
APPENDIX

In this section, we highlight the scale of our evaluations,
additional findings from stress-testing RT-Sketch on sketches
drawn by different individuals, and results from extending our
policy to accommodate sketch+language conditioning.

A. Experiments At A Glance
Cumulatively, our results encompass the following: H1

experiments comprise 270 rollouts (6 skills x 15 trials x 3
methods), H2 comprises 40 rollouts (2 skills x 5 trials x 4
sketch types), H3 comprises 30 rollouts (15 trials x 2 methods),
and H4 comprises 30 rollouts (15 trials x 2 methods). All
rollouts are cumulatively evaluated across 62 labelers (split
across H1-4).

B. Robustness to Input Sketches
To test whether RT-Sketch generalizes to sketches drawn

by different individuals, we collect 30 line sketches (drawn via
tracing) by 6 different annotators (whose sketches were never
seen during training) on 5 trials of the move near scenario.

We obtain the resulting rollouts produced by RT-Sketch with
these sketches as input. Across ratings, RT-Sketch achieves
high spatial alignment on sketches drawn by other annotators.
Notably, the performance between sketches drawn by different
annotators is similar, as well as the average across annotators
compared to original policy performance on our original
sketches (Fig. 4).

Fig. 4: Sketches Drawn by Other Annotators

C. Multimodal Goal Specification: Sketches + Language
We train a sketch-and-language conditioned model by mod-

ifying the RT-1 architecture to use FiLM along with Efficient-
Net layers to tokenize both visual input and language, and
concatenate them at the input. In H1 experiments (Fig. 3), we
evaluate all policies on the upright skill, where the robot must
place a can or bottle from a sideways orientation initially to an
upright orientation at a desired location on the table. While RT-
1 typically can reorient the can/bottle properly, it struggles to
place the item in the intended location on the table, as reflected
in this policy’s spatial imprecision in Table I. Meanwhile, RT-
Sketch struggles to reorient the can/bottle, since an imperfect
sketch may fail to specify the exact desired orientation, but
often places the can/bottle in the desired location. In Fig. 5,
we see that while language alone (i.e. ”place the can upright”)
can be ambiguous in terms of spatial placement, and a sketch

alone does not encourage reorientation, we empirically see
that the joint policy is better able to address the limitations
of either modality alone. A similar pattern emerges for pick
drawer (Fig. 5).

In addition to the goal alignment results reported in Fig. 3
which are based on average Likert ratings, we additionally
conduct a non-parametric Mann-Whitney U (MWU) test with
↵ = 0.05 for H1-4 to evaluate the differences in goal
alignment ratings across methods. This kind of statistical test
is suitable for ordinal data and does not make specific assump-
tions on the normality or variance of the data distributions.

D. H1 Findings
The H1 experiments aim to evaluate how RT-Sketch com-

pares to RT-1 and RT-Goal-Image on the standard RT-1 table-
top manipulation benchmark [8]. We conduct a MWU test
under the null hypothesis that there is no difference in the
goal alignment ratings from labelers across the methods. In
Appendix Table III and Appendix Table IV, we report the pairs
of methods for which the ratings yield a p-value of < 0.05,
rejecting the null hypothesis, along with their U -statistic.

TABLE III: H1: RT-1 Benchmark - Semantic Alignment

Skill Method Pair Stat. p-value
Move Near
Pick Drawer (RT-1, RT-Goal Img) 5298.0 1.49⇥ 10�3

Drawer Open (RT-1, RT-Goal Img) 4797.0 1.22⇥ 10�3

Drawer Close (RT-1, RT-Goal Img) 4089.5 2.01⇥ 10�8

Knock
Upright (RT-1, RT-Sketch) 16855.0 9.49⇥ 10�29

(RT-1, RT-Goal Img) 10052.0 2.80⇥ 10�18

(RT-Sketch, RT-Goal Img) 7210.5 5.62⇥ 10�7

TABLE IV: H1: RT-1 Benchmark - Spatial Alignment

Skill Method Pair Stat. p-value
Move Near
Pick Drawer
Drawer Open (RT-1, RT-Goal Img) 4761.5 4.59⇥ 10�3

Drawer Close (RT-1, RT-Sketch) 7780.0 1.82⇥ 10�5

(RT-1, RT-Goal Img) 4869.0 3.62⇥ 10�10

Knock
Upright (RT-1, RT-Sketch) 15085.0 1.55⇥ 10�14

(RT-1, RT-Goal Img) 10656.0 1.32⇥ 10�23

We conclude that for 5 of 6 and 4 of 6 skills, the null
hypothesis is confirmed for semantic and spatial alignment
ratings, respectively, suggesting that there is no dropoff in
performance with sketches compared to traditional modalities.
We do observe that for the upright skill, the rating differ-
ence between RT-Sketch and RT-1 is significant, and RT-
Sketch suffers a slight performance drop as re-orientation is
particularly difficult to infer from a sketch alone. However, we
have since addresses this challenge with the multimodal sketch
and language-conditioned policy which performs reorientation
better than sketches-alone and with more spatial precision than
language-alone (Appendix C).

