Delayed Proofs

For easier reference, we copy the execution procedure and the general algorithm framework below.

Procedure 1: Execute $(G = (V, \mathcal{E}))$ Lines highlighted in blue are activated to compute the cost of a TPG, and can be omitted for the mere purpose of execution. ¹ Define a counter cost; 2 Function $INIT_{EXEC}(\mathcal{G})$ $3 \ \ \cos t \leftarrow 0;$ 4 Mark all vertices in $V_0 = \{v_0^i : i \in \mathcal{A}\}\$ as satisfied; 5 Mark all remaining $v \in (\mathcal{V} \setminus \mathcal{V}_0)$ as unsatisfied; 6 Function $\text{STEP}_{\text{EXEC}}(\mathcal{G}, i)$ 7 **if** $\forall k : v_k^i$ satisfied **then** 8 **return** NULL; 9 $cost \leftarrow cost + 1;$ 10 $v \leftarrow v_k^i : v_k^i$ unsatisfied and $\forall k' < k, v_{k'}^i$ satisfied; 11 **forall** $(u, v) \in \mathcal{E}$ do 12 \parallel **if** *u* unsatisfied then 13 \parallel \parallel return NULL 14 | return v 15 Function $\text{EXEC}(\mathcal{G})$ 16 | INIT $_{EXEC}(\mathcal{G});$ 17 while there exists unsatisfied vertex in $\mathcal V$ do 18 | Define a set $S \leftarrow \emptyset$; 19 **forall** agent $i \in \mathcal{A}$ do 20 \Box Add STEP_{EXEC} (\mathcal{G}, i) into S; 21 **forall** $v \in S$ do 22 **i** if $v \neq$ NULL then 23 \vert \vert \vert Mark v as satisfied; 24 return cost;

Proofs for Section Temporal Plan Graph

Lemma 1. Executing G encounters a deadlock if and only if there exists a cycle in \mathcal{G} .

Proof. Assuming that a deadlock is encountered in the tth iteration of the while-loop (on line 17 of Procedure 1). Let V' denote that set of all vertices that are unsatisfied, which is non-empty by the definition of deadlock. Assume towards contradiction that G is acyclic, then there exists a topological ordering (i.e. a linear ordering of its vertices such that for every directed edge (u, v) , u comes before v in the ordering) of \mathcal{V}' . In this case, \mathcal{S} must contain the first vertex v_{first} in the ordering of V' , because it satisfies both conditions in STEP_{EXEC}:

1. $v_{\text{first}} = \arg \min_k (v_k^i : \text{agent } i \in A, v_k^i \text{ is unsatisfied}),$ and 2. For all $(u, v_{\text{first}}) \in \mathcal{E}$, u is satisfied.

Algorithm 2: Replanning

HEURISTIC, TERMINATE, CYCLEDETECTION, and BRANCH are modules that will be specified later. X denotes some auxiliary information accompanying a TPG, whose format is defined by the set of modules.

This contradicts the deadlock condition that $S = \{NULL\}$.

Proposition 2 (Collision-Free). Let $\mathcal G$ be a TPG constructed from a MAPF solution. Assuming G is executed as in Procedure 1 and an agent i is moved to its kth location $l_kⁱ$ at timestep t iff vertex v_k^i is satisfied in the t^{th} iteration of the while-loop on line 17, any two agents i, j never collide.

This proposition is similar to lemma 4 in (Hönig et al. 2016) with slightly different terms. We include a proof for completeness.

Proof. Assume towards contradiction that i and j collide because they are at the same location at the same timestep t , i.e. after the t^{th} iteration, $v_k^i = \arg \max_k (v_k^i : v_k^i$ satisfied), $v_s^j = \arg \max_s (v_s^j : v_s^j \text{ satisfied})$, and $l_k^i = l_s^j$. Either edge (v_{k+1}^i, v_s^j) or (v_{s+1}^j, v_k^i) should be in \mathcal{E} . But $(v_{k+1}^i, v_s^j) \notin \mathcal{E}$ as otherwise v_s^j cannot be satisfied since v_{k+1}^i is unsatisfied; similarly $(v_{s+1}^j, v_k^i) \notin \mathcal{E}$ as otherwise v_k^i cannot be satisfied since v_{s+1}^j is unsatisfied. This shows a contradiction.

If they collide because i leaves a location at a timestep t , and j enters the same location at timestep t, then $l_{k-1}^i = l_s^j$ and vertices v_k^i and v_s^j are satisfied exactly in the t^{th} iteration of the loop. However, this is impossible since either (v_k^i, v_s^j) or (v_{s+1}^j, v_{k-1}^i) is in $\mathcal E$, but the out-going vertex in neither of these edges are satisfied before the t^{th} iteration. \Box **Corollary 3.** Let $\mathcal G$ be a collision-free TPG. If we replace an arbitrary Type 2 edge (v_{s+1}^j, v_k^i) in it with (v_{k+1}^i, v_s^j) , the TPG remains to be collision-free.

Proof. This is observed from the fact that the proof of the above proposition argues the non-existence of two pairs of edges $(v_{k+1}^i, v_s^j) - (v_{s+1}^j, v_k^i)$ and $(v_k^i, v_k^j s) - (v_{s+1}^j, v_{k-1}^i)$. Since in both pairs, the two edges are equal upon the replacement, the proof remains exactly the same after we perform an arbitrary replacement. П

Proposition 4. Let $\mathcal G$ be a TPG constructed from a MAPF solution P , the cost of G is no greater than the sum of travel time for agents following P.

We rely on the following lemma to prove this proposition.

Lemma A. If an arbitrary agent i is planned to move to location l_k^i at a time $t = t_k^i$ in P , then vertex v_k^i is either satisfied or can be satisfied in the tth iteration of the whileloop.

