A Theory of the Distortion-Perception Tradeoff in Wasserstein Space - Supplementary Material

In Appendix A we present the distortion-perception tradeoff in general metric spaces. We formulate the problem of finding a perfect perceptual quality estimator as an optimal transportation problem, and extend some of the background provided in Sec. 2. In Appendix B we provide detailed proofs of the results appearing in the paper. In Appendix C we discuss the implications of our results on the DP tradeoff with divergences other than the Wasserstein-2. Appendix D examines settings where covariance matrices commute. In Appendix E we discuss the details of the numerical illustrations of Sec. 5 and provide additional visual results. Appendix F summarizes the results in the paper.

A Background and extensions

A.1 The distortion-perception function

In Sec. 2 of the main text we presented the setting of Euclidean space for simplicity. For the sake of completeness, we present here a more general setup.

Let X, Y be random variables on separable metric spaces \mathcal{X}, \mathcal{Y} , with joint probability $p_{X,Y}$ on $\mathcal{X} \times \mathcal{Y}$. Given a distortion function $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+ \cup \{0\}$, we aim to find an estimator $\hat{X} \in \mathcal{X}$ defined by a conditional distribution $p_{\hat{X}|Y}$ (which induces a marginal distribution $p_{\hat{X}}$), minimizing the expectation $\mathbb{E}[d(X, \hat{X})]$ under the constraint $d_p(p_X, p_{\hat{X}}) \leq P$. Here, d_p is some divergence between probability measures. We further assume the Markov relation $X \to Y \to \hat{X}$, i.e. X, \hat{X} are independent given Y. Similarly to Blau and Michaeli [4] we define the distortion-perception function

$$D(P) = \min_{p_{\hat{X}|Y}} \left\{ \mathbb{E}[d(X, \hat{X})] : d_p(p_X, p_{\hat{X}}) \le P \right\}.$$
(27)

The expectation is taken w.r.t. the joint probability $p_{\hat{X}YX}$ induced by $p_{\hat{X}|Y}$ and p_{XY} , where \hat{X} and X are independent given Y. We can write (27) as

$$D(P) = \min_{p_{\hat{X}|Y}} \left\{ J(p_{\hat{X}|Y}) : d_p(p_X, p_{\hat{X}}) \le P \right\},$$
(28)

where we defined $J(p_{\hat{X}|Y}) \triangleq \mathbb{E}_{p_{\hat{X}YX}}[d(X, \hat{X})]$. This objective can be written as

$$J(p_{\hat{X}|Y}) = \mathbb{E}_{p_{\hat{X}YX}} \mathbb{E}[d(X, \hat{X})|Y, \hat{X}].$$
⁽²⁹⁾

Let us define the cost function

$$\rho(\hat{x}, y) \triangleq \mathbb{E}[d(X, \hat{X})|Y = y, \hat{X} = \hat{x}]$$

= $\mathbb{E}[d(X, \hat{x})|Y = y],$ (30)

where we used the fact that X is independent of \hat{X} given Y. Then we have that the objective (29) boils down to $J(p_{\hat{X}|Y}) = \mathbb{E}_{p_{\hat{X}Y}}\rho(\hat{X}, Y)$.

The problem of finding a *perfect* perceptual quality estimator can be now written as an optimal transport problem

$$D(P = 0) = \min_{p_{\hat{X}|\hat{Y}}} \mathbb{E}_{p_{\hat{X}|\hat{Y}}} \rho(\hat{X}, \tilde{Y}) \quad \text{s.t.} \ p_{\hat{X}} = p_X, p_{\tilde{Y}} = p_Y.$$

In the setting where \mathcal{X}, \mathcal{Y} are Euclidean spaces, considering the MSE distortion $d(x, \hat{x}) = ||x - \hat{x}||^2$, we write

$$\begin{split} \rho(\hat{x}, y) &= \mathbb{E}\left[\|X - \hat{X}\|^2 | Y = y, \hat{X} = \hat{x} \right] \\ &= \mathbb{E}\left[\|X - \hat{x}\|^2 | Y = y \right] \\ &= \mathbb{E}\left[\|X\|^2 | Y = y \right] - 2\hat{x}^T \mathbb{E}\left[X | Y = y \right] + \|\hat{x}\|^2 \\ &= \mathbb{E}\left[\|X - X^*\|^2 | Y = y \right] + \left\{ \mathbb{E}\left[\|X^*\|^2 | Y = y \right] - 2\hat{x}^T \mathbb{E}\left[X | Y = y \right] + \|\hat{x}\|^2 \right\} \end{split}$$

and we have

$$\begin{split} J(p_{\hat{X}|Y}) &= \mathbb{E}_{p_{\hat{X}YX}} \rho(\hat{X}, Y) = \mathbb{E}_{p_{YX}} \mathbb{E}\left[\|X - X^*\|^2 |Y\right] + \mathbb{E}_{p_{\hat{X}Y}} \mathbb{E}\left[\|\hat{X} - X^*\|^2 |Y, \hat{X} \right] \\ &= D^* + \mathbb{E}_{p_{\hat{X}Y}} \left[\|\hat{X} - X^*\|^2 \right]. \end{split}$$

A.2 The optimal transportation problem

Assume \mathcal{X}, \mathcal{Y} are Radon spaces [2]. Let $\rho : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a non-negative Borel cost function, and let $q^{(x)}, p^{(y)}$ be probability measures on \mathcal{X}, \mathcal{Y} respectively. The optimal transport problem is then given in the following formulations.

In the *Monge* formulation, we search for an optimal transformation, often referred to as an *optimal* map, $T : \mathcal{Y} \to \mathcal{X}$ minimizing

$$\mathbb{E}\rho(T(Y), Y), \text{ s.t. } Y \sim q^{(y)}, T(Y) \sim q^{(x)}.$$
(31)

Note that the Monge problem seeks for a deterministic map, and might not have a solution.

