
7 Appendix485

7.1 Algorithm486

Algorithm 1: Convolutional Visual Prompt
Input: Pretrained classifier F(·), OOD images x, Self-supervised objective function Ls(·),

Convolutional operator Conv(·), Convolutional kernel k, Learning rate η, Number of
iteration T

Output: Class prediction ŷ for adapted sample of x
1 Inference
2 # Initialize the kernel parameters
3 k0 ∼ U{(α, β)
4 # Calculate initial SSL loss
5 loss0 = Ls(x)
6 for t ∈ {1, ..., T} do
7 # Generate adapted samples
8 xt = x+ λ ∗ Conv(x, kt)
9 # Calculate SSL loss with adapted samples

10 losst = Ls(x
t)

11 # Update kernel parameters
12 kt+1 = kt + η ∂losst

∂kt

13 # Get optimal kernel parameters
14 k⋆ ← kT

15 if lossT > loss0 then
16 # Use the initial kernel parameters
17 k⋆ ← k0 ;
18 # Get final adapted samples
19 x⋆ = x+ λ ∗ Conv(x, k⋆)
20 return ŷ ← F(x⋆)

7.2 Baseline Details487

Here, we show the detail of the baselines that we compare with.488

• Standard: The baseline uses pre-trained model without adaptation. For CIFAR-10-C, the standard489

is trained with 50000 clean CIFAR-10 train dataset on WideResNet18 and ResNet. For ImageNet1K-490

C, the standard is trained with ∼1.2M clean ImageNet train dataset on ResNet50.491

• SVP: The self-supervised visual prompts attempt to reverse the adversarial attacks by modifying492

the input pixels with ℓp-norm perturbations, where the perturbations are optimized via contrastive493

loss [40]. For the patch setting, we setup the shape of VP as 32*32*3 for CIFAR-C and 224*224*3494

for all ImageNet OOD datasets. For the padding setting, we set the padding size as 1 for CIFAR-10-C495

and 15 for ImageNet OOD dataset. Take CIFAR data as example, we first initialize a mask with all496

zeros value with the shape 30*30*3 and set the pad value as 1 with padding size 1 so that the mask497

after padding is as the same shape of CIFAR data (32*32*3). Then, we multiply the mask with the498

VP to preserve only the VP located at the position we just pad with 1 value. We can further optimize499

the VP with mask by adding it with the corrupted samples.500

• BN[53]: The model adaptation method aims to adjust the BN statistics for every input batch during501

the test-time. It requires to adapt with single corruption type in every batch.502

• TTT [57]: The test-time training trains the model with an auxiliary SSL rotation task and leverages503

the rotation loss for model adaptation during the testing time. In TTT method, instead of adapting the504

whole model, they only adapt the last few layers of the model and freeze the parameters in the front505

layers.506

•MEMO: The model adaptation method proposed in [69] alters a single data point with different507

augmentations (ie., rotation, cropping, and color jitter,...etc), and the model parameters are adapted by508

minimizing the entropy of the model’s marginal output distribution across those augmented samples.509

14

• TENT [61]: The method adapts the model by minimizing the conditional entropy on batches. In510

our experiment, we evaluate TENT in episodic mode, which means the model parameter is reset to511

the initial state after every batch adaptation.512

7.3 Implementation details513

For the training part of SSL model, we set the training parameters with batch size as 64, training514

epoch as 200, and the learning rate (lr) as 0.001. The lr is decayed with a cosine annealing for each515

batch [37]. The transformations for contrastive learning are predefined. We augment the inputs with516

random resize crop, random flip, and random rotation in degree [-90, 90] for positive/negative pairs517

generation in every batch. The number of transformations for one sample is set as 3.518

For the test-time adaptation part, we set the range of parameter δ for VP. For the ℓ2-norm perturbations,519

the ϵ is [-8/255,8/255] and the step size is 2/255. We set the iteration number i either as 1 or 5, which520

means each component has 1 or 5 steps during PGD.521

For the convolutional visual prompts (CVP), Table 8 shows the kernel setting for different datasets.522