Proof (of Lemma A). We induct on t. When $t = 0$, this holds by the functionality of INT_{EXEC} . For $t > 0$, we consider the non-trivial case that the index k of v_k^i is non-zero. For the Type 1 edge of v_k^i , since $t_{k-1}^i \le t_k^i - 1 = t - 1$, v_{k-1}^i is satisfied by an inductive hypothesis. Let v_s^j be an arbitrary Type 2 in-neighbor of v_k^i , by construction of Type 2 edges, $t_{s-1}^j < t_k^i$, so $t_{s-1}^j \leq t-1.$ This shows that all in-neighbors of v_k^i must be satisfied after the $(t-1)$ th iteration, thus v_k^i can be satisfied in the tth iteration if it has not been satisfied yet.

Proof (of Proposition 4). Lemma A shows that if P plans an agent *i* to enter its goal location at time t_{zi}^i , then all vertices of *i* are satisfied after the (t_{zi}^i) th iteration, i.e. agent *i* contributes to cost by at most t_{zi}^{i} units. Therefore cost \leq Contributes to cost by at most t_{zi} times. Therefore $\cos t \le \sum_{i \in A} t_{zi}^i$, which is the sum of travel times of all agents in $\mathcal{P}.$ \Box

Corollary 5 (Deadlock-Free). If a TPG G is constructed from a MAPF solution P , then it is deadlock-free.

Proof. If G contains a deadlock, then its execution would enter the while-loop for infinitely many iterations, and in each iteration, *cost* strictly increases. Thus $cost = \infty$. Yet the sum of travel time of P is always finite, contradicting Proposition 16. \Box

Proofs for Section Switchable TPG

Theorem 6. Let \mathcal{G} be a switchable TPG constructed as in Construction 1, there always exists a finite-cost, collisionfree standard TPG that can be produced from \mathcal{G} .

Proof. One naive solution G_{native} is produced by fixing all switchable edges in G . G_{naive} has a finite cost (i.e. is deadlock-free) because by Corollary 5, an initial TPG \mathcal{G}_0 constructed from a MAPF solution is deadlock-free. And by Lemma 1, a TPG has a deadlock iff it contains a cycle, so it suffices to argue that step 2 and 3 in Construction 1 does not introduce a new cycle. This holds since step 2 has no

effect once we fix all switchable edges. Step 3 behaves as expanding a pre-existing edge (v_{k-1}^i, v_k^i) into a line of connecting edges. If a cycle exists in G_{native} , it either involves edges in this line or not. In the latter case, this cycle would exist exactly in \mathcal{G}_0 , which is impossible. In the former case, the entire line has to be contained in this cycle, in which case (v_{k-1}^i, v_k^i) along with the remaining component of this cycle would form a cycle in \mathcal{G}_0 , which is impossible.

Executing G_{naive} is collision-free because the exact same proof of Proposition 2 shows that two agents cannot collide if none of them is the delayed agent i or if the most-recently satisfied vertex of i is not a dummy vertex. So we may assume without loss of generality that agent i and j collide when *i* has already entered location l_{k-1}^i . However, such a collision is impossible since any vertex v_s^j for $j \neq i$ correcollision is impossible since any vertex v_s^j for $j \neq i$ corresponding to the same location cannot be satisfied before v_k^i is satisfied.

Proofs for Section Algorithm

Lemma 7. Let \mathcal{G}_{switch} be a switchable TPG and \mathcal{G} be an arbitrary standard TPG produced from \mathcal{G}_{switch} . The partial cost of \mathcal{G}_{switch} is no greater than the cost of $\mathcal{G}_{\text{}}$.

Proof. Let G_{red} be the reduced standard TPG of G_{switch} that contains only its non-switchable edges. Consider running Procedure 1 on G and G_{red} , respectively. Since an edge appears in G_{red} must also appear in G , we can inductive show that in any call to $STEP_{EXEC}$, if a vertex v can be marked as satisfied in G , then it can be marked as satisfied in G_{red} as well. Therefore the total timestep to satisfy all vertices in \mathcal{G}_{red} cannot exceed that in \mathcal{G} . П

Proofs for Section Graph-based Modules

Theorem 11. Given a TPG, compute the longest path from vertex v_0^i to vertex v_{zi}^i for each $i \in \mathcal{A}$. Taking the sum of lengths of all such longest paths, this equals the cost of this TPG.

Proof. We again refer back to Procedure 1. Fix a longest path from vertex v_0^i to vertex v_{zi}^i . We prove by induction that the distance from v_0^i to a vertex v_s^j on this longest path is equal to the number of iterations required in the whileloop (line 17) in Procedure 1 to satisfy v_k^i . In the base case, the distance from v_0^i to itself is indeed 0. In the inductive step, assuming v_s^j is satisfied in the $t - 1^{\text{th}}$ iteration, and the longest path from v_0^i to v_s^j is $t-1$. Then the next vertex $v_{s'}^{j'}$ s ′ on the longest path is satisfied in the tth iteration, because:

- #iterations $\geq t$ since v_s^j is a in-neighbor of $v_{s'}^{j'}$ $\frac{3}{s}$, which needs to be satisfied before $v_{s'}^{j'}$ $\frac{\jmath}{s'}$.
- #iterations $\leq t$ since otherwise there must be another in-neighbor of $v_{s'}^{j'}$ s' that is not yet satisfied in the $t-1$ th iteration, which is going to compose a longer path than the one we look at.

Therefore the cost computed by Procedure 1 which equals the sum of iterations for all agents to reach their goal vertex is exactly the sum of lengths of longest pathsП