In the *Kantorovich* formulation, we wish to find a probability measure $q = q_{XY}$ on $\mathcal{X} \times \mathcal{Y}$, minimizing

$$\mathbb{E}_{q}\rho(X,Y), \text{ s.t. } q \in \Pi(q^{(x)}, p^{(y)}), \tag{32}$$

where Π is the set of probabilities on $\mathcal{X} \times \mathcal{Y}$ with marginals $q^{(x)}, p^{(y)}$. A probability minimizing (32) is called an *optimal plan*, and we denote $q \in \Pi_o(q^{(x)}, p^{(y)})$. Note that when $\rho(x, y) = d^p(x, y)$ and d(x, y) is a metric, taking inf over (32) yields the Wasserstein distance $W_p^p(q^{(x)}, p^{(y)})$ induced by d(x, y).

In the case where $\mathcal{X} = \mathcal{Y} = \mathbb{R}^d$ and $\rho(x, y) = ||x - y||^2$ is the quadratic cost (and we assume $q^{(x)}, p^{(y)}$ have finite first and second moments), there exists an optimal plan minimizing (32). If $p^{(y)}$ is absolutely continuous (w.r.t Lebesgue measure), this plan is given by an optimal map which is the unique solution to (31) [20, p.5,16].

A.3 Optimal maps between Gaussian measures

When $\mu_1 = \mathcal{N}(m_1, \Sigma_1)$ and $\mu_2 = \mathcal{N}(m_2, \Sigma_2)$ are Gaussian distributions on \mathbb{R}^d , we have that

$$W_2^2(\mu_1,\mu_2) = \|m_1 - m_2\|_2^2 + \operatorname{Tr}\left\{\Sigma_1 + \Sigma_2 - 2\left(\Sigma_1^{\frac{1}{2}}\Sigma_2\Sigma_1^{\frac{1}{2}}\right)^{\frac{1}{2}}\right\}.$$
(33)

If Σ_1 and Σ_2 are non-singular, then the distribution attaining the optimum in (3) corresponds to

$$U \sim \mathcal{N}(m_1, \Sigma_1), \ V = m_2 + T_{1 \to 2}(U - m_1),$$
 (34)

where

$$T_{1\to2} = \Sigma_1^{-\frac{1}{2}} \left(\Sigma_1^{\frac{1}{2}} \Sigma_2 \Sigma_1^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_1^{-\frac{1}{2}}$$
(35)

is the optimal transformation pushing forward from $\mathcal{N}(0, \Sigma_1)$ to $\mathcal{N}(0, \Sigma_2)$ [12]. This transformation satisfies $\Sigma_2 = T_{1\to 2}\Sigma_1 T_{1\to 2}$.

When distributions are singular, we have the following.

Lemma 1. [33, Theorem 3] Let μ and ν be two centered Gaussian measures defined on \mathbb{R}^n . Let P_{μ} be the projection matrix onto $\operatorname{Im}{\Sigma_{\mu}}$. Then the optimal transport map $T_{\mu \to P_{\mu} \# \nu}$ from μ to $P_{\mu} \# \nu$ is linear and self-adjoint, and can be written as

$$T_{\mu \to P_{\mu} \# \nu} = (\Sigma_{\mu}^{1/2})^{\dagger} (\Sigma_{\mu}^{1/2} \Sigma_{\nu} \Sigma_{\mu}^{1/2})^{1/2} (\Sigma_{\mu}^{1/2})^{\dagger}.$$

In the case $\operatorname{Im}\{\Sigma_{\nu}\} \subseteq \operatorname{Im}\{\Sigma_{\mu}\}$ we have $P_{\mu} \# \nu = \nu$, hence $T_{\mu \to \nu} = T_{\mu \to P_{\mu} \# \nu}$ is the optimal transport map from μ to ν , even where measures are singular.

B Proof of main results

In this Section we provide proofs of the main results of this paper. In lemmas 2 and 3 we present some alternative representations for D(P). In Lemma 4 we obtain a lower bound on D(P). We then prove Theorem 3 (via a more general result given by Lemma 5), where the lower bound of Lemma 4 is attained. Equipped with Theorem 3, we prove Theorem 1 which is the main result of our paper.

B.1 Relations between D(P) and X^*

In this section we relate the distortion-perception function D(P) given in (2) to the estimator $X^* = \mathbb{E}[X|Y]$. Recall that $D^* = \mathbb{E}[||X - X^*||^2]$ and $P^* = W_2(p_X, p_{X^*})$.

Lemma 2. If \hat{X} is independent of X given Y, then its MSE can be decomposed as $\mathbb{E}[||X - \hat{X}||^2] = \mathbb{E}[||X - X^*||^2 + \mathbb{E}[||X^* - \hat{X}||^2]$ and hence

$$D(P) = D^* + \min_{p_{\hat{X}|Y}} \left\{ \mathbb{E}_{p_{\hat{X}Y}} \left[\| \hat{X} - X^* \|^2 \right] : W_2(p_{\hat{X}}, p_X) \le P \right\}.$$
 (36)

Proof. For any estimator we can write the MSE

$$\mathbb{E}\left[\|X - \hat{X}\|^{2}\right] = \mathbb{E}\left[|X - X^{*}\|^{2}\right] + \mathbb{E}\left[\|\hat{X} - X^{*}\|^{2}\right] - 2\mathbb{E}\left[(X - X^{*})^{T}(\hat{X} - X^{*})\right].$$
 (37)

Since in our case \hat{X} is independent of X given Y, we show that the third term vanishes.

$$\mathbb{E}\left[(X - X^*)^T (\hat{X} - X^*)\right] = \mathbb{E}\left[\mathbb{E}(X - X^*)^T (\hat{X} - X^*)|Y\right]$$
$$= \mathbb{E}\left[\underbrace{\mathbb{E}\left[(X - X^*)^T |Y\right]}_{=0} \left[\mathbb{E}(\hat{X} - X^*)|Y\right]\right] = 0.$$

Since X^* is a deterministic function of Y, $D^* = \mathbb{E} [||X - X^*||^2]$ is a property of the problem, and does not depend on the choice of $p_{\hat{X}|Y}$, which, in view of (37) completes the proof.

