A Theory of the Distortion-Perception Tradeoff in
Wasserstein Space - Supplementary Material

In Appendix [A] we present the distortion-perception tradeoff in general metric spaces. We formulate
the problem of finding a perfect perceptual quality estimator as an optimal transportation problem,
and extend some of the background provided in Sec. 2] In Appendix [B|we provide detailed proofs of
the results appearing in the paper. In Appendix [C| we discuss the implications of our results on the
DP tradeoff with divergences other than the Wasserstein-2. Appendix [Dexamines settings where
covariance matrices commute. In Appendix [E| we discuss the details of the numerical illustrations of
Sec.[5]and provide additional visual results. Appendix [F]summarizes the results in the paper.

A Background and extensions

A.1 The distortion-perception function
In Sec. 2] of the main text we presented the setting of Euclidean space for simplicity. For the sake of
completeness, we present here a more general setup.

Let X, Y be random variables on separable metric spaces X’,)/, with joint probability px y on X x ).

Given a distortion function d : X x X — R U {0}, we aim to find an estimator X € X defined by a
conditional distribution p Xy (which induces a marginal distribution p ¢ ), minimizing the expectation

E[d(X, X)] under the constraint d,,(px, p ) < P. Here, d,, is some divergence between probability

measures. We further assume the Markov relation X — Y — X, ie. X, X are independent given Y.
Similarly to Blau and Michaeli [4] we define the distortion-perception function

D(P) = min {E[d(X, X)] : dy(px,pg) < P} 27)

Pxy

The expectation is taken w.r.t. the joint probability p ¢, induced by p |y and pxy, where X and
X are independent given Y. We can write as

D(P) = min {J(pgy) : dplpx,pg) < P}, 28)

Px|y
where we defined J(p gy ) LK, [d(X, X)]. This objective can be written as
J(p5)y) = Epg, E[A(X, X)|Y, X]. (29)
Let us define the cost function

p(d,y) £ E[d(X, X)|Y =y, X =i

=Eld(X,2)|Y =y, (30)
where we used the fact that X is independent of X given Y. Then we have that the objective
boils down to J(pgy) = Ep  p(X,Y).

The problem of finding a perfect perceptual quality estimator can be now written as an optimal
transport problem

D(P=0)=minE

L p)"({/p(Xuf/) s.t. Px =DPXx,Py = Py-
Px\v

In the setting where X',) are Euclidean spaces, considering the MSE distortion d(z, ) = ||z — 2|2,
we write

IX = XIP)Y =y, X =3

X =Y =y

XIPY = y] = 2TE [X]Y = y] + 2]

1X = X121y = o] + {E[IX*IP]Y = y] - 26"E[X]Y = 4]+ 2]}

v=E|
E |
E |
E |
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and we have
TPg1y) = Epey  p(X,Y) =By (B [[|IX = X*|P[Y] + B, E [IIX - X"V, X

= D"+ By, [IX - X"

A.2 The optimal transportation problem

Assume X',) are Radon spaces [2]. Let p : X x )V — R be a non-negative Borel cost function, and
let ¢(*), p(¥) be probability measures on X', ) respectively. The optimal transport problem is then
given in the following formulations.

In the Monge formulation, we search for an optimal transformation, often referred to as an optimal
map, T : Y — X minimizing

Ep(T(Y),Y), s.t.Y ~ W), T(Y) ~ ¢ 31)
Note that the Monge problem seeks for a deterministic map, and might not have a solution.

In the Kantorovich formulation, we wish to find a probability measure ¢ = gxy on X X ), minimizing

E,p(X,Y), s.t.q € T(¢®@, p¥)), (32)

where IT is the set of probabilities on X' x ) with marginals ¢(*), p(*). A probability minimizing (32)
is called an optimal plan, and we denote q € TI,(¢(®), p)). Note that when p(z,y) = dP(z,y) and
d(x,y) is a metric, taking inf over || yields the Wasserstein distance Wlﬁ’(q(z) ,p¥)) induced by

d(z,y).

In the case where X = Y = R and p(z,y) = ||z — y||? is the quadratic cost (and we assume
¢®), p¥) have finite first and second moments), there exists an optimal plan minimizing (32)). If p(¥)

is absolutely continuous (w.r.t Lebesgue measure), this plan is given by an optimal map which is the
unique solution to [20, p.5,16].