For the fixed initialization setting, a sharpen kernel is used at the beginning. For example if the kernel523

size is 3, we set up the sharpened kernel as [[0,-1, 0], [-1, 5, -1], [0, -1, 0]].524

CIFAR-10-C ImageNet-C,R,S,A
Kernel Size 3*3 3*3 / 5*5

λ [0.5, 1] [0.5, 3]
Update iters. 1, 5 (default), and 10
Initialization fixed / random

Table 8: parameter setting

• Number of Trainable Parameters: We compare the trainable parameters v.s. accuracy for different525

prompting methods. As Figure 6 shows, CVP contains less than 0.2% number of trainable parameters,526

compared to VP(patch).527

Figure 6

15

7.4 More Evaluation528

•We show more detailed results for CIFAR-10-C in Table 9 and 10. In Table 11, we further compare529

TTT [57], which is a test-time method with CVP.530

Standard BN Finetune VP CVP

patch append fixed (3*3)
w/o update

fixed (3*3)
w/ update

rand (3*3)
w/o update

rand (3*3)
w/ update

Gaussian Noise 19.90 24.51 19.26 20.07 19.92 23.11 23.50 24.59 26.27
Shot Noise 20.37 24.25 19.43 20.56 20.40 22.95 23.32 24.29 25.26

Impulse Noise 27.44 26.14 19.19 27.54 27.43 30.76 30.98 31.13 31.08
Defocus Blur 12.90 14.54 13.39 13.59 13.83 16.81 17.41 18.85 20.03
Motion Blur 23.26 19.95 27.67 30.50 26.02 29.21 30.03 30.37 31.89
Glass Blur 25.97 33.30 18.61 19.70 39.57 36.14 37.54 37.42 40.51
Zoom Blur 71.08 50.46 42.42 71.07 54.08 86.76 87.65 85.76 88.19
Brightness 89.38 71.47 61.03 89.39 77.25 89.37 89.39 89.25 89.31

Snow 71.21 49.73 39.95 71.52 72.29 71.23 71.44 71.17 71.52
Frost 74.83 58.40 46.35 74.93 48.66 74.79 74.81 74.69 74.90
Fog 45.69 42.45 32.96 46.52 82.95 50.08 51.42 49.64 51.65

Contrast 58.36 49.87 39.22 57.95 58.45 67.74 68.99 69.05 70.21
Elastic Transform 17.54 24.01 19.95 17.72 18.95 17.39 17.62 18.07 19.66

Pixelate 23.45 39.80 34.26 24.10 35.86 25.91 26.47 28.39 30.58
Jpeg Compression 45.06 31.37 26.42 45.65 31.37 43.99 44.44 40.74 43.43

Avg. Acc. 41.76 37.35 30.67 42.05 41.80 45.75 46.33 46.23 47.63
Avg. Error 58.24 62.65 69.33 57.95 58.20 54.25 53.67 53.77 52.37

Table 9: Comparison of the different prompting methods with CVP for every CIFAR-10-C corruption
type. The Standard model is WideResNet18. Number in bold shows the best performance.

Severity / Method Standard BN Finetune VP CVP

Patch Append fixed (3*3)
w/o update

fixed (3*3)
w/ update

rand. (3*3)
w/o update

rand. (3*3)
w/ update

S1 59.68 52.48 43.28 59.94 59.76 65.17 66.00 65.98 68.07
S2 47.88 43.18 34.72 48.26 47.94 52.73 53.42 53.41 54.73
S3 40.31 36.44 29.08 40.67 40.32 44.22 44.87 44.51 45.96
S4 32.75 29.49 24.66 32.94 32.75 36.20 36.74 36.56 37.79
S5 28.20 25.16 21.63 28.46 28.25 30.42 30.64 30.68 31.61

Avg. Acc. 41.76 37.35 30.67 42.05 41.80 45.75 46.33 46.23 47.63
Avg. Error 58.24 62.65 69.33 57.95 58.20 54.25 53.67 53.77 52.37
Avg Diff. - 4.41 11.09 -0.29 -0.04 -3.99 -4.57 -4.46 -5.87

Table 10: Comparison of the different adaptation baslines with CVP for every severity on CIFAR-10-
C. The Standard model is WideResNet18. Number in bold shows the best performance.