Next, we express D(P) in terms of the Wasserstein distance between $p_{\hat{X}}$ and p_{X^*} . Lemma 3 (Eq. (14)).

$$D(P) = D^* + \min_{p_{\hat{X}}} \left\{ W_2^2(p_{\hat{X}}, p_{X^*}) : W_2(p_{\hat{X}}, p_X) \le P \right\}.$$
(38)

Proof. Denote $W_2^2(\mathcal{B}_P, p_{X^*}) = \min_{p_{\hat{X}}: W_2(p_{\hat{X}}, p_X) \leq P} W_2^2(p_{\hat{X}}, p_{X^*})$, where \mathcal{B}_P is the ball of radius P around p_X in Wasserstein space.

From Lemma 2 we have

$$D(P) = D^* + \min_{p_{\hat{X}|Y}: W_2(p_{\hat{X}}, p_X) \le P} \mathbb{E}_{p_{\hat{X}Y}} \left[\|\hat{X} - X^*\|^2 \right].$$
(39)

For every $p_{\hat{X}|Y}$ whose marginal attains $W_2(p_{\hat{X}}, p_X) \leq P$ we have,

$$\mathbb{E}_{p_{\hat{X}Y}}\left[\|\hat{X} - X^*\|^2\right] \ge \inf_{q \in \Pi(p_{\hat{X}}, p_{X^*})} \mathbb{E}_q\left[\|\hat{X} - X^*\|^2\right] \\ = W_2^2(p_{\hat{X}}, p_{X^*}) \\ \ge \min_{p_{\hat{X}}: W_2(p_{\hat{X}}, p_{X}) \le P} W_2^2(p_{\hat{X}}, p_{X^*}),$$

which leads to $D(P) \ge D^* + W_2^2(\mathcal{B}_P, p_{X^*}).$

Conversely, given $p_{\hat{X}}$ such that $W_2(p_{\hat{X}}, p_X) \leq P$, we have an optimal plan $p_{\hat{X}X^*}$ achieving $W_2(p_{\hat{X}}, p_{X^*})$. Once we determine the optimal plan $p_{\hat{X}X^*}$ with marginal $p_{\hat{X}}$, we have an estimator \hat{X} given by $p_{\hat{X}|Y}$ achieving $\mathbb{E}_{p_{\hat{X}Y}}\left[\|\hat{X} - X^*\|^2\right] = W_2^2(p_{\hat{X}}, p_{X^*})$ (for the connection between the

optimal plan $p_{\hat{X}X^*}$ and the choice of a consistent $p_{\hat{X}|Y}$, see Remark about uniqueness in Sec. 3.1). We then have

$$\min_{p_{\hat{X}|Y}:W_2(p_{\hat{X}},p_X) \le P} \mathbb{E}_{p_{\hat{X}Y}} \left[\|\hat{X} - X^*\|^2 \right] \le \mathbb{E}_{p_{\hat{X}Y}} \left[\|\hat{X} - X^*\|^2 \right] = W_2^2(p_{\hat{X}},p_{X^*}).$$

Taking the minimum over $p_{\hat{X}}$ yields $D(P) \leq D^* + W_2^2(\mathcal{B}_P, p_{X^*})$. Combining the upper and lower bounds, we obtain the desired result.

For the proof of Theorem 3, we first prove the following Lemma 4. $D(P) \ge D^* + [(P^* - P)_+]^2$.

Proof. For every estimator satisfying $W_2(p_{\hat{X}}, p_X) \leq P$, we have from the triangle inequality

$$P^* = W_2(p_X, p_{X^*}) \le W_2(p_{\hat{X}}, p_{X^*}) + W_2(p_{\hat{X}}, p_X) \le W_2(p_{\hat{X}}, p_{X^*}) + P,$$
(40)

yielding

$$\mathbb{E}\left[\|X - \hat{X}\|^{2}\right] = \mathbb{E}\left[\|X - X^{*}\|^{2}\right] + \mathbb{E}\left[\|\hat{X} - X^{*}\|^{2}\right]$$
$$\geq D^{*} + W_{2}^{2}(p_{\hat{X}}, p_{X^{*}})$$
$$\geq D^{*} + (P^{*} - P)_{+}^{2},$$

where the last inequality follows from (40). Hence $D(P) = \min_{p_{\hat{X}|Y}: W_2(p_{\hat{X}}, p_X) \leq P} \mathbb{E}_{p_{\hat{X}Y}} \left[\|X - \hat{X}\|^2 \right] \geq D^* + [(P^* - P)_+]^2.$

B.1.1 Proof of Theorem 3

Theorem. 3. Let \hat{X}_0 be an estimator achieving perception index 0 and MSE D(0). Then for any $P \in [0, P^*]$, the estimator

$$\hat{X}_P = \left(1 - \frac{P}{P^*}\right)\hat{X}_0 + \frac{P}{P^*}X^*$$
 (41)

is optimal for perception index P, namely, it achieves perception index P and distortion D(P).

Let us prove a stronger result, from which Theorem 3 will follow.

Lemma 5. Let \hat{X}_{ε} be an estimator (independent of X given Y) achieving $W_2(p_X, p_{\hat{X}_{\varepsilon}}) \leq \varepsilon_P$ and $\mathbb{E}\left[\|\hat{X}_{\varepsilon} - X^*\|^2\right] \leq (1 + \varepsilon_D)^2 W_2^2(p_X, p_{X^*})$ for some $\varepsilon_D, \varepsilon_P \geq 0$. Given $0 \leq P \leq P^* = W_2(p_X, p_{X^*})$, consider the estimator

$$\hat{X}_P = \left(1 - \frac{P}{P^*}\right)\hat{X}_{\varepsilon} + \frac{P}{P^*}X^*.$$
(42)

Then \hat{X}_P achieves $\mathbb{E}[||X - \hat{X}_P||^2] \leq D^* + (1 + \varepsilon_D)^2 (P^* - P)^2$ with perception index $\varepsilon_P + (1 + \varepsilon_D)P$. When $\varepsilon_D, \varepsilon_P = 0$, namely \hat{X}_{ε} is an optimal perfect perceptual quality estimator, \hat{X}_P is an optimal estimator under perception constraint P, which proves Theorem 3.

