.52

VIDEO-LLAMA-2-13B 16.37 12.84 18.94 15.99 22.95 14.16

CHAT-UNIVI-7B 23.32 18.49 20.42 12.30 30.48 25.68

CHAT-UNIVI-13B 22.73 17.31 25.22 15.50 25.68 24.32

INTERNVL-CHAT-1.5-24B 16.49 11.90 11.93 6.77 24.32 23.29

LLAVA-NEXT-34B 12.25 14.02 14.02 14.15 23.40 26.03

GEMINI-PRO 11.54 12.25 22.39 18.08 18.15 17.58

QWEN-VL-MAX

GPT4V 10.95 10.25 15.87 14.15 20.32 18.61

GPT4O 9.89 12.37 13.41 15.50 18.72 14.27
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H Details of Experiments on Query Results Approximation Algorithms

To experiment with different query results approximation approaches, we first conduct extensive
experiments to evaluate a set of representative models against a subset of tasks for each task generator.
Then, we build an Oracle database with the obtained evaluation results, referred to as TASK-ME-
ANYTHING-DB, and study different query results approximation methods with this Oracle database
to verify their effectiveness. We will release the TASK-ME-ANYTHING-DB for future studies of
query results approximation or model performance prediction.

H.1 Experiment details

Setup. For image question answering tasks, We select 6 representative open-sourced large multi-
modal language models (MLMs) from 3 model families: INSTRUCTBLIP-7B and INSTRUCTBLIP-
13B from INSTRUCTBLIP [18], QWEN-VL and QWEN-VL-CHAT from QWEN-VL [6], and
LLAVA-7B and LLAVA-13B from LLAVA [58]. For video question answering tasks, We select 7
representative open-sourced Large Video Language Models from 5 model families: VIDEO-LLAMA-
2-7B and VIDEO-LLAMA-2-13B from VIDEO-LLAMA-2 [100], VIDEO-CHATGPT-7B from
VIDEO-CHATGPT [65], CHAT-UNIVI-7B and CHAT-UNIVI-13B from CHAT-UNIVI [42], VIDEO-
LLAVA-7B from VIDEO-LLAVA [55], and VIDEOCHAT2-7B from VIDEOCHAT2 [53]. We
evaluate the models against a subset of tasks whose statistics can be found in Table 23. Since we
generate 15 task instances for each task and involve multiple models, these lead to a total number of
24,240,780 <model, task instance> pairs in evaluation. We evaluate the query results approximation
methods on a series of query instances for each type of query. These query instances cover all the
subsets of tasks and models we evaluate, leading to a set of 1137 query instances in total (741 for
ImageQA and 396 for VideoQA). We set the budget to 2,000 task evaluations.

Table 23: Statistics of evaluated tasks. For each task, we generate 15 task instances for evaluation.

Scenerio Task generator # of tasks

ImageQA

2D sticker image

how many 17,238
what 12,740
where 12,740
what attribute 12,740
where attribute 12,740

3D tabletop scene

how many 17,238
what 12,740
where 12,740
what attribute 12,740
where attribute 12,740
what size 10,304
what attribute size 7,840
where size 10,304
what distance 6,160
what attribute distance 6,000
where distance 6,160

real image w Scene Graph
what object 10,000
what attribute 10,000
what relation 10,000

Total number of tasks: 144,966

VideoQA

3D tabletop scene

what rotate video 2,464
what attribute rotate video 7,840
where rotate video 2,464
what distance video 4,928
what attribute distance video 15,680
where distance video 4,928

Real video w Scene Graph
what object video 10,000
what action video 10,000
what relation video 10,000

Total number of tasks: 106,608
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Evaluation metrics. To evaluate the query results approximation methods, we adopt different
evaluation metrics for different types of queries. For Top-K queries, we report the Mean Rank and
the Hit Rate: Mean Rank is the average of the ground truth rank of the K items returned by the query
results approximation method, so a lower Mean Rank indicates the returned items are actually ranked
higher and the query results approximation method is better; Hit Rate measures the percentage of
the K returned items are actual Top-K items, so the higher is the better. For the Threshold query
and its variants (Model Comparison and Model Debugging query), we can treat them as a binary
classification problem and adopt the Prediction, Recall, and F1-score as evaluation metrics.

H.2 Experiments on approximations under different budgets.

To evaluate the performance of approximation algorithms under different budgets, we conducted an
experiment using QWEN-VL-CHAT as the target model on 2D how-many tasks. We tested three
query approximation algorithms on four types of queries: Top-K query, Threshold query, Model
comparison query, and Model debugging query. The experiments were performed under budgets of
1, 000, 2, 000, and 3, 000. The results of the experiment can be found in Table 24, 25, 26, and 27.

The results demonstrate that the Active approximation algorithm consistently outperforms the Random
and Fitting algorithms across all query types and budget levels. In particular, for the Model Compare
query, Active achieves better results with a 2,000 budget than baselines with larger budgets. Also, we
can see the performance increase rapidly with more budget, indicating that users could have more
accurate results when using a larger budget

Table 24: The performance of Top-K query results approximation algorithms. Mean Rank (MR,
lower is better) and Hit Rate (HR, higher is better) are the metrics.

Budget Random Fitting Active

MR HR (%) MR HR (%) MR HR (%)

1,000 137.1 0.0 143.3 10.0 44.3 20.0
2,000 116.6 0.0 121.8 0.0 32.2 20.0
3,000 110.3 10.0 121.4 10.0 21.4 20.0

Table 25: The performance of Threshold query results approximation algorithms. Precision (P),
Recall (R), and F1-score (F1) are the metrics.