The highlighted rows above indicate when the goal align-
ment ratings for RT-Sketch compared to either RT-1 or RT-
Goal-Image were found to be statistically significant. Notably,
there are very few such findings, in alignment with H1. This



Fig. 5: Multimodal Goal Specification: Sketch+Language: Empirically, we find that while a language-only policy can struggle with spatial precision, and a
sketch-only policy can fail to interpret intended object orientations from a sketch alone, a multimodal policy is better able to address the limitations of both.

is in accordance with what we observe Fig. 3: nearly no
noticeable difference in performance between methods for
most of the skills, and the slightly better performance of RT-
1 compared to RT-Sketch (and the slightly better performance
of RT-Sketch compared to RT-Goal-Image) for the upright
skill.

TABLE V: H2: Robustness to Sketch Specificity - Semantic Alignment

Pair Stat. p-value

Free-Hand, Line Sketch 1059.0 9.58⇥ 10�12

Free-Hand, Colored Sketch 960.0 2.54⇥ 10�10

Free-Hand, Sobel Edges 1099.5 9.16⇥ 10�11

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -

TABLE VI: H2: Robustness to Sketch Specificity - Spatial Alignment

Pair Stat. p-value

Free-Hand, Line Sketch 478.0 5.18⇥ 10�17

Free-Hand, Colored Sketch 567.5 3.49⇥ 10�13

Free-Hand, Sobel Edges 629.0 3.09⇥ 10�14

Line Sketch, Colored Sketch - -
Line Sketch, Sobel Edges - -

Colored Sketch, Sobel Edges - -

E. H2 Findings

For H2 experiments, we evaluate RT-Sketch’s robustness to
the input specificity of the sketch. We find that across the
4 sketch types, the only pairings which garner statistically
significant differences in ratings are free-hand sketches as
compared to other types (Appendix Table V and Appendix
Table VI). This is natural given the drastic perspective and
geometric differences of free-hand sketches compared to those
which are traced or derived from a transform of the goal image
itself (edge detection).

However, there are notably no statistically significant pair-
ings between line-sketches and even the most detailed type of
input representation we evaluate (Sobel Edges). This suggests
that RT-Sketch is indeed able to handle a range of input
specificity levels, and more importantly that RT-Sketch can
deal with representations that are minimal and imperfect.

TABLE VII: H3: Visual Distractors

Alignment Method Pair Stat. p-value

Semantic RT-Sketch, RT-Goal Img. 20622.5 4.62⇥ 10�8

Spatial RT-Sketch, RT-Goal Img. 22233.0 3.07⇥ 10�12

TABLE VIII: H4: Language Ambiguity

Alignment Method Pair Stat. p-value

Semantic RT-Sketch, RT-1 4756.0 1.34⇥ 10�24

Spatial RT-Sketch, RT-1 3680.5 3.53⇥ 10�30

F. H3 and H4 Findings
Finally, we conduct a MWU test over the semantic/spatial

goal alignment ratings between RT-Sketch and RT-Goal-
Image in the setting of visual distractors (H3, Appendix
Table VII) as well as RT-Sketch and RT-1 in the setting
of language ambiguity (H4, Appendix Table VIII). We hy-
pothesize that RT-Sketch does indeed achieve higher ratings
than baselines in these settings, as sketches are by nature 1)
minimal, which may enable emergent robustness to distractors,
and 2) agnostic to language.

We do find a statistically significant difference across se-
mantic and spatial ratings (highlighted in orange), concluding
that RT-Sketch is favorable to traditional modalities in these
particular settings.

G. Summary of Mann-Whitney U Findings
In short, the additional findings from conducting more

thorough MWU testing over H1-4 align very closely with what



we observe and report in Fig. 3 and suggest the merits of
sketches across a range of scenarios.