Proof. $W_2^2(p_{\hat{X}_{\varepsilon}}, p_{\hat{X}_P}) \leq \mathbb{E}\left[\|\hat{X}_{\varepsilon} - \hat{X}_P\|^2\right]$, and using the triangle inequality $W_2(p_X, p_{\hat{X}_P}) \leq W_2(p_X, p_{\hat{X}_{\varepsilon}}) + W_2(p_{\hat{X}_{\varepsilon}}, p_{\hat{X}_P})$ $\leq \varepsilon_P + \sqrt{\mathbb{E}\left[\|\hat{X}_{\varepsilon} - \hat{X}_P\|^2\right]}$ $= \varepsilon_P + \sqrt{\frac{P^2}{W_2^2(p_X, p_{X^*})}}\mathbb{E}\left[\|\hat{X}_{\varepsilon} - X^*\|^2\right]$ $\leq \varepsilon_P + P(1 + \varepsilon_D),$ where the equality is based on (42). A direct calculation of the distortion yields

$$\mathbb{E}\left[\|X^* - \hat{X}_P\|^2\right] = \left(1 - \frac{P}{W_2(p_X, p_{X^*})}\right)^2 \mathbb{E}\left[\|X^* - \hat{X}_{\varepsilon}\|^2\right] \\ \leq (1 + \varepsilon_D)^2 (W_2(p_X, p_{X^*}) - P)^2, \\ \mathbb{E}\left[\|X - \hat{X}_P\|^2\right] = D^* + \mathbb{E}\left[\|X^* - \hat{X}_P\|^2\right] \\ \leq D^* + (1 + \varepsilon_D)^2 (W_2(p_X, p_{X^*}) - P)^2.$$

When $\varepsilon_D, \varepsilon_P = 0$ we have $W_2(p_X, p_{\hat{X}_P}) \leq P$ and $\mathbb{E}\left[||X - \hat{X}_P||^2 \right] \leq D^* + (W_2(p_X, p_{X^*}) - P)^2$. From Lemma 4, the latter inequality is achieved with equality. Note that since here $\mathbb{E}\left[||\hat{X}_{\varepsilon} - X^*||^2 \right] = W_2^2(p_X, p_{X^*})$, the distributions of $\{\hat{X}_P, P \in [0, W_2(p_X, p_{X^*})]\}$ form a constant-speed geodesic, hence $W_2(p_X, p_{\hat{X}_P}) = P$.

Corollary 1. When X^* has a density, \hat{X}_0 (hence \hat{X}_P) can be obtained via a deterministic transformation of Y.

Proof. Since the distribution of X^* is absolutely continuous, we have an optimal map $T_{p_{X^*} \to p_X}$ between the distributions of X^* and X (see discussion in App. A.2). Namely, we have that $\hat{X}_0 = T_{p_{X^*} \to p_X}(X^*)$ is an optimal estimator with perception index 0. Thus, according to (15) $\hat{X}_P = \left(1 - \frac{P}{P^*}\right)T_{p_{X^*} \to p_X}(X^*) + \frac{P}{P^*}X^*$ are optimal estimators, which in this case are given by a deterministic function of Y.

B.2 Proof of Theorem 1

With Theorem 3 and Lemma 5 in hand, we are now ready to prove our main result.

Theorem. 1. *The DP function* (2) *is given by*

$$D(P) = D^* + \left[(P^* - P)_+ \right]^2.$$
(43)

Furthermore, an estimator achieving perception index P and distortion D(P) can always be constructed by applying a (possibly stochastic) transformation to X^* .

Proof. When $P \ge P^*$ the result is trivial since $D(P) = D^*$. Let us focus on $P < P^*$. Since $X, X^* \in \mathbb{R}^{n_x}$, we have an optimal plan $p_{\hat{X}_0 X^*}$ between their distributions, attaining P^* [2, 20]. We then have an optimal estimator \hat{X}_0 with perception index 0, which is given by this joint distribution hence achieving $\mathbb{E}\left[\|\hat{X}_0 - X^*\|^2\right] = (P^*)^2$ (for the connection between $p_{\hat{X}_0 X^*}$ and the choice of $p_{\hat{X}_0|Y}$, see Remark about uniqueness in Sec. 3.1). For any perception $P < P^*$, consider \hat{X}_P given by (41). We have $W_2(p_X, p_{\hat{X}_P}) = P$, and (see Theorem 3's proof)

$$\mathbb{E}\left[\|X - \hat{X}_P\|^2\right] \le D^* + (W_2(p_X, p_{X^*}) - P)^2,$$

hence $D(P) \leq D^* + [(P^* - P)_+]^2$. On the other hand, we have (Lemma 4) $D(P) \geq D^* + [(P^* - P)_+]^2$, which completes the proof.

B.3 The Gaussian setting

In this Section we prove Theorems 4 and 5. We begin by proving Theorem 5, and then show that Theorem 4 follows as a special case. Recall that

$$(G^*)^2 = \operatorname{Tr}\left\{\Sigma_X + \Sigma_{X^*} - 2\left(\Sigma_X^{1/2}\Sigma_{X^*}\Sigma_X^{1/2}\right)^{1/2}\right\}$$
(44)

and

$$T^* = \Sigma_X^{-1/2} (\Sigma_X^{1/2} \Sigma_{X^*} \Sigma_X^{1/2})^{1/2} \Sigma_X^{-1/2}.$$
(45)

Theorem. 5. Consider the setting of Theorem 4 in the main text. Let $\Sigma_{\hat{X}_0Y} \in \mathbb{R}^{n_x \times n_y}$ satisfy

$$\Sigma_{\hat{X}_0 Y} \Sigma_Y^{-1} \Sigma_{YX} = \Sigma_X^{\frac{1}{2}} (\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}})^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}}, \tag{46}$$

and W_0 be a zero-mean Gaussian noise with covariance

$$\Sigma_{W_0} = \Sigma_X - \Sigma_{\hat{X}_0 Y} \Sigma_Y^{-1} \Sigma_{\hat{X}_0 Y}^T \succeq 0$$
(47)

that is independent of Y, X. Then, for any $P \in [0, G^*]$, an optimal estimator with perception index P can be obtained by

$$\hat{X}_P = \left(\left(1 - \frac{P}{G^*} \right) \Sigma_{\hat{X}_0 Y} + \frac{P}{G^*} \Sigma_{XY} \right) \Sigma_Y^{-1} Y + \left(1 - \frac{P}{G^*} \right) W_0.$$
(48)

The estimator given in (50) is one solution to (46)-(47), but it is generally not unique.