WideResNet18
Avg. Error (%)

Standard 58.24
VP (patch) 57.94 (-0.3)

CVP (rand. w/ update) 52.37 (-5.87)
TTT [61] 52.92 (-5.32)

TTT + CVP 53.07 (-5.17)

Table 11: TTT [57] result for CIFAR-10-C

16

•We show the detailed results for each corruption on ImageNet-C dataset.531

Standard Finetune BN Adapt VP CVP
patch append fixed 3*3 rand 3*3 fixed 5*5 rand 5*5

Gaussian Noise 80.00 78.85 79.43 79.44 79.99 78.49 78.16 78.47 78.75
Shot Noise 82.00 80.80 81.57 81.56 81.97 80.45 80.00 80.10 80.81

Impulse Noise 83.00 81.80 82.72 82.72 83.00 80.80 79.82 80.88 81.40
Defocus Blur 73.58 75.49 75.32 77.27 73.56 74.13 73.73 74.29 75.10
Motion Blur 90.95 79.85 92.38 80.18 77.96 89.99 89.31 89.14 88.60
Glass Blur 76.32 87.16 76.86 90.41 88.98 75.98 75.47 75.99 75.45
Zoom Blur 80.00 79.84 80.52 82.07 79.96 79.87 79.67 79.72 79.45

Snow 43.86 45.10 45.82 47.88 88.07 44.24 44.27 44.60 44.91
Frost 79.88 81.04 82.22 83.78 74.99 80.12 80.19 79.69 80.05
Fog 74.38 75.74 76.80 78.06 64.38 74.53 74.91 74.36 74.85

Brightness 78.25 79.90 81.23 84.99 47.95 78.78 78.49 78.83 78.91
Contrast 71.00 73.27 74.14 76.59 70.98 71.46 70.83 71.31 71.79

Elastic Transform 87.58 87.96 88.89 96.50 87.62 87.93 87.85 87.42 88.15
Pixelate 74.72 74.22 75.75 78.30 74.68 67.05 63.98 67.29 64.15

Jpeg Compression 77.00 75.47 74.85 81.29 76.99 74.41 73.46 74.05 74.26
mCE 76.83 77.10 77.90 80.07 76.74 75.88 75.34 75.74 75.77
Diff. 0.27 1.07 3.24 -0.09 -0.95 -1.49 -1.09 -1.06

Table 12: ImageNet-C results. Number in bold shows the best performance.

• Generalize to Cutout-and-Paste samples To justify that our method can be generalized to532

non-structured OOD, we do more experiments on other types of OOD samples, such as the Cutout-533

and-Paste samples. Here, we launch the experiment on the Waterbirds dataset, which is constructed534

by cropping out birds from images with "water" backgrounds in the Caltech-UCSD Birds-200-2011535

(CUB) dataset [59] and transferring them onto backgrounds from the Places dataset [70]. We follow536

the GitHub repo2 and choose the "Forest" as our new background to generate the samples. The537

training of SSL is based on the pre-trained ResNet34 backbone model for the original CUB dataset.538

The original CUB (200 classes) accuracy for the backbone ResNet34 is 75.34%. We compare our539

CVP with self-supervised VP and demonstrate that CVP is more effective on the Cutouted-CUB540

dataset. The following table shows our results. Our CVP improves the result upon Standard by 1.61541

points and VP by 1.3 points.542

Cutouted-CUB (200) Before Adapt VP (patch) CVP
Accuracy (%) 62.03 62.32 63.64
contrastive loss (Avg.) 2.78 2.71 2.52