A.3 Optimal maps between Gaussian measures
When p11 = N(mq,%1) and po = N (ma, ¥o) are Gaussian distributions on R, we have that
1 1\ 3%
W2 (11, o) = [[my — mal|2 + Tr {21 35— 2 (252225) : } . (33)
If 31 and X5 are non-singular, then the distribution attaining the optimum in (3) corresponds to
UNN(ml,El), V:m2+T1—)2(U_m1)7 (34)
where
_1/1 1NE
Tiyy=3," (2;‘2225) R (35)

is the optimal transformation pushing forward from A (0, 1) to N (0, £2) [12]]. This transformation
satisfies 22 = T1_>221T1_)2.
When distributions are singular, we have the following.

Lemma 1. /33| Theorem 3] Let u and v be two centered Gaussian measures defined on R™. Let P,
be the projection matrix onto Im{X,,}. Then the optimal transport map T, p, 4, from ji to P, #v
is linear and self-adjoint, and can be written as

Tys by ppr = (E,I/Q)T(Et/QEVEi/Q)l/Z(E}/Q)T-
In the case Im{%,} C Im{X,} we have P,#v = v, hence T,,_,, = T,_,p, 4, is the optimal
transport map from i to v, even where measures are singular.
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B Proof of main results

In this Section we provide proofs of the main results of this paper. In lemmas [2]and 3 we present
some alternative representations for D(P). In Lemma ] we obtain a lower bound on D(P). We then
prove Theorem 3| (via a more general result given by Lemma 5), where the lower bound of Lemma 4]
is attained. Equipped with Theorem 3] we prove Theorem[I] which is the main result of our paper.

B.1 Relations between D(P) and X*

In this section we relate the distortion-perception function D(P) given in (Z) to the estimator
X* =E[X|Y]. Recall that D* = E [||X — X*HQ] and P* = Wa(px,px+).

Lemma 2. If X is independent of X given'Y', then its MSE can be decomposed as E[|| X — X ||?] =
E[| X — X*||? + E[|| X* — X||?] and hence

D(P) = D* + min {EPXY [||X - X*||2} L Walpsg,px) < P} . (36)

Pxy
Proof. For any estimator we can write the MSE
E [HX - X||2] =E[X - X*|}] +E [||X - X*H?} —9E [(X —XxH7(X - X*)} EY)
Since in our case X is independent of X given Y, we show that the third term vanishes.
E [(X —X9T(X — X*)} —E [IE(X ~XHT(X - X*)|Y}

- E[IE [(X = X*)T|Y] [E(X - X*)|Y] } =0.

=0

Since X *is a deterministic function of Y, D* = E [|| X — X*||?] is a property of the problem, and
does not depend on the choice of p |y which, in view of (37) completes the proof. O

Next, we express D(P) in terms of the Wasserstein distance between p¢ and px-.
Lemma 3 (Eq. (14)).

D(P) = D"+ min {W;(pg,px-) : Walpg,px) < P}, (38)

Proof. Denote W2 (Bp,px+) = MmNy, Wy (pg px) <P W3 (pg.px+), where Bp is the ball of radius
P around px in Wasserstein space.

From Lemma[2] we have

D(P) = D" + min E,. [X—X*Q}' 39
" Pxy Wa(pg,px)<P Pxy I [ (39)

For every p <y whose marginal attains W>(p¢,px) < P we have,
Epgy [IX- X2 2 inf B, [IX - X"
xv q€(pg,px*)

> min W2(ps,px-
pg:Wa(pg,px)<P 2( X )7

which leads to D(P) > D* + W2(Bp, px-).

Conversely, given py such that Ws (p)g7 px) < P, we have an optimal plan p ¢ x+ achieving
Wa(pg,px-). Once we determine the optimal plan p ¢ .. with marginal p ¢, we have an estimator

X given by PRy achieving E;, {HX - X* Hﬂ = W3 (px,px~) (for the connection between the
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optimal plan py . and the choice of a consistent p <y see Remark about uniqueness in Sec. PEP
We then have

min

i By (I8 - X < By [IX - XOP] = WE g pxe),
X|y* X =

Taking the minimum over p ¢ yields D(P) < D* + W3 (Bp, px-). Combining the upper and lower
bounds, we obtain the desired result. O

For the proof of Theorem 3] we first prove the following
Lemmad. D(P) > D* + [(P* — P)]>

Proof. For every estimator satisfying W (p¢,px) < P, we have from the triangle inequality

P* =Ws(px,px+) < Wa(pg,px+) + Wa(pg,px) < Wa(pg.px+) + P, (40)
yielding
E[IX - XI?| =E[IX - X*|2] + E [|.X — x*|?]
> D" + W3 (pg,px+)
> D*+ (P*—P)%,
where the last inequality follows from  (@0). Hence D(P) =
Mty W p)<p Bngy, [IIX = XJ2| 2 D7+ [(P* = P),J2, 0

B.1.1 Proof of Theorem 3|

Theorem. [3| Let X, be an estimator achieving perception index 0 and MSE D(0). Then for any
P € [0, P*|, the estimator

A P\ 4 P
Xp=(1-—=—]X X" 41
P ( P*) ot 5= (41)
is optimal for perception index P, namely, it achieves perception index P and distortion D(P).