Proof. (Theorem 5) Let $\hat{X}_0 \triangleq \Sigma_{\hat{X}_0Y} \Sigma_Y^{-1} Y + W_0$ where $\Sigma_{\hat{X}_0Y}$ satisfies (46)-(47). It is easy to see that $\hat{X}_0 \sim \mathcal{N}(0, \Sigma_X)$ and it is jointly Gaussian with (X, Y, X^*) . We have by (46)

$$\mathbb{E}\left[X^* \hat{X}_0^T\right] = \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{Y \hat{X}_0} = \Sigma_X^{-1/2} (\Sigma_X^{1/2} \Sigma_{X^*} \Sigma_X^{1/2})^{1/2} \Sigma_X^{1/2},$$
(49)

hence using (47),

$$\mathbb{E}\left[\|\hat{X}_{0} - X^{*}\|^{2}\right] = \operatorname{Tr}\left\{\Sigma_{X} + \Sigma_{X^{*}} - 2\mathbb{E}\left[X^{*}\hat{X}_{0}^{T}\right]\right\}$$
$$= \operatorname{Tr}\left\{\Sigma_{X} + \Sigma_{X^{*}} - 2\Sigma_{X}^{-1/2}(\Sigma_{X}^{1/2}\Sigma_{X^{*}}\Sigma_{X}^{1/2})^{1/2}\Sigma_{X}^{1/2}\right\}$$
$$= \operatorname{Tr}\left\{\Sigma_{X} + \Sigma_{X^{*}} - 2(\Sigma_{X}^{1/2}\Sigma_{X^{*}}\Sigma_{X}^{1/2})^{1/2}\right\}$$
$$= G^{2}(\Sigma_{X}, \Sigma_{X^{*}})$$
$$= (G^{*})^{2}.$$

Summarizing, \hat{X}_0 is an optimal perfect perceptual quality estimator. Note that (48) can be written as

$$\hat{X}_P = \left(1 - \frac{P}{G^*}\right)\hat{X}_0 + \frac{P}{G^*}X^*,$$

and by Theorem 3 we have that it is an optimal estimator.

Before proceeding to the proof of Theorem 4, let us introduce some auxiliary facts. Lemma 6. Let $\Sigma, \Sigma_{X^*} \in \mathbb{R}^{n \times n}$ be (symmetric) PSD matrices, and $\Sigma_X \in \mathbb{R}^{n \times n}$ is PD. Denote $T^* = \Sigma_X^{-\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}}$. Then:

- 1. Ker{ Σ } = Ker{ $\Sigma^{\frac{1}{2}}$ }.
- 2. Ker{ Σ_* } \subseteq Ker{ $\Sigma_X^{\frac{1}{2}}(\Sigma_X^{\frac{1}{2}}\Sigma_{X^*}\Sigma_X^{\frac{1}{2}})^{\frac{1}{2}}\Sigma_X^{-\frac{1}{2}}$ } = Ker{ $\Sigma_X T^*$ }, and we have $\Sigma_X T^* \Sigma_{X^*}^{\dagger} \Sigma_{X^*} = \Sigma_X T^*$.

Proof. (1) Let Σ be PSD. Since it is real and symmetric it is diagonalizable, $\Sigma = UDU^T$ and $\Sigma^{1/2} = UD^{1/2}U^T$ where D is a diagonal matrix with non-negative entries which are the eigenvalues of Σ . We have $\operatorname{Ker}\{D\} = \operatorname{Ker}\{D^{1/2}\} = \{v \in \mathbb{R}^n : v_i = 0 \forall i : D_{i,i} \neq 0\}$ and since U is full-rank, $\operatorname{Ker}\{\Sigma\} = \operatorname{Ker}\{\Sigma^{1/2}\} = U\operatorname{Ker}\{D\}.$

(2) Assume $\Sigma_{X^*}v = 0$. We have $(\Sigma_X^{1/2}\Sigma_{X^*}\Sigma_X^{1/2})\Sigma_X^{-1/2}v = 0$, implying that $\Sigma_X^{-1/2}v \in \text{Ker}\{(\Sigma_X^{1/2}\Sigma_{X^*}\Sigma_X^{1/2})\} = \text{Ker}\{(\Sigma_X^{1/2}\Sigma_{X^*}\Sigma_X^{1/2})^{1/2}\}$. The equality is true since $\Sigma_X^{1/2}\Sigma_{X^*}\Sigma_{X^*}^{1/2} = \Sigma_X^{1/2}\Sigma_{X^*}^{1/2}(\Sigma_X^{1/2}\Sigma_{X^*})^T$ is PSD, and we use (1). To conclude, we have

$$\Sigma_X T^* v = \Sigma_X^{1/2} (\Sigma_X^{1/2} \Sigma_{X^*} \Sigma_X^{1/2})^{1/2} \Sigma_X^{-1/2} v = 0 \Longrightarrow \operatorname{Ker} \{ \Sigma_{X^*} \} \subseteq \operatorname{Ker} \{ \Sigma_X T^* \}.$$

Recall now that $(I - \Sigma_{X^*}^{\dagger} \Sigma_{X^*})$ is a projection onto $\operatorname{Ker}\{\Sigma_{X^*}\}$. We have $\Sigma_X T^*(I - \Sigma_{X^*}^{\dagger} \Sigma_{X^*}) = 0$, yielding $\Sigma_X T^* \Sigma_{X^*}^{\dagger} \Sigma_{X^*} = \Sigma_X T^*$.

The following Lemma is a reminder of the Schur Complement and its properties.

