Delayed Proofs

For easier reference, we copy the execution procedure and the general algorithm framework below.

Procedure 1: Execute $(\mathcal{G} = (\mathcal{V}, \mathcal{E}))$ Lines highlighted in blue are activated to compute the cost of a TPG, and can be omitted for the mere purpose of execution. 1 Define a counter *cost*; **2** Function $INIT_{EXEC}(\mathcal{G})$ $cost \leftarrow 0;$ 3 Mark all vertices in $\mathcal{V}_0 = \{v_0^i : i \in \mathcal{A}\}$ as 4 satisfied: Mark all remaining $v \in (\mathcal{V} \setminus \mathcal{V}_0)$ as unsatisfied; 5 6 Function $STEP_{EXEC}(\mathcal{G}, i)$ if $\forall k : v_k^i$ satisfied then 7 8 return NULL; 0 $cost \leftarrow cost + 1;$ $v \leftarrow v_k^i : v_k^i$ unsatisfied and $\forall k' < k, v_{k'}^i$ 10 satisfied; forall $(u, v) \in \mathcal{E}$ do 11 if *u* unsatisfied then 12 return NULL 13 return v 14 **Function** $Exec(\mathcal{G})$ 15 INIT_{EXEC}(\mathcal{G}); 16 while there exists unsatisfied vertex in \mathcal{V} do 17 18 Define a set $S \leftarrow \emptyset$; forall agent $i \in \mathcal{A}$ do 19 Add STEP_{EXEC}(\mathcal{G} , *i*) into \mathcal{S} ; 20 forall $v \in S$ do 21 if $v \neq \text{NULL}$ then 22 Mark v as satisfied; 23 return cost; 24

Proofs for Section Temporal Plan Graph

Lemma 1. Executing \mathcal{G} encounters a deadlock if and only if there exists a cycle in \mathcal{G} .

Proof. Assuming that a deadlock is encountered in the t^{th} iteration of the while-loop (on line 17 of Procedure 1). Let \mathcal{V}' denote that set of all vertices that are unsatisfied, which is non-empty by the definition of deadlock. Assume towards contradiction that \mathcal{G} is acyclic, then there exists a topological ordering (i.e. a linear ordering of its vertices such that for every directed edge (u, v), u comes before v in the ordering) of \mathcal{V}' . In this case, \mathcal{S} must contain the first vertex v_{first} in the ordering of \mathcal{V}' , because it satisfies both conditions in STEP_{EXEC}:

1. $v_{\text{first}} = \arg \min_k (v_k^i: \text{ agent } i \in A, v_k^i \text{ is unsatisfied})$, and 2. For all $(u, v_{\text{first}}) \in \mathcal{E}$, u is satisfied.

Algorithm 2: Replanning

HEURISTIC, TERMINATE, CYCLEDETECTION, and BRANCH are modules that will be specified later. \mathcal{X} denotes some auxiliary information accompanying a TPG, whose format is defined by the set of modules.

_	, ,
	Input: TPG $\mathcal{G}_{root} = (\mathcal{V}, \mathcal{E}_1, (\mathcal{S}_{\mathcal{E}2}, \mathcal{N}_{\mathcal{E}2}))$ Output: TPG \mathcal{G}_{result}
1	Initialize an empty priority queue Q ;
2	$h_{\text{root}} \leftarrow \text{HEURISTIC}(\mathcal{G}_{\text{root}}, \mathcal{X}_{init});$
3	$\mathcal{Q}.push((\mathcal{G}_{root}, \mathcal{X}_{init}), 0, h_{root});$
4	while Q is not empty do
5	$((\mathcal{G},\mathcal{X}),g,h) \leftarrow \mathcal{Q}.pop();$
6	$(g', \mathcal{X}', (v_k^i, v_s^j)) \leftarrow \text{BRANCH}(\mathcal{G}, \mathcal{X});$
7	if $TERMINATE(\mathcal{G}, \mathcal{X}')$ then
8	fix all edges in $\mathcal{S}_{\mathcal{E}2}$ of \mathcal{G} ;
9	return \mathcal{G} ;
10	$\mathcal{G}_{\mathrm{f}} \leftarrow fix(\mathcal{G}', (v_k^i, v_s^j));$
11	if not CYCLEDETECTION($\mathcal{G}_{f}, (v_{k}^{i}, v_{s}^{j})$) then
12	$h_f \leftarrow \text{HEURISTIC}(\mathcal{G}_{\mathrm{f}}, \mathcal{X}');$
13	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
14	$\mathcal{G}_{\mathbf{r}} \leftarrow reverse(\mathcal{G}', (v_k^i, v_s^j));$
15	if not CYCLEDETECTION($\mathcal{G}_{r}, (v_{s+1}^{j}, v_{k}^{i})$) then
16	$h_f \leftarrow \text{HEURISTIC}(\mathcal{G}_f, \mathcal{X}');$
17	$ \qquad \qquad$
18	throw exception "No solution found";

This contradicts the deadlock condition that $S = \{NULL\}$.