Budget Random Fitting Active

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

1,000 42.61 31.82 36.43 48.48 10.39 17.11 45.0 11.69 18.56
2,000 43.90 35.06 38.99 43.44 34.42 38.41 43.44 34.42 38.41
3,000 45.38 38.31 41.55 45.89 43.51 44.67 50.93 71.43 59.46

Table 26: The performance of Model comparison query results approximation algorithms. Precision
(P), Recall (R), and F1-score (F1) are the metrics.

Budget Random Fitting Active

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

1,000 100.0 5.86 11.08 88.34 6.73 12.51 61.22 28.71 39.09
2,000 100.0 11.37 20.42 62.88 31.82 42.26 75.18 41.44 53.43
3,000 100.0 17.41 29.66 69.74 43.19 53.35 82.81 52.30 64.11
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Table 27: The performance of Model debugging query results approximation algorithms. Precision
(P), Recall (R), and F1-score (F1) are the metrics.

Budget Random Fitting Active

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

1,000 100.0 6.34 11.92 100.0 6.34 11.92 100.0 6.93 12.96
2,000 100.0 13.50 23.79 97.18 13.58 23.83 100.0 15.0 26.09
3,000 100.0 18.82 31.68 95.29 19.13 31.87 100.0 22.01 36.08
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H.3 Query results approximation experiments in ImageQA

Figure 15: Top-K Query. These three bar graphs display the performance of three query approxima-
tion methods in Top-K Query, measured by Mean Rank and Hit Rate.

Figure 16: Threshold Query. These three bar graphs display the performance of three query
approximation methods in Threshold Query, measured by Precision, Recall, and F1-score.

Figure 17: Model Debugging Query. These three bar graphs display the performance of three query
approximation methods in Model Debugging Query, measured by Precision, Recall, and F1-score.

Figure 18: Model Comparison Query. These three bar graphs display the performance of three
query approximation methods in Model Comparison Query, measured by Precision, Recall, and
F1-score.
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H.4 Query results approximation experiments in VideoQA

Figure 19: Top-K Query in VideoQA. These three bar graphs display the performance of three query
approximation methods in Top-K Query, measured by Mean Rank and Hit Rate.

Figure 20: Threshold Query in VideoQA. These three bar graphs display the performance of three
query approximation methods in Threshold Query, measured by Precision, Recall, and F1-score.

Figure 21: Model Debugging Query in VideoQA. These three bar graphs display the performance
of three query approximation methods in Model Debugging Query, measured by Precision, Recall,
and F1-score.

Figure 22: Model Comparison Query in VideoQA. These three bar graphs display the performance
of three query approximation methods in Model Comparison Query, measured by Precision, Recall,
and F1-score.
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I Details of Analysis and Case Study

I.1 What task metadata are models good or bad at?

To obtain a more finegrained understanding of models’ skill sets, we also leverage our interface to
examine the top and bottom task metadata related to models’ best and worst skills. For example, as
QWEN-VL-CHAT performs the best on relation understanding across models and skills, we identify
the top 20 relations where QWEN-VL-CHAT achieves the highest accuracies (Figure 23) and find
that they are mostly actions. Similarly, on VideoQA tasks related to attribute understanding, we are
also able to find the attribute values VIDEOCHAT2-7B is the best at and learn that they are mostly
associated with color instead of shape or material (Figure 24). On the other hand, we learn that
INSTRUCTBLIP-13B does terribly on spatial understanding especially when the object’s absolute
position is in the back, followed by front right or left (Figure 25); and among the actions VIDEO-
LLAMA-2-13B performs the worst on, most involve “putting” or “throwing” something (Figure
26).

Figure 23: ImageQA: Best relations
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Figure 24: VideoQA: Best attributes

Figure 25: ImageQA: Worst positions
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Figure 26: VideoQA: Worst actions
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I.2 Are models’ strengths and weaknesses consistent across visual inputs?

Further, we are curious if the models’ strong and weak skills are consistent across visual inputs. To this
end, we look at models’ performance across visual inputs for object, attribute, spatial understanding,
and counting as these skills involve tasks in multiple visual inputs such as 2D and 3D. We find that
for the same skill, the rankings of models remain largely consistent across visual inputs (Figure
27). We observe strong correlations (with Spearman coefficients of 0.77-0.94) between models’
accuracy scores for different visual inputs in the same skill with only one exception: the video models’
performance on object understanding in 3D tabletop tasks is only weakly correlated (coefficient =
0.64) with their performance in scene graph tasks. This finding suggests our definition of skills is
orthogonal to visual inputs and enables us to find models’ inherent strengths and weaknesses.

Figure 27: We present models’ performance for each skill across visual inputs.
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I.3 How do small models compare against large models? (continued)

As discussed in the main paper, we observe that large multi-modal models collectively perform better
than smaller models on ImageQA tasks (Figure 28). Nevertheless, this finding might not always hold
for individual models. Through t-tests with pairs of small and large models from the same source, we
find one exception: INSTRUCTBLIP-7B (µ = 0.63) significantly outperforms INSTRUCTBLIP-13B
(µ = 0.49) on relation understanding (with p-value = 0) (Figure 28).

Further, upon a closer look with our interface, we identify a few relations where INSTRUCTBLIP-7B
outperforms INSTRUCTBLIP-13B by a large margin e.g. 50% (Figure 28). Similarly, we also
retrieve a few actions and objects where VIDEO-LLAMA-2-7B performs much better e.g. by 20%
than VIDEO-LLAMA-2-13B (Figures 29 and 30).