Lemma 7. [Schur complement]. Let $\Sigma = \begin{bmatrix} A & B \\ B^T & C \end{bmatrix}$ be a symmetric matrix where A is PD. Then $\Sigma/A \triangleq C - B^T A^{-1}B$ is the Schur complement of Σ , and we have that Σ is PSD iff Σ/A is PSD.

We are now ready to prove Theorem 4.

Theorem. 4. Assume X and Y are zero-mean jointly Gaussian random vectors with $\Sigma_X, \Sigma_Y \succ 0$. Then for any $P \in [0, G^*]$, an estimator with perception index P and MSE D(P) can be constructed as

$$\hat{X}_{P} = \left(\left(1 - \frac{P}{G^{*}} \right) \Sigma_{X}^{\frac{1}{2}} \left(\Sigma_{X}^{\frac{1}{2}} \Sigma_{X^{*}} \Sigma_{X}^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_{X}^{-\frac{1}{2}} \Sigma_{X^{*}}^{\dagger} + \frac{P}{G^{*}} I \right) \Sigma_{XY} \Sigma_{Y}^{-1} Y + \left(1 - \frac{P}{G^{*}} \right) W, \quad (50)$$

where W is a zero-mean Gaussian noise with covariance $\Sigma_W = \Sigma_X^{1/2} (I - \Sigma_X^{1/2} T^* \Sigma_{X^*}^{\dagger} T^* \Sigma_X^{1/2}) \Sigma_X^{1/2}$, which is independent of Y, X.

Proof. We observe that (50) is a special case of (48), where $\Sigma_{\hat{X}_0 Y} = \Sigma_{Y \hat{X}_0}^T = \Sigma_X^{\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}} \Sigma_{X^*}^{\dagger} \Sigma_{XY}$. We now show that $\Sigma_{\hat{X}_0 Y}$ has the desired properties (46)-(47). By substitution,

$$\begin{split} \Sigma_{\hat{X}_0Y} \Sigma_Y^{-1} \Sigma_{YX} &= \Sigma_X^{\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}} \Sigma_{X^*}^{\dagger} \left(\Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \right) \\ &= \Sigma_X^{\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}} \Sigma_{X^*}^{\dagger} \Sigma_{X^*} \\ &= \Sigma_X^{\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}}. \end{split}$$

The last equality is due to Lemma 6.

Σ

Recall
$$\Sigma_{X^*}^{\dagger} \Sigma_{X^*} \Sigma_{X^*}^{\dagger} = \Sigma_{X^*}^{\dagger}$$
, and we denote $T^* = \Sigma_X^{-\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}} \right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}}$. We now have
 $\Sigma_{Y\hat{X}_0} \Sigma_X^{-1} \Sigma_{\hat{X}_0 Y} = \Sigma_{YX} \Sigma_{X^*}^{\dagger} T^* \Sigma_X \Sigma_X^{-1} \Sigma_X T^* \Sigma_{X^*}^{\dagger} \Sigma_{XY}$
 $= \Sigma_{YX} \Sigma_{X^*}^{\dagger} \Sigma_X^{-\frac{1}{2}} (\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}}) \Sigma_X^{-\frac{1}{2}} \Sigma_{X^*}^{\dagger} \Sigma_{XY}$
 $= \Sigma_{YX} \Sigma_{X^*}^{\dagger} \Sigma_X \Sigma_X^{\dagger} \Sigma_{X^*} \Sigma_{XY}$
 $= \Sigma_{YX} \Sigma_{X^*}^{\dagger} \Sigma_{XY} \Sigma_X^{\dagger} \Sigma_{XY}$

hence

$$Y - \Sigma_{Y\hat{X}_0} \Sigma_X^{-1} \Sigma_{\hat{X}_0 Y} = \Sigma_Y - \Sigma_{YX} \Sigma_{X^*}^{\dagger} \Sigma_{XY} = \Sigma_{Y|X^*} \succeq 0.$$
(51)

 \square

Since $\Sigma_X, \Sigma_Y \succ 0$, (51) is the Schur complement of $\begin{bmatrix} \Sigma_X & \Sigma_{\hat{X}_0 Y} \\ \Sigma_Y \hat{X}_0 & \Sigma_Y \end{bmatrix} \succeq 0$, yielding $\Sigma_W = \Sigma_X - \Sigma_{\hat{X}_0 Y} \Sigma_Y^{-1} \Sigma_{\hat{X}_0 Y}^T \succeq 0.$ (52)

Corollary 2 (Non-singular special case). In the case where Σ_{X^*} is invertible, $\Sigma_{\hat{X}_0Y} = \Sigma_X T^* \Sigma_{X^*}^{-1} \Sigma_{XY}$ in the proof of Theorem 4, and it is easy to see that the noise covariance is $\Sigma_W = 0$. In this case $\Sigma_{\hat{X}_0Y}$ is the unique solution to (46)-(47). This means that \hat{X}_0 (hence \hat{X}_P) is a deterministic function of Y.

Proof. We first show $\Sigma_W = 0$. Let $M_P = \Sigma_{\hat{X}_0 Y} = \Sigma_X T^* \Sigma_{X^*}^{-1} \Sigma_{XY}$, then

$$\begin{split} \Sigma_W &= \Sigma_X - M_P \Sigma_Y^{-1} M_P^T \\ &= \Sigma_X - \Sigma_X T^* \Sigma_{X^*}^{-1} \Sigma_{XY} \Sigma_Y^{-1} \Sigma_{YX} \Sigma_{X^*}^{-1} T^* \Sigma_X \\ &= \Sigma_X - \Sigma_X \Sigma_X^{-1/2} (\Sigma_X^{1/2} \Sigma_{X^*} \Sigma_X^{1/2})^{1/2} \underbrace{(\Sigma_X^{-1/2} \Sigma_{X^*}^{-1} \Sigma_X^{-1/2})}_{= (\Sigma_X^{1/2} \Sigma_{X^*} \Sigma_X^{1/2})^{-1}} (\Sigma_X^{1/2} \Sigma_X \Sigma_X^{-1/2} \Sigma_X \Sigma_X^{-1/2}) \\ &= \Sigma_X - \Sigma_X \Sigma_X^{-1/2} \Sigma_X^{-1/2} \Sigma_X = 0. \end{split}$$

