
Delayed Proofs
For easier reference, we copy the execution procedure and
the general algorithm framework below.

Procedure 1: Execute (G = (V, E))
Lines highlighted in blue are activated to compute
the cost of a TPG, and can be omitted for the mere
purpose of execution.

1 Define a counter cost;
2 Function INITEXEC(G)
3 cost← 0;
4 Mark all vertices in V0 = {vi0 : i ∈ A} as

satisfied;
5 Mark all remaining v ∈ (V \ V0) as unsatisfied;

6 Function STEPEXEC(G, i)
7 if ∀k : vik satisfied then
8 return NULL;
9 cost← cost+ 1;

10 v ← vik : vik unsatisfied and ∀k′ < k, vik′

satisfied;
11 forall (u, v) ∈ E do
12 if u unsatisfied then
13 return NULL

14 return v

15 Function EXEC(G)
16 INITEXEC(G);
17 while there exists unsatisfied vertex in V do
18 Define a set S ← ∅;
19 forall agent i ∈ A do
20 Add STEPEXEC(G, i) into S;
21 forall v ∈ S do
22 if v ̸= NULL then
23 Mark v as satisfied;

24 return cost;

Proofs for Section Temporal Plan Graph
Lemma 1. Executing G encounters a deadlock if and only
if there exists a cycle in G.

Proof. Assuming that a deadlock is encountered in the tth

iteration of the while-loop (on line 17 of Procedure 1). Let
V ′ denote that set of all vertices that are unsatisfied, which
is non-empty by the definition of deadlock. Assume towards
contradiction that G is acyclic, then there exists a topolog-
ical ordering (i.e. a linear ordering of its vertices such that
for every directed edge (u, v), u comes before v in the order-
ing) of V ′. In this case, S must contain the first vertex vfirst
in the ordering of V ′, because it satisfies both conditions in
STEPEXEC:

1. vfirst = argmink(v
i
k: agent i ∈ A, vik is unsatisfied), and

2. For all (u, vfirst) ∈ E , u is satisfied.

Algorithm 2: Replanning
HEURISTIC, TERMINATE, CYCLEDETECTION, and
BRANCH are modules that will be specified later. X
denotes some auxiliary information accompanying a
TPG, whose format is defined by the set of modules.

Input: TPG Groot = (V, E1, (SE2,NE2))
Output: TPG Gresult

1 Initialize an empty priority queue Q;
2 hroot ← HEURISTIC(Groot,Xinit);
3 Q.push((Groot,Xinit), 0, hroot);

4 while Q is not empty do
5 ((G,X ), g, h)← Q.pop();
6 (g′,X ′, (vik, v

j
s))← BRANCH(G,X );

7 if TERMINATE(G,X ′) then
8 fix all edges in SE2 of G;
9 return G;

10 Gf ← fix(G′, (vik, vjs));
11 if not CYCLEDETECTION(Gf, (vik, v

j
s)) then

12 hf ← HEURISTIC(Gf,X ′);
13 Q.push((Gf,X ′), g + g′, hf );

14 Gr ← reverse(G′, (vik, vjs));
15 if not CYCLEDETECTION(Gr, (v

j
s+1, v

i
k)) then

16 hf ← HEURISTIC(Gf,X ′);
17 Q.push(Gr,X ′), g + g′, hr);

18 throw exception “No solution found”;

This contradicts the deadlock condition that S = {NULL}.

Proposition 2 (Collision-Free). Let G be a TPG constructed
from a MAPF solution. Assuming G is executed as in Pro-
cedure 1 and an agent i is moved to its kth location lik at
timestep t iff vertex vik is satisfied in the tth iteration of the
while-loop on line 17, any two agents i, j never collide.

This proposition is similar to lemma 4 in (Hönig et al.
2016) with slightly different terms. We include a proof for
completeness.

Proof. Assume towards contradiction that i and j collide be-
cause they are at the same location at the same timestep t,
i.e. after the tth iteration, vik = argmaxk(v

i
k : vik satisfied),

vjs = argmaxs(v
j
s : vjs satisfied), and lik = ljs. Either edge

(vik+1, v
j
s) or (vjs+1, v

i
k) should be in E . But (vik+1, v

j
s) /∈ E

as otherwise vjs cannot be satisfied since vik+1 is unsatisfied;
similarly (vjs+1, v

i
k) /∈ E as otherwise vik cannot be satisfied

since vjs+1 is unsatisfied. This shows a contradiction.
If they collide because i leaves a location at a timestep t,

and j enters the same location at timestep t, then lik−1 = ljs
and vertices vik and vjs are satisfied exactly in the tth iteration
of the loop. However, this is impossible since either (vik, v

j
s)

or (vjs+1, v
i
k−1) is in E , but the out-going vertex in neither of

these edges are satisfied before the tth iteration.



Corollary 3. Let G be a collision-free TPG. If we replace
an arbitrary Type 2 edge (vjs+1, v

i
k) in it with (vik+1, v

j
s), the

TPG remains to be collision-free.

Proof. This is observed from the fact that the proof of the
above proposition argues the non-existence of two pairs of
edges (vik+1, v

j
s)− (vjs+1, v

i
k) and (vik, v

j
ks)− (vjs+1, v

i
k−1).