Learning a policy conditioned on view-invariant sketches
can be an initial step before moving to even more abstract
representations like schematics or diagrams for assembly tasks.
Additionally, alternative ways to condition on sketches is a
powerful avenue for future work. RT-Sketch currently only
considers goal observations in sketch space, but projecting all
observations to a sketch-based or latent space is another un-
derexplored but promising direction. Sketches are not without
their own limitations, however, as ambiguity due to omitted
details or poor quality sketches are persistent challenges. In
the future, we are excited to continue exploring multimodal
goal specification which can leverage the benefits of language,
sketches, and other modalities to jointly resolve ambiguity
from any single modality alone. This may include both end-to-
end approaches that can jointly condition on multiple modal-
ities, or hierarchical strategies that can leverage the spatial
awareness of sketches and the summarization capabilities of
VLMs to supplement ambiguous language with more informed
descriptions derived from visual observations of a sketch.
Lastly, exploring what combination of modalities humans
prefer to use when providing goals, and how best they capture
intent, is an important future direction not addressed in this
work.

Since the main bottleneck to training a sketch-to-action
policy like RT-Sketch is collecting a dataset of paired tra-
jectories and goal sketches, we first train an image-to-sketch
translation network T mapping image observations oi to
sketch representations gi, discussed in Section III. To train
T , we first take a pre-trained network for sketch-to-image
translation [25] trained on the ContourDrawing dataset of
paired images and edge-aligned sketches (Fig. 6). This dataset
contains L

(i) = 5 crowdsourced sketches per image for 1000
images. By pre-training on this dataset, we hope to embed a
strong prior in T and accelerate learning on our much smaller
dataset. Next, we finetune T on a dataset of 500 manually
drawn line sketches for RT-1 robot images. We visualize a
few examples of our manually sketched goals in Fig. 7 under
‘Line Drawings’.

Notably, while we only train T to map an image to a
black-and-white line sketch ĝi, we consider various augmen-
tations A on top of generated goals to simulate sketches with
varied colors, affine and perspective distortions, and levels
of detail. Fig. 7 visualizes a few of these augmentations,
such as automatically colorizing black-and-white sketches by
superimposing a blurred version of the original RGB image,
and treating an edge-detected version of the original image as
a generated sketch to simulate sketches with a lot of details.
We generate a dataset for training RT-Sketch by ‘sketchifying’
hind-sight relabeled goal images via T and A.

Although RT-Sketch is only trained on generated line
sketches, colorized line sketches, edge-detected images, and
goal images, we find that it is able to handle sketches of
even greater diversity. This includes non-edge aligned free-
hand sketches and sketches with color infills, like those shown

Fig. 6: ContourDrawing Dataset: We visualize 6 samples from the Contour-
Drawing Dataset from [25]. For each image, 5 separate annotators provide an
edge-aligned sketch of the scene by outlining on top of the original image. As
depicted, annotators are encouraged to preserve main contours of the scene,
but background details or fine-grained geometric details are often omitted. Li
et al. [25] then train an image-to-sketch translation network T with a loss
that encourages aligning with at least one of the given reference sketches.

in Fig. 7.

H. Alternate Image-to-Sketch Techniques
The choice of image-to-sketch technique we use is critical to

the overall success of the RT-Sketch pipeline. We experiment
with various other techniques before converging on the above
approach.

Recently, two recent works, CLIPAsso [44] and CLI-
PAScene [43] explore methods for automatically generating a
sketch from an image. These works pose sketch generation
as inferring the parameters of Bezier curves representing
”strokes” in order to produce a generated sketch with maximal
CLIP-similarity to a given input image. These methods per-
form a per-image optimization to generate a plausible sketch,
rather than a global batched operation across many images,
limiting their scalability. Additionally, they are fundamentally
more concerned with producing high-quality, aesthetically
pleasing sketches which capture a lot of extraneous details.

We, on the other hand, care about producing a minimal but
reasonable-quality sketch. The second technique we explore
is trying the pre-trained Photosketching GAN [25] on internet
data of paired images and sketches. However, this model
output does not capture object details well, likely due to not
having been trained on robot observations, and contains irrele-
vant sketch details. Finally, by finetuning this PhotoSketching
GAN on our own data, the outputs are much closer to real,
hand-drawn human sketches that capture salient object details
as minimally as possible. We visualize these differences in
Fig. 8.

To further interpret RT-Sketch’s performance, we provide
visualizations of the precision metrics and experimental roll-
outs. In Fig. 9, we visualize the degree of alignment RT-Sketch
achieves, as quantified by the pixelwise distance of object
centroids in achieved vs. given goal images. In Fig. 10, Fig. 11,
Fig. 12, and Fig. 14, we visualize each policy’s behavior for
H1, H2, H3 and H4, respectively. Fig. 13 visualizes the four



Fig. 7: Visual Goal Diversity: RT-Sketch is capable of handling a variety of visual goals at both train and test time. RT-Sketch is trained on generated and
augmented images like those shown on the right below ’Generated Goals’. But it can also interpret free-hand, line sketches, and colored sketches at test time
such as those on the left below ’Manually Sketched Goals’.