Now, assume M is a solution to (46)-(47), then $M_{\Delta} = M_P - M$ satisfies $M_{\Delta} \Sigma_Y^{-1} \Sigma_{YX} = 0$ and

$$\Sigma_X - M\Sigma_Y^{-1}M^T =$$

$$\Sigma_X - [M_P\Sigma_Y^{-1}M_P^T + M_\Delta\Sigma_Y^{-1}M_\Delta^T - M_\Delta\Sigma_Y^{-1}M_P^T - M_P\Sigma_Y^{-1}M_\Delta^T] \succeq 0.$$

But, $M_{\Delta}\Sigma_Y^{-1}M_P^T = (M_{\Delta}\Sigma_Y^{-1}\Sigma_{YX})\Sigma_{X*}^{-1}T^*\Sigma_X = 0$ and $\Sigma_X - M_P\Sigma_Y^{-1}M_P^T = 0$, yielding $M_{\Delta}\Sigma_Y^{-1}M_{\Delta}^T \leq 0$. Since $M_{\Delta}\Sigma_Y^{-1}M_{\Delta}^T$ is PSD and Σ_Y^{-1} is PD, we conclude that $M_{\Delta} = 0$. \Box

C Relations with other divergences

While in Section 3 we focused our attention on the MSE – W_2 tradeoff, in this section we discuss the implications of our results on the DP tradeoff with other divergences. In particular, we show that when considering the MSE distortion, (8) establishes a lower bound on a class of DP functions. Note that at the point P = 0, the DP function coincides with (8) for all plausible divergences.

Let $d_p(\cdot, \cdot)$ be a divergence between probability measures, and let $D_{d_p}(P)$ be the DP function w.r.t. this divergence, given by (1), where MSE is used to measure distortion. Here, D(P) will denote $D_{W_2}(P)$, given by (8). We can now write, similarly to (14),

$$D_{d_p}(P) = D^* + \inf_{\substack{d_p(p_X, p_{\hat{X}}) \le P}} W_2^2(p_{\hat{X}}, p_{X^*}).$$
(53)

In cases where $d_p(p_X, p_{\hat{X}}) \ge W_2(p_X, p_{\hat{X}})$ for all $p_{\hat{X}}$, the constraint set $\{p_{\hat{X}} : d_p(p_X, p_{\hat{X}}) \le P\}$ is contained in $\{p_{\hat{X}} : W_2(p_X, p_{\hat{X}}) \le P\}$. Therefore, from (53), we have that

$$D_{d_p}(P) \ge D^* + \inf_{W_2(p_X, p_{\hat{X}}) \le P} W_2^2(p_{\hat{X}}, p_{X^*}) = D(P).$$
(54)

The last equality follows from (14), where the infimum is attained. The above result holds true for any Wasserstein distance W_p with $p \ge 2$, since when $p \ge q \ge 1$, we have that $W_p(p_X, p_{\hat{X}}) \ge W_q(p_X, p_{\hat{X}})$ for all $p_{\hat{X}}, p_X$ [20].

For the case of W_1 , let us denote $P_1^* \triangleq W_1(p_X, p_{X^*})$. From the triangle inequality, for every estimator satisfying $W_1(p_X, p_{\hat{X}}) \leq P$ we have

$$P_1^* \le W_1(p_X, p_{\hat{X}}) + W_1(p_{\hat{X}}, p_{X^*}) \le P + W_2(p_{\hat{X}}, p_{X^*}),$$

which together with (53) yields

$$D(P) \ge D_{W_1}(P) \ge D^* + [(P_1^* - P)_+]^2.$$
(55)

A similar result can be obtained for any W_p , $p \in [1, 2]$.

Note that when the support of p_X and $p_{\hat{X}}$ is compact with diameter R, we have $R^{(p-q)/p}W_q^{q/p}(p_{\hat{X}}, p_X) \ge W_p(p_{\hat{X}}, p_X)$ for any $p \ge q \ge 1$ [20]. Particularly, $R^{1/2}W_1^{1/2}(p_{\hat{X}}, p_X) \ge W_2(p_{\hat{X}}, p_X)$, and therefore $W_1(p_{\hat{X}}, p_X) \le P$ implies $W_2(p_{\hat{X}}, p_X) \le \sqrt{RP}$, so we have from (53) that

$$D_{W_1}(P) \ge D(\sqrt{RP}). \tag{56}$$

In the Gaussian setting where $X \sim \mathcal{N}(0, I)$, we have by Talagrand's Inequality [28, 19] $W_2(p_{\hat{X}}, p_X) \leq \sqrt{2d_{KL}(p_{\hat{X}} || p_X)}$ for $p_{\hat{X}} \ll p_X$, hence we obtain, similarly to (54)

$$D_{d_{KL}}(P) \ge D(\sqrt{2P}). \tag{57}$$

We summarize these results in Appendix F.

D Settings with commuting covariances

In many practical problems, covariance matrices may have the commutative relation $\Sigma_X \Sigma_{X^*} = \Sigma_{X^*} \Sigma_X$. This is the case, for example, of circulant or large Toeplitz matrices [9]. For natural images

Figure 5: A visual demonstration of SR image enhancement. X is a full-resolution reference image and Y is a $\times 4$ downsampled version of X. \hat{X} is a reconstruction of X based on Y.

this is a reasonable assumption since shift-invariance induces diagonalization by the Fourier basis [30].