Let us prove a stronger result, from which Theorem 3 will follow.

Lemma 5. Ler X, be an estimator (independent of X given Y') achieving W2(pX,pf(€) < ep
and E [HXE —X*||2} < (1 +¢ep)*W2(px,px~) for some ep,ep > 0. Given 0 < P < P* =

Wa(px,px~), consider the estimator

. PN 4 P
Xp=(1—-—=)Xe+—=—X". 42
P ( P*) 5+P* (42)

Then X p achieves E[HXprHZ] < D*+(1+ep)?(P*— P)? with perception index e p+(1+¢cp) P.

When ep,cp = 0, namely X, is an optimal perfect perceptual quality estimator, X p is an optimal
estimator under perception constraint P, which proves Theorem

Proof. W3(pg_ ,px,) <E X, — Xp||2} , and using the triangle inequality
Wa(px,px,) < Walpx,px.) + Walpx_,px,)
<ep+ \/]E [I1X. = Xp|P]

P 1%, - X7
—ep+ 7E[X—X* ]
W22(Px,px*) : |

SEP+P<1+€D))
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where the equality is based on (@2)). A direct calculation of the distortion yields

E [Ix* - %l = (1 - w<pfpx)>E (1" = %]

< (142p)*(Walpx,px-) — P)?,
E[IX - Xpl?| = D* +E [IX* - Xp|?]
< D"+ (1+¢ep)*(Walpx,px-) — P)*.

When ep,ep = 0 we have Wa(px,pg,) < Pand E [||X — )A(p||2} < D* + Wa(px,px+) —
P)2. From Lemma |4, the latter inequality is achieved with equality. Note that since here
E [HXE - X*||2} = W2(px,px-). the distributions of {Xp, P € [0, Wa(px,px-)]} form a
constant-speed geodesic, hence Wz (px,px,) = P. O

Corollary 1. When X™ has a density, X, (hence Xp ) can be obtained via a deterministic transfor-
mation of Y.

Proof. Since the distribution of X* is absolutely continuous, we have an optimal map 7}, . —py
between the distributions of X* and X (see discussion in App. [A.2). Namely, we have that
Xo = Tpyu—px (X*) is an optimal estimator with perception index 0. Thus, according to (I5)
Xp = (1 — %) TPX* Spx (X)) + }i X* are optimal estimators, which in this case are given by a
deterministic function of Y. O

B.2 Proof of Theorem[]

With Theorem [3]and Lemma [5]in hand, we are now ready to prove our main result.
Theorem. 1| The DP function (2)) is given by

D(P) = D* +[(P* — P){)*. (43)
Furthermore, an estimator achieving perception index P and distortion D(P) can always be con-

structed by applying a (possibly stochastic) transformation to X*.

Proof. When P > P* the result is trivial since D(P) = D*. Let us focus on P < P*. Since
X, X* € R™, we have an optimal plan p Ko X between their distributions, attaining P* [2} 20]. We

then have an optimal estimator Xo with perception index 0, which is given by this joint distribution

hence achieving E [HXO - X* ||2} = (P*)? (for the connection between p %, x~ and the choice of

P,y S€€ Remark about uniqueness in Sec. . For any perception P < P*, consider Xp given
by @1). We have W»(px,px, ) = P, and (see Theorem s proof)

E [HX - XP||2] < D* + (Wa(px,px-) — P)?,

hence D(P) < D* + [(P* — P)4]°. On the other hand, we have (Lemma D(P) > D* +
[(P* — P),]?, which completes the proof. O

B.3 The Gaussian setting

In this Section we prove Theorems [ and [5} We begin by proving Theorem 5} and then show that
Theorem [] follows as a special case. Recall that

1/2
and
T = 22 (SY ey sV 2n 2, (45)
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Theorem. |5, Consider the setting of Theoremin the main text. Let ¥  , € R"~ XMy satisfy

11 1 _1
Loy v Zvx = T3 (5% Bx-T3) 2552, (46)
and Wy be a zero-mean Gaussian noise with covariance
1T
EWOZZX_EXOYEY EnyO 47)

that is independent of Y, X. Then, for any P € [0, G*|, an optimal estimator with perception index
P can be obtained by

X P P . P
Xp = ((1 ~ G) Sty + G*zxy) SV + (1 — G*) Wo. (48)

The estimator given in (50) is one solution to @6)-(@7), but it is generally not unique.