Table 13: Performance on the Cutouted-CUB

2WaterBirds Datasethttps://github.com/kohpangwei/group_DRO

17

https://github.com/kohpangwei/group_DRO

7.5 Distance measurement with SWD and SSIM543

We do the quantitative measurement on CVP by using the Sliced Wasserstein Distance (SWD) and544

structural similarity index measure (SSIM). To calculate the distance between two input distributions545

via the Sliced Wasserstein Distance, we first obtain a group of marginal distributions from a high546

dimensional probability distribution via the linear projection, then calculate the p-Wasserstein Dis-547

tance for those marginal distributions. Here, we aim to measure the two input distributions: source548

domain distribution and target domain distribution (before/after adaptation). Table 14 and Figure 7549

shows the result of SWD on CIFAR-10-C with severity 1. On average, CVP achieves lower SWD550

after adaptation, which means the target distribution is closer to the source one after adaptation. The551

average SWD reduce by 0.7% after prompting.552

SWD (scale: 102) ↓ SSIM ↑
before after before after

Gaussian Noise 5.90 4.71 0.7242 0.7849
Shot Noise 6.08 4.93 0.7124 0.7676

Impulse Noise 6.23 5.26 0.7463 0.7764
Glass Blur 8.85 9.19 0.5873 0.5865

Defocus Blur 13.52 11.82 0.6031 0.6013
Zoom Blur 4.13 3.09 0.8726 0.8703

Motion Blur 7.68 5.57 0.6491 0.6459
Brightness 2.48 3.94 0.9702 0.9692

Snow 5.18 6.07 0.8258 0.8275
Frost 7.61 7.72 0.8025 0.8012
Fog 13.49 9.99 0.5840 0.5785

Contrast 15.39 11.09 0.7049 0.6997
Pixelate 3.09 4.56 0.8603 0.8669

Jpeg Compression 2.58 3.65 0.8681 0.8710
Elastic Transform 5.62 5.75 0.5272 0.5789

Avg. Mean 7.19 6.49 0.7539 0.7884
Avg. Std 4.05 2.79 0.1294 0.7260

Table 14: Results of Sliced Wasserstein Distance and Structural Similarity Index Measure on CIFAR-
10-C (Severity 1).

(a) Noise Group (b) Blur Group

(c) Weather Group (d) Digital Group

Figure 7: Violin Plot of SWD for different corruption groups on CIFAR-10-C. The left figure of each
subplot shows the SWD before adapting, and the right shows the SWD after adaptation

18

• Distribution changes after applying the proposed CVP553

In the main paper, Figure 2, we show the distribution changes in different corruption types and554

severity. Here, in Table 15, we show the distribution shifts after applying our CVP by calculating555

the average loss. In general, the distribution moves back to the original distribution. We show the556

SSL average loss (before adapt/after CVP adapt) for four corruption types on severity 1,3,5 for557

CIFAR10-C. The average SSL loss for the original CIFAR10 is 1.26. For every corruption we show558

here, the average SSL loss after adaptation is lower than the loss before adaptation.559

severity s1 s3 s5
Before /After Before /After Before /After

Gaussian noise 1.9 / 1.6 2.5 / 2.1 3.3 / 2.6
Defocus blur 3.2 / 2.9 3.4 / 2.8 3.7 / 3.1
Snow 3.1 / 3.0 3.8 / 3.3 3.9 / 3.5
Contrast 2.7 / 2.3 2.9 / 2.4 3.6 / 3.3

Table 15: Distribution changes on different corruption types.

19

7.6 The Effect of Different Prompt Designs560

We do analysis on different prompting methods, including original visual prompts with different561

norm-bound (ℓ2, ℓ∞), convolutional prompts, and their combinations (ℓ2 + conv., ℓ∞ + conv.). We562

show the error rate on different numbers of adapt iters for every prompting method from 0, 1, 5, to 10.563

To compare the results, we set up other parameters such as the epsilon ϵ as 8/255 for ℓ∞, 1 for ℓ2.564

As Figure 8 shows the error rate for different prompting methods, the convolutional prompt conv.565

and its combination with ℓ2 reduce the error rate, and the former one reduces more from 40.32% to566