Since in both pairs, the two edges are equal upon the replace-
ment, the proof remains exactly the same after we perform
an arbitrary replacement.

Proposition 4. Let G be a TPG constructed from a MAPF
solution P , the cost of G is no greater than the sum of travel
time for agents following P .

We rely on the following lemma to prove this proposition.

Lemma A. If an arbitrary agent i is planned to move to
location lik at a time t = tik in P , then vertex vik is either
satisfied or can be satisfied in the tth iteration of the while-
loop.

Proof (of Lemma A). We induct on t. When t = 0, this holds
by the functionality of INITEXEC. For t > 0, we consider the
non-trivial case that the index k of vik is non-zero. For the
Type 1 edge of vik, since tik−1 ≤ tik − 1 = t − 1, vik−1 is
satisfied by an inductive hypothesis. Let vjs be an arbitrary
Type 2 in-neighbor of vik, by construction of Type 2 edges,
tjs−1 < tik, so tjs−1 ≤ t− 1. This shows that all in-neighbors
of vik must be satisfied after the (t − 1)th iteration, thus vik
can be satisfied in the tth iteration if it has not been satisfied
yet.

Proof (of Proposition 4). Lemma A shows that if P plans
an agent i to enter its goal location at time tizi, then all ver-
tices of i are satisfied after the (tizi)

th iteration, i.e. agent i
contributes to cost by at most tizi units. Therefore cost ≤∑

i∈A tizi, which is the sum of travel times of all agents in
P .

Corollary 5 (Deadlock-Free). If a TPG G is constructed
from a MAPF solution P , then it is deadlock-free.

Proof. If G contains a deadlock, then its execution would
enter the while-loop for infinitely many iterations, and in
each iteration, cost strictly increases. Thus cost = ∞. Yet
the sum of travel time of P is always finite, contradicting
Proposition 16.

Proofs for Section Switchable TPG
Theorem 6. Let G be a switchable TPG constructed as in
Construction 1, there always exists a finite-cost, collision-
free standard TPG that can be produced from G.

Proof. One naive solution Gnaive is produced by fixing
all switchable edges in G. Gnaive has a finite cost (i.e. is
deadlock-free) because by Corollary 5, an initial TPG G0
constructed from a MAPF solution is deadlock-free. And by
Lemma 1, a TPG has a deadlock iff it contains a cycle, so
it suffices to argue that step 2 and 3 in Construction 1 does
not introduce a new cycle. This holds since step 2 has no

effect once we fix all switchable edges. Step 3 behaves as
expanding a pre-existing edge (vik−1, v

i
k) into a line of con-

necting edges. If a cycle exists in Gnaive, it either involves
edges in this line or not. In the latter case, this cycle would
exist exactly in G0, which is impossible. In the former case,
the entire line has to be contained in this cycle, in which case
(vik−1, v

i
k) along with the remaining component of this cycle

would form a cycle in G0, which is impossible.
Executing Gnaive is collision-free because the exact same

proof of Proposition 2 shows that two agents cannot collide
if none of them is the delayed agent i or if the most-recently
satisfied vertex of i is not a dummy vertex. So we may as-
sume without loss of generality that agent i and j collide
when i has already entered location lik−1. However, such a
collision is impossible since any vertex vjs for j ̸= i corre-
sponding to the same location cannot be satisfied before vik
is satisfied.

Proofs for Section Algorithm
Lemma 7. Let Gswitch be a switchable TPG and G be an
arbitrary standard TPG produced from Gswitch. The partial
cost of Gswitch is no greater than the cost of G.

Proof. Let Gred be the reduced standard TPG of Gswitch that
contains only its non-switchable edges. Consider running
Procedure 1 on G and Gred, respectively. Since an edge ap-
pears in Gred must also appear in G, we can inductive show
that in any call to STEPEXEC, if a vertex v can be marked as
satisfied in G, then it can be marked as satisfied in Gred as
well. Therefore the total timestep to satisfy all vertices in
Gred cannot exceed that in G.

Proofs for Section Graph-based Modules
Theorem 11. Given a TPG, compute the longest path from
vertex vi0 to vertex vizi for each i ∈ A. Taking the sum of
lengths of all such longest paths, this equals the cost of this
TPG.

Proof. We again refer back to Procedure 1. Fix a longest
path from vertex vi0 to vertex vizi. We prove by induction
that the distance from vi0 to a vertex vjs on this longest path
is equal to the number of iterations required in the while-
loop (line 17) in Procedure 1 to satisfy vik. In the base case,
the distance from vi0 to itself is indeed 0. In the inductive
step, assuming vjs is satisfied in the t− 1th iteration, and the
longest path from vi0 to vjs is t− 1. Then the next vertex vj

′

s′

on the longest path is satisfied in the tth iteration, because:

• #iterations ≥ t since vjs is a in-neighbor of vj
′

s′ which
needs to be satisfied before vj

′

s′ .
• #iterations ≤ t since otherwise there must be another

in-neighbor of vj
′

s′ that is not yet satisfied in the t− 1th

iteration, which is going to compose a longer path than
the one we look at.

Therefore the cost computed by Procedure 1 which equals
the sum of iterations for all agents to reach their goal vertex
is exactly the sum of lengths of longest paths