Proof. (Theorem Let X, £ Sy vy Y + Wy where X - satisfies @6)-@7). It is easy to see
that Xy ~ N(0, X x) and it is jointly Gaussian with (X, Y, X*). We have by (@)

E|X*X7| = Sxv 37Ty z, = T2 T DL, (49)
hence using @7),
E [||X0 - X*||2} —Tr{Sy + Sy — 2E [X*XOTH

Tr {Sx + Zx- - 255 (B mx- 22y

Tr {Zx + Sx- - 2T x5}

=G*(Xx,Yx~)
— ( G* ) 2 .
Summarizing, Xy is an optimal perfect perceptual quality estimator. Note that (48)) can be written as
A P\ 4 P
Xp=(1—— X"
} ( G*) G
and by Theorem [3| we have that it is an optimal estimator. O

Before proceeding to the proof of Theorem ] let us introduce some auxiliary facts.
Lemma 6. Let X, X x- € R"*"™ be (symmetric) PSD matrices, and ¥x € R"*"™ is PD. Denote

st (i si ) 5ot Then:
T*=%2 (22%x.22) B2 Then:

1. Ker{Z} = Ker{¥7}.

2. Ker{S,}) C  Ker{S3(239y.%
SxT*Sh. Sxe = Ox T

Ker{XxT*}, and we have

>< [N
SIS
™

>< Nl

——

I

Proof. (1) Let ¥ be PSD. Since it is real and symmetric it is diagonalizable, ¥ = UDU?' and
»1/2 = UDY2UT where D is a diagonal matrix with non-negative entries which are the eigenvalues
of X.. We have Ker{D} = Ker{D'/?} = {v € R" : v; = 0Vi : D;; # 0} and since U is full-rank,
Ker{¥} = Ker{X!/?} = UKer{D}.

(2) Assume Sx-v = 0. We have (ZY’Sx-2Y*)5 %0 = 0, implying that £;"%v €
Ker{(X2 1/QZX* 1/2 )} = Ker{(2 1/22 21/2)1/2} The equality is true since ¥ /22X*21/2
21/221/2(21/2E¥3)T is PSD, and we use (1). To conclude, we have

SxT* = SV3(2V20 5. 2228 20 = 0 = Ker{Sx-} € Ker{SxT*}.

Recall now that (I — X% . $x+) is a projection onto Ker{ x- }. We have £xT*(I — 2. $x.) = 0
yielding SxT*2 . Sx. = SxT*. O
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The following Lemma is a reminder of the Schur Complement and its properties.
Lemma 7. [Schur complement]. Let ¥ = [ BAT g } be a symmetric matrix where A is PD. Then
S/a 2 C — BT A~ B is the Schur complement of ¥, and we have that ¥ is PSD iff £/ is PSD.

We are now ready to prove Theorem 4.

Theorem. @] Assume X and Y are zero-mean jointly Gaussian random vectors with ¥ x, Xy > 0.
Then for any P € [0, G*], an estimator with perception index P and MSE D(P) can be constructed
as

. P 1o/ 1 1N\3 1 P _ P
Xp = <<1 - G*> i (Zh=xz)) 230k + G*I) SxySY 4 (1 = G) W, (50)

where W is a zero-mean Gaussian noise with covariance Yy = Z%Q (I— Z¥2T*Z;* T*E;/z)Ei(ﬂ,
which is independent of Y, X.

Proof. We observe that (B0) is a special case of (@8), where Z¢, = X7 % =
1/ 1\3 1

X2 (2)2( Yx 2)2() "y 25k, Sxy. We now show that ¥ ¢,y has the desired properties @6)-(@7).