In the Gaussian settings of Sec. 3.3, where Σ_X, Σ_{X^*} commute it is easy to see that the Gelbrich distance between them can be written as

$$G^* = G((\mu_X, \Sigma_X), (\mu_{X^*}, \Sigma_{X^*})) = \|\Sigma_X^{1/2} - \Sigma_{X^*}^{1/2}\|_F.$$

 $||A||_F = \sqrt{\operatorname{Tr} \{A^T A\}}$ is the Frobenius norm. This is due to the fact that $\Sigma_X^{1/2}, \Sigma_{X^*}^{1/2}$ also commute. In order to achieve $\mathbb{E}\left[||\hat{X}_0 - X^*||^2\right] = (G^*)^2$, an optimal perfect perceptual quality estimator has to satisfy (49) which now takes the form

$$\mathbb{E}\left[X^*\hat{X}_0^T\right] = \Sigma_X^{1/2} \Sigma_{X^*}^{1/2}.$$

It is easy to see that estimators obtained by \hat{X}_0, X^* using (15) are Gaussian with zero mean and covariance Σ_P , given by

$$\Sigma_P^{\frac{1}{2}} = \left(1 - \frac{P}{G^*}\right)\Sigma_X^{\frac{1}{2}} + \frac{P}{G^*}\Sigma_{X^*}^{\frac{1}{2}}.$$
(58)

Pay attention that since the roots commute, Σ_P commutes with Σ_X, Σ_{X^*} , and

$$\|\Sigma_X^{\frac{1}{2}} - \Sigma_P^{\frac{1}{2}}\|_F = P, \quad \|\Sigma_P^{\frac{1}{2}} - \Sigma_{X^*}^{\frac{1}{2}}\|_F = G^* - P.$$

This further reduces the geometry of the problem to the l^2 -distance between commuting matrices.

E Numerical illustration

E.1 Super-resolution problem

In super-resolution (SR) problems, the objective is to enhance the resolution of a given image. This setting can be viewed as an image reconstruction problem, where we assume X is an unknown image of the desired resolution, and the input to the algorithm is Y, a downsampled (degraded) version of X. The output of the algorithm is then $\hat{X} \sim p_{\hat{X}|Y}$, an estimation of X based on Y.

Figure 5 visually demonstrates this setting with a concrete example.

E.2 Simulation details

In Section 5 we construct an experimental setup, demonstrating our results. Figure 3 presents the evaluation of 13 super resolution algorithms on the BSD100 dataset, where we compare MSE distortion, and Gelbrich and FID perceptual indices. Low resolution images were obtained by $4 \times$ downsampling BSD100 images using a bicubic kernel.

For each algorithm, we acquire 100 RGB images (5000 for the explorable SR method) which are reconstructions of BSD100 images. To compute the Gelbrich index, we extract 9×9 patches from the RGB images, and then estimate

$$m_{\text{Alg}} = \frac{1}{N_{\text{patches}}} \sum_{i} p_i, \quad \Sigma_{\text{Alg}} = \frac{1}{N_{\text{patches}} - 1} (p_i - m_{\text{Alg}}) (p_i - m_{\text{Alg}})^T,$$

where p_i is the *i*-th patch (a 243-row vector) and $N_{\text{patches}} = 1, 643, 200$. We compute using (4)

$$MSE_{Alg} = \frac{1}{243 \times N_{\text{patches}}} \sum_{i} \|p_i^{Alg} - p_i^{BSD100}\|^2, \quad P_{Alg} = \sqrt{\frac{1}{243}} G\left((m_{BSD100}, \Sigma_{BSD100}), (m_{Alg}, \Sigma_{Alg})\right).$$

The stochastic explorable SR method [3] is evaluated using 50 different SR outputs for each input image, hence for this method $N_{\text{patches}} = 50 \times 1,643,200$.

FID values are calculated on 299×299 patches, where for the explorable SR method we use 40 different outputs for each input.

The estimators \hat{X}_t are constructed using per-pixel interpolation between EDSR and ESRGAN,

$$X_t = tX_{\text{EDSR}} + (1-t)X_{\text{ESRGAN}}.$$

E.3 Visual illustration

Here we present a visual comparison between SR methods and our constructed estimators, achieving roughly the same MSE but with a lower perception index. We also present EDSR, ESRGAN, the low-resolution input, and the ground-truth BSD100 images.

Figure 6: A visual comparison between SRGAN-VGG_{2,2} (RMSE: 18.08, P: 5.05), and $\hat{X}_{0.12}$ (18.14, 2.59).

Figure 7: A visual comparison between SRGAN-MSE (RMSE: 16.93, P: 5.85), and $\hat{X}_{0.3}$ (16.82, 4.32).

F Table of main results

For convenience, we summarize our results in the following Table.

Result	notation	setting		remarks
D-P	$D(\mathbf{P})$	$MSE-W_2$	$D(P) = D^* + [(P^* - P)_+]^2$	$P^* = W_2(p_X, p_{X^*})$
function		Gaussian	$D(P) = D^* + [(G^* - P)_+]^2$	$G^* = G(\Sigma_X, \Sigma_{X^*})$
Optimal	\hat{X}_P	$MSE-W_2$	$\left(1-\frac{P}{P^*}\right)\hat{X}_0+\frac{P}{P^*}X^*$	
estimators	Ар	Gaussian	$ \begin{pmatrix} \alpha \Sigma_X T^* \Sigma_{X^*}^{\dagger} + (1 - \alpha) I \end{pmatrix} X^* \\ + \alpha W $	$\alpha = \left(1 - \frac{P}{G^*}\right), X^* = \Sigma_{XY} \Sigma_Y^{-1} Y$ $T^* = \Sigma_X^{-\frac{1}{2}} \left(\Sigma_X^{\frac{1}{2}} \Sigma_{X^*} \Sigma_X^{\frac{1}{2}}\right)^{\frac{1}{2}} \Sigma_X^{-\frac{1}{2}}$ $W \sim \mathcal{N}(0, \Sigma_X - \Sigma_X T^* \Sigma_{X^*}^{\dagger} T^* \Sigma_X)$
		$MSE-W_2$	$D(P) \ge D^* + [(G^* - P)_+]^2$	
Lower		$MSE-W_p$	$D_{W_p}(P) \ge D^* + \left[(P^* - P)_+\right]^2$	$p \ge 2$
bounds		$MSE-W_1$	$D_{W_1}(P) \ge D^* + \left[(P_1^* - P)_+ \right]^2$	$P_1^* = W_1(p_X, p_{X^*})$
		$MSE-d_{KL}$	$D_{d_{KL}}(P) \ge D^* + \left[(P^* - \sqrt{2P})_+ \right]^2$	$X \sim \mathcal{N}(0, I)$

Table 1: Main results