Fig. 8: Alternate Image-to-Sketch Techniques

tiers of difficulty in language ambiguity that we analyze for
H4.

While RT-Sketch is performant at several manipulation
benchmark skills, capable of handling different levels of
sketch detail, robust to visual distractors, and unaffected by
ambiguous language, it is not without failures and limitations.

In Fig. 16, we visualize the failure modes of RT-Sketch. One
failure mode we see with RT-Sketch is occasionally re-trying
excessively, as a result of trying to align the scene as closely
as possible. For instance, in the top row, Rollout Image 3, the
scene is already well-aligned, but RT-Sketch keeps shifting the
chip bag which causes some misalignment in terms of the chip
bag orientation. Still, this kind of failure is most common with
RT-Goal-Image (Table I), and is not nearly as frequent for RT-
Sketch. We posit that this could be due to the fact that sketches
enable high-level spatial reasoning without over-attending to
pixel-level details.

One consequence of spatial reasoning at such a high level,
though, is an occasional lack of precision. This is noticeable
when RT-Sketch orients items incorrectly (second row) or
positions them slightly off, possibly disturbing other items
in the scene (third row). This may be due to the fact that

sketches are inherently imperfect, which makes it difficult to
reason with such high precision.

Finally, we see that RT-Sketch occasionally manipulates the
wrong object (rows 4 and 5). Interestingly, we see that a
fairly frequent pattern of behavior is to manipulate the wrong
object (orange in row 4) to the right target location (near
green can in row 4). This may be due to the fact that the
sketch-generating GAN has occasionally hallucinated artifacts
or geometric details missing from the actual objects. Having
been trained on some examples like these, RT-Sketch can
mistakenly perceive the wrong object to be aligned with an
object drawn in the sketch. However, the sketch still indicates
the relative desired spatial positioning of objects in the scene,
so in this case RT-Sketch still attempts to align the incorrect
object with the proper place.

Finally, the least frequent failure mode is manipulating the
wrong object to the wrong target location (i.e. opening the
wrong drawer handle). This is most frequent when the input
is a free-hand sketch, and could be mitigated by increasing
sketch detail (Table II).



Fig. 9: Spatial Precision Visualization: We visualize four trials of RT-Sketch on the Move Near skill, along with the measured spatial precision in terms of
RMSE. To evaluate spatial precision, we have a human annotator annotate the frame that is visually most aligned, and then keypoints for the object that was
moved in this frame and in the provided reference goal image. For each of the four trials, we visualize the rollout frames until alignment is achieved, along
with the labeled object centroids and the offset in achieved vs. desired positions. The upper right example shows a failure of RT-Sketch in which the apple
is moved instead of the chip bag, incurring a high RMSE. These visualizations are intended to better contextualize the numbers from Table I.



Fig. 10: H1 Rollout Visualization: We visualize the performance of RT-1, RT-Sketch, and RT-Goal-Image on two skills from the RT-1 benchmark (upright
and knock). For each skill, we visualize the goal provided as input to each policy, along with the policy rollout. We see that for both skills, RT-1 obeys the
semantic task at hand by successfully placing the can upright or sideways, as intended. Meanwhile, RT-Sketch and RT-Goal-Image struggle with orienting the
can upright, but successfuly knock it sideways. Interestingly, both RT-Sketch and RT-Goal-Image are able to place the can in the desired location (disregarding
can orientation) whereas RT-1 does not pay attention to where in the scene the can should be placed. This is indicated by the discrepancy in position of the
can in the achieved versus goal images on the right. This trend best explains the anomalous performance of RT-Sketch and RT-Goal-Image in perceived Likert
ratings for the upright task (Fig. 3), but validates their comparably higher spatial precision compared to RT-1 across all benchmark skills (Table I).



Fig. 11: H2 Rollout Visualization: For the open drawer skill, we visualize four separate rollouts of RT-Sketch operating from different input types. Free-hand
sketches are drawn without outlining over the original image, such that they can contain marked perspective differences, partially obscured objects (drawer
handle), and roughly drawn object outlines. Line sketches are drawn on top of the original image using the sketching interface we present in Appendix Fig. 17.
Color sketches merely add color infills to the previous modality, and Sobel Edges represent an upper bound in terms of unrealistic sketch detail. We see that
RT-Sketch is able to successfully open the correct drawer for any sketch input except the free-hand sketch, without a noticeable performance gain or drop.
For the free-hand sketch, RT-Sketch still recognizes the need for opening a drawer, but the differences in sketch perspective and scale can occasionally cause
the policy to attend to the wrong drawer, as depicted.