Figure 28: INSTRUCTBLIP-7B vs. INSTRUCTBLIP-13B relations

Figure 29: VIDEO-LLAMA-2-7B vs. VIDEO-LLAMA-2-13B actions
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Figure 30: VIDEO-LLAMA-2-7B vs. VIDEO-LLAMA-2-13B objects
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I.4 A case study for synthetic data vs. real data in TASK-ME-ANYTHING

Figure 31: Correlations of synthetic
data with real data in TASK-ME-
ANYTHING.

Figure 32: Correlations of TASK-ME-ANYTHING
with other popular MLM benchmarks.

TASK-ME-ANYTHING leverages both synthetic and real images/videos for evaluating MLM models.
While synthetic data are higly controllable, low-cost, its effectiveness compared to real data remains
unclear, particularly given that most benchmarks rely heavily on real datasets. To quantitatively
justify the transferability between evaluations on synthetic and real-world images, we compared 18
models’ rankings on synthetic vs. realistic images and obsered strong positive correlations between
them. Across the three different image sources in Task-Me-Anything, we found that the correlation
between models’ rankings on 2D and 3D synthetic images is the strongest (r=0.99). While the
correlations between models’ rankings on real and 2D images, and between real and 3D images are
slightly smaller (r=0.85 and 0.79 respectively), these numbers still suggest strong positive correlations
between models’ performance on synthetic images and on real images (Figure 31).

I.5 Do TASK-ME-ANYTHING yield results similar to existing benchmarks?

Comparison with existing benchmarks. According to Figure 32, we found that there is a strong
positive correlation between models’ rankings on TaskMeAnything and on other benchmarks, with
strong correlations (>=0.8) on the most commonly used ones such as MMMU and MMBench.
Notably, the average correlation between TaskMeAnything and the other benchmarks is 0.77, which
is greater than that of some other benchmarks such as ScienceQA and LLaVABench (0.70 and 0.57).
These results suggest that the evaluation results on our benchmark align with those on existing
benchmarks.

Fine-grained analysis: TallyQA vs. TASK-ME-ANYTHING-RANDOM in MLMs’ counting
evaluations. We also conducted a more fine-grained case study testing six open-source models
on both the well-known TallyQA Counting benchmark [2] (we selected 10,000 simple questions
and 10,000 complex from the whole set) and 2D how-many and 3D how-many tasks in TASK-
ME-ANYTHING-RANDOM. (Table 28), the results demonstrate a notable correlation. For instance,
the LLAVA-13B is the best-performing model in both TallyQA and how-many tasks in TASK-
ME-ANYTHING-RANDOM. The Spearman ranking coefficient for the correlation between the 2D
how-many tasks and TallyQA is 0.714 (p-value = 0.111), while for the 3D how-many tasks, it is
0.543 (p-value = 0.266). These results indicate positive correlations of model performance between
our tasks and existing ones, validating that TASK-ME-ANYTHING can effectively reflect model
performance in a manner similar to existing benchmark.

48



Table 28: Models performance on TallyQA Counting benchmark and 2D how-many and 3D how-
many in our TASK-ME-ANYTHING-RANDOM

Model TallyQA 2D How Many 3D How Many

LLAVA-7B 35.90 42.00 38.67

LLAVA-13B 38.33 49.33 46.67

QWEN-VL 18.79 30.67 32.33

QWEN-VL-CHAT 32.07 39.67 45.00

INSTRUCTBLIP-7B 29.92 23.67 32.67

INSTRUCTBLIP-13B 33.22 26.67 32.00
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I.6 Results of Query 6

Table 29: Answering Q1-Q3 with Top-K query regarding individual objects/relations/attributes. We
also present the GPT4O performance drop (∆ Perf. (%)) on task instances involving found task
elements as ground truth answers compared to random task instances, and show that performance
drops by a large margin.

Question Task generator Top-K objects/relations/attributes ∆ Perf. (%)

what objects are GPT4O bad at recognizing VideoQA 3D what rotate fermentation product, hamper, tool, computer keyboard, mathematical instrument -21.67
when rotating/moving? VideoQA 3D what move towel, bathtub, furniture, air conditioner, desk -19.33

what relations are GPT4O bad at understanding? ImageQA SG what relation taller than, exiting, pushing, pushed by, between -51.05
VideoQA SG what relation beneath, covered by, carrying, above, standing on -16.66

what attributes are GPT4O bad at recognizing?
ImageQA 2D what attribute purple, brown, red, gray, beige -5.33
ImageQA 3D what attribute stone, rubber, textile, leather, plastic -10.67
ImageQA SG what attribute crooked, power, lower, steep, glowing -45.45
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J Datasheet for TASK-ME-ANYTHING-RANDOM

J.1 Motivation

1. For what purpose was the dataset created?
TASK-ME-ANYTHING-RANDOM is created as a randomly selected subset of TASK-ME-
ANYTHING-V1.0 to provide an overview of TASK-ME-ANYTHING.

2. Who created the dataset and on behalf of which entity?
It was created by the authors of this paper.

3. Who funded the creation of the dataset?
The creation of the dataset was funded by the institute to which the authors belong.

J.2 Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries?)
The dataset consists of 2D and 3D synthetic images, videos, and real images and videos,
each accompanied by corresponding task plans, questions, options, and ground truths.

2. How many instances are there in total (of each type, if appropriate)?
ImageQA: 5,700 instances (19 types of task generators, each with 300 instances per split
per generator type). VideoQA: 2,700 instances (9 types of task generators, each with 300
instances per split per generator type).