Proposition 2 (Collision-Free). Let \mathcal{G} be a TPG constructed from a MAPF solution. Assuming \mathcal{G} is executed as in Procedure 1 and an agent *i* is moved to its k^{th} location l_k^i at timestep *t* iff vertex v_k^i is satisfied in the *t*th iteration of the while-loop on line 17, any two agents *i*, *j* never collide.

This proposition is similar to lemma 4 in (Hönig et al. 2016) with slightly different terms. We include a proof for completeness.

Proof. Assume towards contradiction that i and j collide because they are at the same location at the same timestep t, i.e. after the t^{th} iteration, $v_k^i = \arg \max_k (v_k^i : v_k^i \text{ satisfied})$, $v_s^j = \arg \max_s (v_s^j : v_s^j \text{ satisfied})$, and $l_k^i = l_s^j$. Either edge (v_{k+1}^i, v_s^j) or (v_{s+1}^j, v_k^i) should be in \mathcal{E} . But $(v_{k+1}^i, v_s^j) \notin \mathcal{E}$ as otherwise v_s^j cannot be satisfied since v_{k+1}^i is unsatisfied; similarly $(v_{s+1}^j, v_k^i) \notin \mathcal{E}$ as otherwise v_{s+1}^i is unsatisfied. This shows a contradiction.

If they collide because *i* leaves a location at a timestep *t*, and *j* enters the same location at timestep *t*, then $l_{k-1}^i = l_s^j$ and vertices v_k^i and v_s^j are satisfied exactly in the t^{th} iteration of the loop. However, this is impossible since either (v_k^i, v_s^j) or (v_{s+1}^j, v_{k-1}^i) is in \mathcal{E} , but the out-going vertex in neither of these edges are satisfied before the t^{th} iteration. **Corollary 3.** Let \mathcal{G} be a collision-free TPG. If we replace an arbitrary Type 2 edge (v_{s+1}^j, v_k^i) in it with (v_{k+1}^i, v_s^j) , the TPG remains to be collision-free.

Proof. This is observed from the fact that the proof of the above proposition argues the non-existence of two pairs of edges $(v_{k+1}^i, v_s^j) - (v_{s+1}^j, v_k^i)$ and $(v_k^i, v_k^j s) - (v_{s+1}^j, v_{k-1}^i)$. Since in both pairs, the two edges are equal upon the replacement, the proof remains exactly the same after we perform an arbitrary replacement.

Proposition 4. Let \mathcal{G} be a TPG constructed from a MAPF solution \mathcal{P} , the cost of \mathcal{G} is no greater than the sum of travel time for agents following \mathcal{P} .

We rely on the following lemma to prove this proposition.

Lemma A. If an arbitrary agent *i* is planned to move to location l_k^i at a time $t = t_k^i$ in \mathcal{P} , then vertex v_k^i is either satisfied or can be satisfied in the t^{th} iteration of the while-loop.

Proof (of Lemma A). We induct on t. When t = 0, this holds by the functionality of $INIT_{EXEC}$. For t > 0, we consider the non-trivial case that the index k of v_k^i is non-zero. For the Type 1 edge of v_k^i , since $t_{k-1}^i \le t_k^i - 1 = t - 1$, v_{k-1}^i is satisfied by an inductive hypothesis. Let v_s^j be an arbitrary Type 2 in-neighbor of v_k^i , by construction of Type 2 edges, $t_{s-1}^j < t_k^i$, so $t_{s-1}^j \le t - 1$. This shows that all in-neighbors of v_k^i must be satisfied after the $(t - 1)^{\text{th}}$ iteration, thus v_k^i can be satisfied in the t^{th} iteration if it has not been satisfied yet.

Proof (of Proposition 4). Lemma A shows that if \mathcal{P} plans an agent *i* to enter its goal location at time t_{zi}^i , then all vertices of *i* are satisfied after the $(t_{zi}^i)^{\text{th}}$ iteration, i.e. agent *i* contributes to *cost* by at most t_{zi}^i units. Therefore *cost* $\leq \sum_{i \in \mathcal{A}} t_{zi}^i$, which is the sum of travel times of all agents in \mathcal{P} . \Box

Corollary 5 (Deadlock-Free). If a TPG \mathcal{G} is constructed from a MAPF solution \mathcal{P} , then it is deadlock-free.