By substitution,

2

1 1 1 _1
Sy T7 Tyx = 5% (Z32x-3%) T 21Tk (Sxr T Tvx)

1
INED M )

Lo/ 1 1 1
=55 (Zhxn) T 5t
The last equality is due to Lemmal 6}

1 1
Recall E;*EX*E}* = EE(*, and we denote 7* = X ,.* (E}EX*Eg() : ¥ 2. We now have
Sy 2. 2% Sy = Syx k- T Ex S Sx T k. Sxy

= Sy xS S (2R RS L Sy

= Zyxzk*zx*z}*zxy
= ZYXZ;(*ZXYa
hence
Sy = Sy, % Ox,y = Sy — SyxSk.Zxy = Syjx- = 0. (51)
by DI
Since X x, Xy > 0, (31) is the Schur complement of {E X goY} > 0, yielding
Y Xo Y
Y=y — 2X0Y2;12§0Y = 0. (52)
O

Corollary 2 (Non-singular special case). In the case where Xx- is invertible, Y

by XT*E;F Y. xy in the proof of Theorem and it is easy to see that the noise covariance is Yy = 0.
In this case X g,y is the unique solution to (46)-@7). This means that Xo (hence X p) is a determin-
istic function of Y.
Proof. We first show Sy = 0. Let Mp = X ¢, = NxT*E5\ Sxy, then
Yw =Sx — MpXyt Mp
=Yy — ExT Y Sxy Sy Sy x N T Sy
= Sx — Sx AV SV V2 (5P e A (B k. B 2 sk

1/2 1/2
=(z¥’=xe T

=Ny - Nx2/2u ey = 0.
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Now, assume M is a solution to (@6)-(@7), then Ma = Mp — M satisfies MAZ{,lZyx =0 and
Yx - MEyIMT =
Yx — [MpEy  ME + MASG ME — MAYGME — MpXy ' ML) = 0.

But, MAXy!'ME = (MaSy'Syx)SiT*Sx = 0 and Xx — MpXy'ME = 0, yielding
MaS ML < 0. Since MAX5' MY is PSD and $3! is PD, we conclude that Ma = 0. O

C Relations with other divergences

While in Section 3| we focused our attention on the MSE — W5 tradeoff, in this section we discuss
the implications of our results on the DP tradeoff with other divergences. In particular, we show that
when considering the MSE distortion, (8] establishes a lower bound on a class of DP functions. Note
that at the point P = 0, the DP function coincides with (8] for all plausible divergences.

Let d,(-,-) be a divergence between probability measures, and let Dy, (P) be the DP function

w.r.t. this divergence, given by @, where MSE is used to measure distortion. Here, D(P) will denote
Dw, (P), given by (8). We can now write, similarly to (T4),

Dq,(P)=D*+  inf  W3(pg.px~)- (53)

dp(px,px)<P

In cases where d,,(px,py) > Wa(px,py) for all pg, the constraint set {p¢ : d,(px,pg) < P}is
contained in {p ¢ : Wa(px,pg) < P}. Therefore, from (53), we have that

Dy, (P) > D" + inf ng(pX,pX*) = D(P). (54)

Wa(px,px)<

The last equality follows from (T4), where the infimum is attained. The above result holds true for
any Wasserstein distance 1V, with p > 2, since when p > ¢ > 1, we have that W, (px,pg) >

Wy(px,py) forall pg, px [20].

For the case of W7, let us denote P; = W, (px,px~). From the triangle inequality, for every
estimator satisfying Wi (px,py) < P we have

Pl* < Wl(anpX) + Wl(pX7pX*) < P+ WQ(p)EWpX*)a
which together with (33)) yields
D(P) = Dw,(P) = D" + [(P{ = P);]*. (55)
A similar result can be obtained for any W), ,p € [1,2].

Note that when the support of px and pg is compact with diameter R, we have
R(pfq)/pr/p(pX,pX) > Wy(pg,px) for any p > ¢ > 1 [20]. Particularly,
RV2W!*(pg,px) > Wa(pg,px), and therefore Wi(pg,px) < P implies Wa(pg,px) <
V' RP, so we have from (53) that

Dw,(P) > D(VRP). (56)

In the Gaussian setting where X ~ N(0,7), we have by Talagrand’s Inequality [28] [19]
Wa(py,px) < /2dir(px|lpx) for py < px, hence we obtain, similarly to (34)

Dy, (P) > D(V2P). (57)

We summarize these results in Appendix [F|

D Settings with commuting covariances

In many practical problems, covariance matrices may have the commutative relation X x ¥ x+ =
Y x«2x. This is the case, for example, of circulant or large Toeplitz matrices [9]]. For natural images
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Y (low res.