3. Does the dataset contain all possible instances, or is it a sample of instances from a
larger set?
This dataset is a randomly selected subset from the TASK-ME-ANYTHING-V1.0 task space.
Additional tasks can be generated by users based on their needs.

4. Is there a label or target associated with each instance?
Yes, each instance includes both input and targets.

5. Is any information missing from individual instances?
No.

6. Are there recommended data splits (e.g., training, development/validation, testing)?
For ImageQA, there are 19 splits, each containing 300 instances from a specific task type.
For VideoQA, there are 9 splits, each also containing 300 instances from a specific task type.

7. Are there any errors, sources of noise, or redundancies in the dataset?
For real images and videos, the scene graphs may contain a small amount of noise due to
human annotation bias. However, this does not have a significant impact on the research.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)?
The 3D objects used in the 2D sticker and 3D table scenarios are sourced from Objaverse.
The real image scenarios are derived from the GQA versions of Visual Genome (VG), and
the real videos are obtained from AGQA.

9. Does the dataset contain data that might be considered confidential?
No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety?
No.

K Datasheet for TASK-ME-ANYTHING-2024

K.1 Motivation

1. For what purpose was the dataset created?
TASK-ME-ANYTHING-2024 is created as an automatically selected subset of TASK-ME-
ANYTHING-V1.0 that contains the tasks that current MLMs are still struggling with.

2. Who created the dataset and on behalf of which entity?
It was created by the authors of this paper.
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3. Who funded the creation of the dataset?
The creation of the dataset was funded by the institute to which the authors belong.

K.2 Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries?)
The dataset consists of 2D and 3D synthetic images, videos, and real images and videos,
each accompanied by corresponding task plans, questions, options, and ground truths.

2. How many instances are there in total (of each type, if appropriate)?
ImageQA: 12,270 instances (19 types of task generators). VideoQA: 3,567 instances (9
types of task generators).

3. Does the dataset contain all possible instances, or is it a sample of instances from a
larger set?
This dataset is for reflecting the current progress of MLMs by automatically finding tasks
that popular MLMs struggle with using the TaskMeAnything Top-K query and query
approximation algorithms.

4. Is there a label or target associated with each instance?
Yes, each instance includes both input and targets.

5. Is any information missing from individual instances?
No.

6. Are there recommended data splits (e.g., training, development/validation, testing)?
For ImageQA, there are 19 splits, each containing instances from a specific task type. For
VideoQA, there are 9 splits, each also containing instances from a specific task type.

7. Are there any errors, sources of noise, or redundancies in the dataset?
For real images and videos, the scene graphs may contain a small amount of noise due to
human annotation bias. However, this does not have a significant impact on the research.

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)?
The 3D objects used in the 2D sticker and 3D table scenarios are sourced from Objaverse.
The real image scenarios are derived from the GQA versions of Visual Genome (VG), and
the real videos are obtained from AGQA.

9. Does the dataset contain data that might be considered confidential?
No.

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety?
No.

K.3 Collection Process

1. How was the data associated with each instance acquired?
The 3D objects used in the 2D sticker and 3D table scenarios are sourced from Objaverse.
The real image scenarios are derived from the GQA versions of VG, while the real videos
are from AGQAs. References are provided in Section 3 of the main text.

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus
or sensor, manual human curation, software program, software API)?
We used multiple NVIDIA A6000 and A100 GPUs to run Blender for rendering the synthetic
scenes. Questions, options, and ground truth were generated by task generators (Python
code).

3. Who was involved in the data collection process (e.g., students, crowdworkers, contrac-
tors) and how were they compensated (e.g., how much were crowdworkers paid)?
The authors of this paper were directly involved in the data collection process, annotating
the attributes of 3d objects and build the taxonomy themselves.

4. Over what timeframe was the data collected?
The final version of the dataset was generated in August, 2024.
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K.4 Uses
1. Has the dataset been used for any tasks already?

No, this dataset has not been used for any tasks yet.
2. What (other) tasks could the dataset be used for?

This data can also be used in various computer vision tasks, such as localization, object
detection, etc.

3. Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses?
No.

4. Are there tasks for which the dataset should not be used?
No.

K.5 Distribution
1. Will the dataset be distributed to third parties outside of the entity (e.g., company,

institution, organization) on behalf of which the dataset was created?
Yes, the dataset is open to the public.

2. How will the dataset be distributed (e.g., tarball on website, API, GitHub)?
You can access our dataset via the links below:
Dataset (ImageQA): https://huggingface.co/datasets/weikaih/
TaskMeAnything-v1-videoqa-2024
Dataset (VideoQA): https://huggingface.co/datasets/weikaih/
TaskMeAnything-v1-videoqa-2024
Code: https://github.com/JieyuZ2/TaskMeAnything

3. Have any third parties imposed IP-based or other restrictions on the data associated
with the instances?
No.

4. Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances?
No.

K.6 Maintenance
1. Who will be supporting/hosting/maintaining the dataset?

The authors of this paper will support, host, and maintain the dataset.
2. How can the owner/curator/manager of the dataset be contacted (e.g., email address)?

The owner/curator/manager(s) of the dataset can be contacted through the following email:
Jieyu Zhang (jieyuz2@cs.washington.edu)

3. Is there an erratum?
No. If errors are found in the future, we will release errata on the GitHub repo for the dataset:
(https://github.com/JieyuZ2/TaskMeAnything).

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete
instances)?
Yes, the datasets will be updated whenever necessary to ensure accuracy, and announcements
will be made accordingly. These updates will be posted on the GitHub repo for the dataset:
(https://github.com/JieyuZ2/TaskMeAnything).