Proof. If \mathcal{G} contains a deadlock, then its execution would enter the while-loop for infinitely many iterations, and in each iteration, *cost* strictly increases. Thus $cost = \infty$. Yet the sum of travel time of \mathcal{P} is always finite, contradicting Proposition 16.

Proofs for Section Switchable TPG

Theorem 6. Let \mathcal{G} be a switchable TPG constructed as in Construction 1, there always exists a finite-cost, collision-free standard TPG that can be produced from \mathcal{G} .

Proof. One naive solution \mathcal{G}_{naive} is produced by *fixing* all switchable edges in \mathcal{G} . \mathcal{G}_{naive} has a finite cost (i.e. is deadlock-free) because by Corollary 5, an initial TPG \mathcal{G}_0 constructed from a MAPF solution is deadlock-free. And by Lemma 1, a TPG has a deadlock iff it contains a cycle, so it suffices to argue that step 2 and 3 in Construction 1 does not introduce a new cycle. This holds since step 2 has no

effect once we fix all switchable edges. Step 3 behaves as expanding a pre-existing edge (v_{k-1}^i, v_k^i) into a line of connecting edges. If a cycle exists in \mathcal{G}_{naive} , it either involves edges in this line or not. In the latter case, this cycle would exist exactly in \mathcal{G}_0 , which is impossible. In the former case, the entire line has to be contained in this cycle, in which case (v_{k-1}^i, v_k^i) along with the remaining component of this cycle would form a cycle in \mathcal{G}_0 , which is impossible.

Executing \mathcal{G}_{naive} is collision-free because the exact same proof of Proposition 2 shows that two agents cannot collide if none of them is the delayed agent *i* or if the most-recently satisfied vertex of *i* is not a dummy vertex. So we may assume without loss of generality that agent *i* and *j* collide when *i* has already entered location l_{k-1}^i . However, such a collision is impossible since any vertex v_s^j for $j \neq i$ corresponding to the same location cannot be satisfied before v_k^i is satisfied.

Proofs for Section Algorithm

Lemma 7. Let \mathcal{G}_{switch} be a switchable TPG and \mathcal{G} be an arbitrary standard TPG produced from \mathcal{G}_{switch} . The partial cost of \mathcal{G}_{switch} is no greater than the cost of \mathcal{G} .

Proof. Let \mathcal{G}_{red} be the reduced standard TPG of \mathcal{G}_{switch} that contains only its non-switchable edges. Consider running Procedure 1 on \mathcal{G} and \mathcal{G}_{red} , respectively. Since an edge appears in \mathcal{G}_{red} must also appear in \mathcal{G} , we can inductive show that in any call to STEP_{EXEC}, if a vertex v can be marked as satisfied in \mathcal{G} , then it can be marked as satisfied in \mathcal{G}_{red} as well. Therefore the total timestep to satisfy all vertices in \mathcal{G}_{red} cannot exceed that in \mathcal{G} .

Proofs for Section Graph-based Modules

Theorem 11. Given a TPG, compute the longest path from vertex v_0^i to vertex v_{zi}^i for each $i \in \mathcal{A}$. Taking the sum of lengths of all such longest paths, this equals the cost of this TPG.

Proof. We again refer back to Procedure 1. Fix a longest path from vertex v_0^i to vertex v_{zi}^i . We prove by induction that the distance from v_0^i to a vertex v_s^j on this longest path is equal to the number of iterations required in the while-loop (line 17) in Procedure 1 to satisfy v_k^i . In the base case, the distance from v_0^i to itself is indeed 0. In the inductive step, assuming v_s^j is satisfied in the t - 1th iteration, and the longest path from v_0^i to v_s^j is t - 1. Then the next vertex $v_{s'}^{j'}$ on the longest path is satisfied in the t^{th} iteration, because:

- #iterations ≥ t since v^j_s is a in-neighbor of v^{j'}_{s'} which needs to be satisfied before v^{j'}_{s'}.
- #iterations $\leq t$ since otherwise there must be another in-neighbor of $v_{s'}^{j'}$ that is not yet satisfied in the $t - 1^{\text{th}}$ iteration, which is going to compose a longer path than the one we look at.

Therefore the cost computed by Procedure 1 which equals the sum of iterations for all agents to reach their goal vertex is exactly the sum of lengths of longest paths \Box