Fig. 12: H3 Rollout Visualization: We visualize qualitative rollouts for RT-Sketch and RT-Goal-Image for 3 separate trials of the move near skill subject to
distractor objects. In Column 2, we highlight the relevant non-distractor objects that the policy must manipulate in order to achieve the given goal. In Trial
1, we see that RT-Sketch successfuly attends to the relevant objects and moves the blue chip bag near the coke can. Meanwhile, RT-Goal-Image is confused
about which blue object to manipulate, and picks up the blue pepsi can instead of the blue chip bag (A). In Trial 2, RT-Sketch successfully moves an apple
near the fruit on the left. A benefit of sketches is their ability to capture instance multimodality, as any of the fruits highlighted in Column 2 are valid options
to move, whereas this does not hold for an overspecified goal image. RT-Goal-Image erroneously picks up the green chip bag (B) instead of a fruit. Finally,
Trial 3 shows a failure for both policies. While RT-Sketch successfully infers that the green can must be moved near the red one, it accidentally knocks over
the red can (C) in the process. Meanwhile, RT-Goal-Image prematurely drops the green can and instead tries to pick the green chip bag (D).



Fig. 13: H4 Tiers of Difficulty: To test H4, we consider language instructions that are either ambiguous due the presence of multiple similar object instances
(T1), are somewhat out-of-distribution for RT-1 (T2), or are far out-of-distribution and difficult to specify concretely without lengthier descriptions (T3). Each
image represents the ground truth goal image paired with the task description.



Fig. 14: H4 Rollout Visualization (T1 as visualized in Fig. 13): One source of ambiguity in language descriptions is mentioning an object for which
there are multiple instances present. For example, we can easily illustrate three different desired placements of an orange in the drawer via a sketch, but an
ambiguous instruction cannot easily specify which orange is relevant to pick and place. In all rollouts, RT-Sketch successfully places the correct orange in the
drawer, while RT-1 either picks up the wrong object (A), fails to move to the place location (B), or knocks off one of the oranges (C). Although in this case,
the correct orange to manipulate could easily be specified with a spatial relation like pick up the h left/middle/right i orange, we show below in Appendix
Fig. 15 that this type of language is still out of the realm of RT-1’s semantic familiarity.



Fig. 15: H4 Rollout Visualization (T2-3 as visualized in Fig. 13): For T2, we consider language with spatial cues that intuitively should help the policy
disambiguate in scenarios like the oranges in Fig. 14. However, we find that RT-1 is not trained to handle such spatial references, and this kind of language
causes a large distribution shift leading to unwanted behavior. Thus, for the top rollout of trying to move the chip bag to the left where there is an existing
pile, RT-Sketch completes the skill without issues, but RT-1 attempts to open the drawer instead of even attempting to rearrange anything on the countertop
(A). For T3, we consider language goals that are even more abstract in interpretation, without explicit objects mentioned or spatial cues. Here, sketches are
advantageous in their ability to succinctly communicate goals (i.e. visual representation of a rainbow), whereas the corresponding language task string is far
too underspecified and OOD for the policy to handle (B).



Fig. 16: RT-Sketch Failure Modes



Fig. 17: Sketching UI: We design a custom sketching interface for manually collecting paired robot images and sketches with which to train T , and for
sketching goals for evaluation. The interface visualizes the current robot observation, and provides the ability to draw on a digital screen with a stylus. The
above visualization shows the color-sketching modality, which is a traced representation with color shading. The interface supports different colors and erasure,
along with either tracing over the image (line-sketching) or drawing free-form over a blank canvas (free-hand sketches). We note that intuitively, drawing on
top of the image is not an unreasonable assumption to make, since current agent observations are typically readily available compared to a goal image, for
instance. Additionally, the overlay is intended to make the sketching interface easy for the user to provide, without having to eyeball edges for the drawers or
handles blindly. This provides helpful guides for sketching and is an easy way to obtain sketches that more closely align with current observations for free.



Fig. 18: Assessment UI: For all skills and methods, we ask labelers to assess semantic and spatial alignment of the recorded rollout relative to the ground
truth semantic instruction and visual goal. We show the interface above, where labelers are randomly assigned to skills and methods (anonymized). The results
of these surveys are reported in Fig. 3.
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