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted?)
N/A

6. Will older versions of the dataset continue to be supported/hosted/maintained?
Yes. Older versions of the dataset will continue to be maintained and hosted.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so?
Yes, one can extend the dataset by simply adding more source data and task generators, or
by generating more instances from the existing task space.
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L Author Statement for TASK-ME-ANYTHING-RANDOM

We, the authors of this dataset, hereby declare that we bear all responsibility in case of any violation
of rights or any other legal issues arising from the use of this dataset. We confirm that we have
obtained the necessary permissions for the use of any external data incorporated within this dataset
and have adhered to all relevant data protection and privacy regulations.

We also confirm that this dataset is licensed under the Apache license 2.0, which permits its use,
distribution, and modification under the terms specified in the license. Users of this dataset are
required to comply with the conditions set forth in the license. For detailed information on the
license, please refer to the dataset repository or contact us at the provided email address: Jieyu Zhang
(jieyuz2@cs.washington.edu).

By accessing or using this dataset, you agree to abide by the terms and conditions of the Apache
license 2.0 and acknowledge that any misuse or violation of these terms is solely your responsibility.

M Task Generator Cards
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WhatGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 2D sticker image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the object in the <absolute pos> part of the image?
· A: <target category>

* Example
· Q: What is the object in the bottom middle part of the image?
· A: folding chair

– Partition 2.

* Template.
· Q: What is the object <reference pos> the <reference category>?
· A: <target category>

* Example
· Q: What is the object to the left of the telephone?
· A: table lamp

• Recommendations: This task generator is well-suited for evaluating a model’s capability in
object recognition, both with and without reference objects, using annotated 2D sticker images
from Objaverse.
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WhereGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 2D sticker image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <target category> in the image?
· A: <absolute position>

* Example
· Q: Where is the apple in the image?
· A: back left

– Partition 2.

* Template.
· Q: Where is the <target category> with respect to the <reference category>?
· A: <reference position>

* Example
· Q: Where is the vacuum cleaner with respect to the backpack?
· A: left

• Recommendations: This task generator is designed to evaluate models on their spatial
reasoning and object localization capabilities in images, leveraging annotated 2D sticker
images from Objaverse.
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WhatAttributeGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 2D sticker image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the object in the <absolute position> part of the

image?
· A: <attribute value>

* Example
· Q: What is the material of the object in the middle part of the image?
· A: plastic

– Partition 2.

* Template.
· Q: What is the <attribute type> of the object to the left of the <reference category>?
· A: <attribute value>

* Example
· Q: What is the color of the object to the left of the silverware?
· A: gold

• Recommendations: This task generator is ideal for evaluating a model’s ability to recognize
object attributes, including color, material, and shape, within both absolute and relative spatial
contexts using annotated 2D sticker images from Objaverse.
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WhereAttributeGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 2D sticker image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where attribute".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <attribute value> object in the image?
· A: <absolute position>

* Example
· Q: Where is the white object in the image?
· A: top right

– Partition 2.

* Template.
· Q: Where is the <attribute value> object with respect to the <reference category>?
· A: <absolute position>

* Example
· Q: Where is the gray object with respect to the lollipop?
· A: top

• Recommendations: This task generator is effective for evaluating a model’s spatial reasoning
and object localization capabilities, specifically in identifying the positions of objects based
on their attributes, using annotated 2D sticker images from Objaverse.
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HowManyGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 2D sticker image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "how many".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– count integer. The total number of the target objects in the image.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: How many <attribute value> objects are there in the image?
· A: <count>

* Example
· Q: How many blue objects are there in the image?
· A: 2

– Partition 2.

* Template.
· Q: How many <target category> are there in the image?
· A: <count>

* Example
· Q: How many tables are there in the image?
· A: 4

– Partition 3.

* Template.
· Q: How many <attribute value> <target category> are there in the image?
· A: <count>

* Example
· Q: How many pink beverages are there in the image?
· A: 2

• Recommendations: This task generator is optimal for evaluating a model’s ability to count
objects and assess numerical reasoning, using annotated 2D sticker images from Objaverse to
determine quantities based on attributes and categories
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What3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the object in the <absolute pos> part of the image?
· A: <target category>

* Example
· Q: What is the object in the front right part of the image?
· A: scale

– Partition 2.

* Template.
· Q: What is the object <reference pos> the <reference category>?
· A: <target category>

* Example
· Q: What is the object to the right of the mobile computer?
· A: bucket

• Recommendations: This task generator is excellent for evaluating a model’s capability in
recognizing objects in 3D tabletop images, both with and without reference objects, using
annotated images from Objaverse.

60



Where3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <target category> in the image?
· A: <absolute position>

* Example
· Q: Where is the vacuum cleaner in the image?
· A: back left

– Partition 2.

* Template.
· Q: Where is the <target category> with respect to the <reference category>?
· A: <reference position>

* Example
· Q: Where is the vacuum cleaner with respect to the wine glass?
· A: left

• Recommendations: This task generator is ideal for evaluating a model’s spatial reasoning and
object localization abilities in 3D tabletop images, using annotated images from Objaverse to
determine the positions of objects both in absolute and relative terms.
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WhatAttribute3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the object in the <absolute position> part of the

image?
· A: <attribute value>

* Example
· Q: What is the color of the object in the back left part of the image?
· A: red

– Partition 2.