36.08% when increasing the adapt iters. However, other prompting methods increase the error rate567

after prompting. To understand the risk of over-fitting for different prompting methods, Figure 4b568

shows the SSL loss curve v.s. performance on different prompting methods.569

Figure 8

• Training Cost v.s. Different Kernel Size: In Table 16, we evaluate different kernel sizes for CVP570

and empirically discover that increasing the kernel to a proper size can improve the performance571

slightly. We choose one corruption-type impulse noise under severity 4 and show the results. When572

increasing the kernel size, the optimization cost increases. For impulse noise, kernel size 7*7 achieves573

the best robust accuracy, yet the optimization cost is much higher.574

Kernel Size Accuracy (%) # of Trainable Params. Training Cost/Batch
3*3 16.22 9 0.67s
5*5 16.3 25 0.68s
7*7 16.62 49 1.24s
13*13 16.61 169 1.28s
21*21 16.52 441 1.29s
25*25 15.4 625 1.32s

Table 16

• Training time v.s. Number of Adapt Iteration In the main paper, Figure 4(b), we have shown the575

CVP trained under different adapt iters v.s. their performance. When increasing the number of adapt576

iters, the training time increases. The following shows the result of CIFAR10-C on gaussian noise577

type with severity 1. We compare the accuracy and per batch training time on several numbers of578

adapt iters (from 0 to 20). While adapting with a few epochs (epoch number 1), we empirically found579

that CVP has a larger performance gain than VP.580

of Adapt Iters 0 1 5 10 15 20
Cost/Batch 0.00s 0.17s 0.67s 1.29s 1,.92s 2.57s
CVP Acc.(%) 39.51 51.09 56.1 58.76 59.30 59.58

Table 17

20

• Low-rank Prompt Analysis581

In Table 18, we show the detailed results of low-rank prompt (LVP) on different severity (from 1582

to 5) for CIFAR-10-C. We set up the same rank as 3 for LVP and CVP. Our results show that the583

CVP is more effective than LVP when reversing natural corruption. In Figure 9, we further plot584

the averaged contrastive loss on different rank sizes for both LVP and CVP. On every corruption585

type, while increasing the rank size from 3 to 31, the loss curves of LVP consistently drop, which586

demonstrates the LVP is much more easier to overfit the contrastive loss.

Severity / Method Standard LVP CVP
s1 40.32 37.05 31.93
s2 52.12 48.83 45.27
s3 59.69 56.05 54.04
s4 67.25 63.42 62.21
s5 71.80 68.89 68.39

Avg. Error 58.24 54.85 52.37
Diff. -3.39 -5.87

Table 18

587

Figure 9

21

7.7 t-SNE analysis on different adaptation methods.588

In addition to performing analysis on single sample, we further conduct the t-SNE visualization589

for whole sample distribution on different baseline. For each type of corruption data, we extract590

the 1-dimensional logit features in the last layer of model and calculate the distance between them591

with respect to the predicted class labels. We compare our method with standard, MEMO, and592

MEMO + Ours. As Figure 10 shows, the original feature embedding shows low separability between593

different classes. On the other hand, our approach clearly discriminates the embedding feature, which594

demonstrates its robustness against distribution shifts.595

(a) Motion Blur

(b) Impulse Noise

Figure 10

7.8 Saliency map analysis on different corruption types596

To better understand how self-supervised visual prompts adapt to the corrupted inputs, we visualize597

the saliency map of different types of corruption. As Figure 11 shows, from left to right, the first row598

is the original, corrupted, and adapted samples; the second row shows their corresponding Grad-CAM599

with respect to the predicted labels. The red region in Grad-CAM shows where the model focuses on600

for target input. We empirically discover the heap map defocus on the target object for corrupted601

samples. However, after prompting, the red region of the adapted sample’s heap map is re-target602

on the similar region as original image, which demonstrates that the self-supervised visual prompts603

indeed improve the input adaptation and make the model refocus back on the correct regions.604

22

(a) Contrast (b) Gaussian Noise

(c) Fog (d) Impulse noise

(e) Brightness (f) Pixelate

Figure 11: Grad-CAM analysis on different types of corruption.

23

	Appendix
	Algorithm
	Baseline Details
	Implementation details
	More Evaluation
	Distance measurement with SWD and SSIM
	The Effect of Different Prompt Designs
	t-SNE analysis on different adaptation methods.
	Saliency map analysis on different corruption types