X (full res.
5

Figure 5: A visual demonstration of SR image enhancement. X is a full-resolution reference image
and Y is a x4 downsampled version of X. X is a reconstruction of X based on Y.

this is a reasonable assumption since shift-invariance induces diagonalization by the Fourier basis

In the Gaussian settings of Sec.[3:3] where X x, X x- commute it is easy to see that the Gelbrich
distance between them can be written as

G = G((ux. Bx), (ux- Ex-)) = |2 = =2 r.

|Al|F = y/Tr{AT A} is the Frobenius norm. This is due to the fact that Zﬁ(p, E%f also commute.
In order to achieve E ||| Xy — X* ||2} = (G*)?, an optimal perfect perceptual quality estimator has
to satisfy (@9) which now takes the form

E|x*%7| = ={*s¥2.
It is easy to see that estimators obtained by Xo, X* using (T3] are Gaussian with zero mean and
covariance X p, given by
s = (1—5) 2§+§2§*. (58)
Pay attention that since the roots commute, > p commmutes with ¥ x, > x+, and

E 1 1 1
I3 ~S2|r=P, |25 -2%.|r=G*-P

This further reduces the geometry of the problem to the [2-distance between commuting matrices.

E Numerical illustration

E.1 Super-resolution problem

In super-resolution (SR) problems, the objective is to enhance the resolution of a given image. This
setting can be viewed as an image reconstruction problem, where we assume X is an unknown image
of the desired resolution, and the input to the algorithm is Y, a downsampled (degraded) version of

X. The output of the algorithm is then X ~ p Xy an estimation of X based on Y.

Figure 5] visually demonstrates this setting with a concrete example.
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E.2 Simulation details

In Section [5] we construct an experimental setup, demonstrating our results. Figure [3] presents
the evaluation of 13 super resolution algorithms on the BSD100 dataset, where we compare MSE
distortion, and Gelbrich and FID perceptual indices. Low resolution images were obtained by 4 x
downsampling BSD100 images using a bicubic kernel.

For each algorithm, we acquire 100 RGB images (5000 for the explorable SR method) which are
reconstructions of BSD100 images. To compute the Gelbrich index, we extract 9 x 9 patches from
the RGB images, and then estimate

1 1 T
MAlg = N szw zAlg = ﬁ(pi - mAlg)(pi - mAlg) s

patches patches —

where p; is the i-th patch (a 243-row vector) and Npyches = 1, 643, 200. We compute using @

1 Al 1
MSEx = s———— Y[98 =P, Pay = (/5 2G by Salg)) -
Alg 243 % Npatches i ||p1 D; || s Alg 243 ((mBSDIOOa BSDlOO)v(mAlg; Alg))

The stochastic explorable SR method [3] is evaluated using 50 different SR outputs for each input
image, hence for this method Npaches = 50 x 1, 643, 200.

FID values are calculated on 299 x 299 patches, where for the explorable SR method we use 40
different outputs for each input.

The estimators X; are constructed using per-pixel interpolation between EDSR and ESRGAN,

X, = tXgpsg + (1 — t) XgsrGan-

E.3 Visual illustration
Here we present a visual comparison between SR methods and our constructed estimators, achieving

roughly the same MSE but with a lower perception index. We also present EDSR, ESRGAN, the
low-resolution input, and the ground-truth BSD100 images.
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Figure 6: A visual comparison between SRGAN-VGG3 > (RMSE: 18.08, P: 5.05), and Xo.lg (18.14,
2.59).
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Figure 7: A visual comparison between SRGAN-MSE (RMSE: 16.93, P: 5.85), and Xo.g (16.82,
4.32).
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F Table of main results

For convenience, we summarize our results in the following Table.

Table 1: Main results

Result notation setting remarks
D-p D(P) MSE-W, D(P) = D* +[(P* - P),]’ P* = Ws(px,px+)
function Gaussian D(P) = D*+[(G* — P),]° G* = G(Zx,Sx+)
Optimal % MSE-W, (1-2) Xo+ £ X*
P T a=(1-&). X" =S5,Y
* _ * 1
estimators Gaussian (aZXT Xx- +VE/1 @) I) X T = E)_(% (Zé(ZX*E);(? ’ E)_(%
+o
W~ N(0,Sx - ExT*2L . T*Yx)
MSE-W, D(P) > D* + [(G* — P),]?
Lower MSE-W,, Dw. (P) > D* + [(P* — P).]° p>2
bounds MSE-; Dw, (P) > D* +[(P; — P),)* P =Wi(px,px-)
MSE-dk;, | Da,,(P) > D* + |(P* —v2P), X ~ N(0,1)
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