* Template.
· Q: What is the <attribute type> of the object to the left of the <reference category>?
· A: <attribute value>

* Example
· Q: What is the material of the object behind the plate?
· A: wood

• Recommendations: This task generator is suitable for evaluating a model’s ability to recognize
and attribute specific characteristics, such as color, material, and shape, within 3D tabletop
images, using annotated images from Objaverse.
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WhereAttribute3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where attribute".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <attribute value> object in the image?
· A: <absolute position>

* Example
· Q: Where is the wood object in the image?
· A: front right

– Partition 2.

* Template.
· Q: Where is the <attribute value> object with respect to the <reference category>?
· A: <absolute position>

* Example
· Q: Where is the white object with respect to the trophy?
· A: left

• Recommendations: This task generator is designed to assess a model’s ability to identify and
locate objects based on their attributes within 3D tabletop images, leveraging annotated data
from Objaverse for precise spatial reasoning and attribute recognition.
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HowMany3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "how many".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– count integer. The total number of the target objects in the image.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: How many <attribute value> objects are there in the image?
· A: <count>

* Example
· Q: How many blue objects are there in the image?
· A: 6

– Partition 2.

* Template.
· Q: How many <target category> are there in the image?
· A: <count>

* Example
· Q: How many plates are there in the image?
· A: 5

– Partition 3.

* Template.
· Q: How many <attribute value> <target category> are there in the image?
· A: <count>

* Example
· Q: How many black furnitures are there in the image?
· A: 4

• Recommendations: This task generator is well-suited for evaluating a model’s numerical
reasoning and counting abilities within 3D tabletop images, using annotated images from
Objaverse to determine quantities based on attributes and categories.
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WhatDistance3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what distance".
– distance type: string. The type of the distance between target object and the reference

object, indicates whether it pertains to the "farthest" or "closest" distance.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the object that is <distance type> from the <reference category>?
· A: <target category>

* Example
· Q: What is the object that is farthest from the optical instrument?
· A: juice

• Recommendations: This task generator is ideal for evaluating a model’s ability to understand
and determine relative distances between objects within 3D tabletop images, using annotated
data from Objaverse to identify the closest or farthest objects from a given reference.
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WhereDistance3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where distance".
– distance type: string. The type of the distance between target object and the reference

object, indicates whether it pertains to the "farthest" or "closest" distance.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: Where is the object that is <distance type> from the <reference category> in

the image?
· A: <reference position>

* Example
· Q: Where is the object that is farthest from the bread in the image?
· A: middle

• Recommendations: This task generator is effective for evaluating a model’s ability to identify
the spatial positions of objects relative to a given reference, specifically focusing on the closest
or farthest distances within 3D tabletop images, using annotated data from Objaverse.
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WhatAttributeDistance3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute distance".
– distance type: string. The type of the distance between target object and the reference

object, indicates whether it pertains to the "farthest" or "closest" distance.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the object that is <distance type> to the <target

category>?
· A: <attribute value>

* Example
· Q: What is the color of the object that is closest to the statue?
· A: beige

• Recommendations: This task generator is well-suited for evaluating a model’s ability to
determine and attribute specific characteristics, such as color, material, and shape, to objects
that are either the closest or farthest from a given reference within 3D tabletop images, using
annotated data from Objaverse.
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WhatSize3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what size".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <size> object in the image?
· A: <target category>

* Example
· Q: What is the smallest object in the image?
· A: spatula

• Recommendations: This task generator is optimal for evaluating a model’s ability to determine
and identify the relative sizes of objects, specifically the largest or smallest items within 3D
tabletop images, using annotated data from Objaverse.
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WhereSize3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where size".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
– target-reference order: string. Define the target object goes first or not in the question.

It is related to grammar.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <size> object in the image?
· A: <absolute position>

* Example
· Q: Where is the largest object in the image?
· A: middle

– Partition 2.

* Template
· Q: Where is the <size> object in the image with respect to the <reference cate-

gory>?
· A: <reference position>

* Example
· Q: Where is the smallest object in the image with respect to the car?
· A: middle

• Recommendations: This task generator is designed for evaluating a model’s ability to locate
objects based on their size, such as identifying the largest or smallest objects and their positions
relative to other objects within 3D tabletop images, using annotated data from Objaverse.
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WhatAttributeSize3DGridTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute size".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the <size> object in the image?
· A: <attribute value>

* Example
· Q: What is the color of the smallest object in the image?
· A: black

• Recommendations: This task generator is ideal for evaluating a model’s ability to recognize
attributes such as color, material, and shape of objects based on their size, particularly iden-
tifying the largest or smallest objects within 3D tabletop images, using annotated data from
Objaverse.
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WhatMovementVideoGridTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what move video".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
– moving direction: string. The moving direction of the target object, can be either ’left’,

’right’, ’up’, or ’down’.
– are other objects moving: string. Indicates that other objects in the video are moving

or not, can be "Yes" or "No". If it is "Yes" moving, it should not be in the same direction
of the target object’s moving direction.

• Partitions.

– Partition 1.

* Template
· Q: What is the object that is moving <moving direction> in the video?
· A: <target category>

* Example
· Q: What is the object that is moving left in the video?
· A: serving tray

– Partition 2.

* Template
· Q: What is the moving object in the video?
· A: <target category>

* Example
· Q: What is the moving object in the video?
· A: barrel

• Recommendations: This task generator is effective for evaluating a model’s capability to
recognize objects and their movements within 3D tabletop videos, using annotated data from
Objaverse to assess the identification of moving objects and their directions.
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WhereMovementVideoGridTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where move video".
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
– moving direction: string. The moving direction of the target object, can be either ’left’,

’right’, ’up’, or ’down’.
– are other objects moving: string. Indicates that other objects in the video are moving

or not, can be "Yes" or "No". If it is "Yes" moving, it should not be in the same direction
of the target object’s moving direction.

• Partitions.

– Partition 1.

* Template
· Q: Where is the object that is moving down located in the video?
· A: <absolute position>

* Example
· Q: Where is the object that is moving down located in the video?
· A: back right

– Partition 2.

* Template
· Q: Where is the moving object located in the video?
· A: <absolute position>

* Example
· Q: Where is the moving object located in the video?
· A: back right

• Recommendations: This task generator is ideal for evaluating a model’s ability to locate
moving objects within 3D tabletop videos, focusing on both the movement direction and the
absolute position of objects using annotated data from Objaverse.
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WhatAttributeMovementVideoGridTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute move

video".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the object that is moving <moving direction> in

the video?
· A: <attribute value>

* Example
· Q: What is the color of the object that is moving left in the video?
· A: black

– Partition 2.

* Template
· Q: Where is the <attribute type> of the moving object in the video?
· A: <attribute value>

* Example
· Q: What is the color of the moving object in the video?
· A: white

• Recommendations: This task generator is effective for evaluating a model’s capability to
recognize attributes such as color, material, and shape of moving objects within 3D tabletop
videos, using annotated data from Objaverse to assess the identification of attributes for objects
in motion.
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WhatRotationVideoGridTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what rotate video".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <size> object in the image?
· A: <target category>

* Example
· Q: What is the smallest object in the image?
· A: spatula

• Recommendations: This task generator is suitable for evaluating a model’s capability to
recognize objects undergoing rotation within 3D tabletop videos, using annotated data from
Objaverse to identify objects based on their rotation and attributes.
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WhereRotationVideoGridTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "where rotate video".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– reference category: string. The category name of the object that is used to reference

the target object.
– reference position: string. The relative position of the target object from the reference

object.
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
– target-reference order: string. Define the target object goes first or not in the question.

It is related to grammar.
• Partitions.

– Partition 1.

* Template
· Q: Where is the <size> object in the image?
· A: <absolute position>

* Example
· Q: Where is the largest object in the image?
· A: middle

– Partition 2.

* Template
· Q: Where is the <size> object in the image with respect to the <reference cate-

gory>?
· A: <reference position>

* Example
· Q: Where is the smallest object in the image with respect to the car?
· A: middle

• Recommendations: This task generator is ideal for evaluating a model’s ability to locate
rotating objects within 3D tabletop videos, focusing on identifying the positions of the largest
or smallest objects relative to other objects, using annotated data from Objaverse.
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WhatAttributeRotationVideoGridTaaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop video

• Source Data.
– Rendering images of objects from Objaverse.
– Annotations regarding object category, material, color, visable angles, and shape.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute rotate

video".
– size: string. The type of the size of the target object, indicates whether it pertains to

the "largest" or "smallest" in all the objects.
– grid number: integer. The number of diagonal grids of the image, N indicates there

are N ×N grids in the image. Support {2, 3}.
– target category: string. The category name of the target object.
– absolute position: string. The absolute position of the target object in the grid. It is a

number ranging from 0 to 3 (grid number = 2) or 0 to 8 (grid number = 3).
– attribute type: string. The type of attributes of the target object, currently include:
color, material, and shape.

– attribute value: string. The value of the attributes of the target object.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the <size> object in the image?
· A: <attribute value>

* Example
· Q: What is the color of the smallest object in the image?
· A: black

• Recommendations: This task generator is effective for evaluating a model’s ability to recog-
nize attributes such as color, material, and shape of rotating objects within 3D tabletop videos,
using annotated data from Objaverse to assess the identification of attributes for objects in
rotation.
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WhatObjectSceneGraphTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object category
– Data Type. 3D tabletop image

• Source Data.
– Real images from GQA versions of Visual Genome with its corresponding scene graphs
– scene graph contains the objects, relations, and attributes in the image.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what object".
– object : string. The target object node of the question.
– subgraph : string. The subgraph with the target object node as its root, used to

reference the target object node.
– scene graph id : string. The identifier of the scene graph.
– answers: list. A list of object nodes in the scene graph that share the same subgraph

structure, except the target object node and itself.
• Partitions.

– Partition 1.

* Template
· Q: What is the <object and its attributes in the subgraph> that <obj reference(other

reference objects, attributes, and relations in the subgraph)>?
· A: <target category>

* Example
· Q: What is the flat object that is on the brown and wood table?
· A: paper

• Recommendations: This task generator is well-suited for evaluating a model’s ability to
recognize objects and their relationships within complex scenes, using real images and corre-
sponding scene graphs from GQA versions of Visual Genome to provide detailed contextual
information for object identification.
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WhatAttributeSceneGraphTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what attribute
– Answer Type. attribute
– Data Type. real image

• Source Data.
– Real images from GQA versions of Visual Genome with its corresponding scene graphs
– scene graph contains the objects, relations, and attributes in the image.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what attribute".
– attribute type : string. The type of the target attribute.
– attribute : string. The target attribute node of the question.
– subgraph : string. The subgraph with the target attribute node as its root.
– scene graph id : string. The identifier of the scene graph.
– answers: list. A list of attribute nodes in the scene graph that share the same subgraph

structure, except the target attribute node and itself.
• Partitions.

– Partition 1.

* Template
· Q: What is the <attribute type> of the <target attribute’s corresponding object

and object’s other attributes in the subgraph> that <obj reference(other reference
objects, attributes, and relations in the subgraph)>?

· A: <attribute>
* Example

· Q: What is the material of the smooth object that is to the right of the yellow
container?

· A: plastic

• Recommendations: This task generator is ideal for evaluating a model’s ability to recognize
and identify attributes within complex scenes, using real images and corresponding scene
graphs from GQA versions of Visual Genome to provide detailed contextual information for
attribute identification.
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WhatRelationSceneGraphTaskGenerator
• Basic Information.

– Task Type. ImageQA
– Question Type. what object
– Answer Type. object
– Data Type. real image

• Source Data.
– Real images from GQA versions of Visual Genome with its corresponding scene graphs
– Scene graph contains the objects, relations, and attributes in the image.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what relation".
– relation: string. The target relation edge between source object node and target object

node
– source object: string. The source object node of the question.
– target object : string. The target object node of the question.
– source subgraph : string. The subgraph with the source object node as its root.
– target subgraph : string. The subgraph with the target object node as its root.
– scene graph id : string. The identifier of the scene graph.
– answers: list. A list of relation edges in the scene graph that connect the same source

subgraph and target subgraph.
• Partitions.

– Partition 1.

* Template
· Q: What is the relation from the <source object’s attributes in the source subgraph>

object, which <source obj reference(other reference objects, attributes, and relations
in the source subgraph)>, to the <target object’s attributes in the source subgraph>
object, which <target obj reference(other reference objects, attributes, and relations
in the target subgraph)>?

· A: <relation>
* Example

· Q: What is the relation from the standing object, which the colorful and long
snowboard is to the right of, to the blue and long object, which is to the left of the
patterned skis?

· A: holding

• Recommendations: This task generator is well-suited for evaluating a model’s ability to
recognize and identify relationships between objects within complex scenes, using real images
and corresponding scene graphs from GQA versions of Visual Genome to provide detailed
contextual information for understanding object relations.
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WhatObjectVideoSceneGraphTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what object
– Answer Type. object
– Data Type. real video

• Source Data.
– Real videos from AGQA version of Action Genome with its corresponding scene graph
– Scene graph contains each key frame’s objects, relations, and actions.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what object video".
– object : string. The target object the person in the video interacts with.
– relation : string. The relation between the person and the target object it interacts with.
– reference action : string. The reference action to locate the moment when a person is

interacting with the target object.
– reference type : string. The target object of the relation between the person and the

target object it interacts with, can be "spatial" or "contact".
– temporal reference type : string. Type of the temporal reference between the reference

action and the moment when a person is interacting with the target object. Can be "before",
"while", or "after".

– video scene graph id : string. The identifier of the video scene graph.
• Partitions.

– Partition 1.

* Template
· Q: What is the object that the person is <reference> <temporal reference type> the

person <reference action>?
· A: <object>

* Example
· Q: What is the object that the person is behind after the person watching something

in a mirror?
· A: floor

• Recommendations: This task generator is excellent for evaluating a model’s capability to
recognize and identify objects and their interactions within video scenes, using real videos
and corresponding scene graphs from AGQA version of Action Genome to provide detailed
contextual and temporal information for understanding object interactions.
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WhatRelationVideoSceneGraphTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what relation
– Answer Type. relation
– Data Type. real video

• Source Data.
– Real videos from AGQA version of Action Genome with its corresponding scene graph
– Scene graph contains each key frame’s objects, relations, and actions.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what relation video".
– object : string. The object the person in the video interacts by the target relation.
– relation : string. The target relation between the person and the target object it interacts

with.
– reference action : string. The reference action to locate the moment when a person is

interacting with the object.
– reference type : string. The type of the target relation between the person and the

object it interacts with, can be "spatial" or "contact".
– temporal reference type : string. Type of the temporal reference between the reference

action and the moment when a person is interacting with the object. Can be "before",
"while", or "after".

– video scene graph id : string. The identifier of the video scene graph.
• Partitions.

– Partition 1.

* Template
· Q: What is the spatial relation of the person to the <object> while the person

<reference action>.
· A: <relation>

* Example
· Q: What is the spatial relation of the person to the closet while the person closing

a closet?
· A: behind

– Partition 2.

* Template
· Q: What is the person doing to the <object> before the person <reference action>?
· A: <relation>

* Example
· Q: What is the person doing to the blanket before the person putting a phone

somewhere?
· A: touching

• Recommendations: This task generator is suitable for evaluating a model’s ability to recognize
and identify relationships between objects and actions within video scenes, using real videos
and corresponding scene graphs from AGQA version of Action Genome to provide detailed
contextual and temporal information for understanding object relations and interactions.
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WhatActionVideoSceneGraphTaskGenerator
• Basic Information.

– Task Type. VideoQA
– Question Type. what action
– Answer Type. action
– Data Type. real image

• Source Data.
– Real videos from AGQA version of Action Genome with its corresponding scene graph
– Scene graph contains each key frame’s objects, relations, and actions.

• Task Plan Schema.
– question type: string. The question type of these tasks will be "what action video".
– action : string. The target action that the person in the video performs.
– reference action : string. The reference action to locate the moment when a person is

performing the target action.
– temporal reference type : string. Type of the temporal reference between the reference

action and the moment when a person is performing the target action. Can be "before",
"while", or "after".

– video scene graph id : string. The identifier of the video scene graph.
• Partitions.

– Partition 1.

* Template
· Q: What action is the person doing while <reference action>?
· A: <action>

* Example
· Q: What action is the person doing while laughing at something?
· A: sitting at a table

• Recommendations: This task generator is excellent for evaluating a model’s ability to
recognize and identify actions performed by individuals within video scenes, using real videos
and corresponding scene graphs from AGQA version of Action Genome to provide detailed
temporal and contextual information for understanding actions.
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