
Under review as a conference paper at ICLR 2024

A EXPERIMENTAL SETUP

A.1 IMAGENET MODELS

In this paper, we train a number of ImageNet models and transfer them to various datasets in Sec-
tions 3 and 5. We mainly use the ResNet-18 architecture all over the paper. However, we study bias
transfers using various architectures in Appendix A.4. We use PyTorch’s official implementation
for these architectures, which can be found here https://pytorch.org/vision/stable/
models.html.

Training details. We train our ImageNet models from scratch using SGD by minimizing the stan-
dard cross-entropy loss. We train for 16 epochs using a Cyclic learning rate schedule with an initial
learning rate of 0.5 and learning rate peak epoch of 2. We use momentum of 0.9, batch size of 1024,
and weight decay of 5e�4. We use standard data-augmentation: RandomResizedCrop and Ran-
domHorizontalFlip during training, and RandomResizedCrop during testing. Our implementation
and configuration files are available in the attached code.

A.2 TRANSFER DETAILS FROM IMAGENET TO DOWNSTREAM IMAGE CLASSIFICATION
TASKS

Transfer datasets. We use the image classification tasks that are used in (Salman et al., 2020;
Kornblith et al., 2019), which have various sizes and number of classes. When evaluating the per-
formance of models on each of these datasets, we report the Top-1 accuracy for balanced datasets
and the Mean Per-Class accuracy for the unbalanced datasets. See Table 1 for the details of these
datasets. For each dataset, we consider two transfer learning settings: fixed-feature and full-network
transfer learning which we describe below.

Table 1: Image classification benchmarks used in this paper. Accuracy metric is the metric we report
for each of the dataset across the paper. Some datasets are imbalanced, so we report Mean Per-Class
accuracy for those. For the rest, we report Top-1 accuracy.

Dataset Size (Train/Test) Classes Accuracy Metric

Birdsnap (Berg et al., 2014) 32,677/8,171 500 Top-1
Caltech-101 (Fei-Fei et al., 2004) 3,030/5,647 101 Mean Per-Class
Caltech-256 (Griffin et al., 2007) 15,420/15,187 257 Mean Per-Class
CIFAR-10 (Krizhevsky, 2009) 50,000/10,000 10 Top-1
CIFAR-100 (Krizhevsky, 2009) 50,000/10,000 100 Top-1
FGVC Aircraft (Maji et al., 2013) 6,667/3,333 100 Mean Per-Class
Food-101 (Bossard et al., 2014) 75,750/25,250 101 Top-1
Oxford 102 Flowers (Nilsback & Zisserman, 2008) 2,040/6,149 102 Mean Per-Class
Oxford-IIIT Pets Parkhi et al. (2012) 3,680/3,669 37 Mean Per-Class
SUN397 (Xiao et al., 2010) 19,850/19,850 397 Top-1
Stanford Cars (Krause et al., 2013) 8,144/8,041 196 Top-1

Fixed-feature transfer. For this setting, we freeze the layers of the ImageNet source model4,
except for the last layer, which we replace with a random initialized linear layer whose output
matches the number of classes in the transfer dataset. We now train only this new layer for using
SGD, with a batch size of 1024 using cyclic learning rate. For more details and hyperparameter for
each dataset, please see config files in the attached code.

Full-network transfer. For this setting, we do not freeze any of the layers of the ImageNet source
model, and all the model weights are updated. We follow the exact same hyperparameters as the
fixed-feature setting.

4We do not freeze the batch norm statistics, but only the weights of the model similar to (Salman et al.,
2020).

13

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html


Under review as a conference paper at ICLR 2024

A.3 COMPUTE AND TRAINING TIME

Throughout the paper, we use the FFCV data-loading library to train models fast (Leclerc et al.,
2022). Using FFCV, we can train an ImageNet model, for example, in around 1 hr only on a single
V100 GPU. Our experiments were conducted on a GPU cluster containing A100 and V100 GPUs.

A.4 VARYING ARCHITECTURES

In this section, we study whether bias transfers when applying transfer learning using various archi-
tectures. We conduct the basic experiment of Section 3 on several standard architectures from the
PyTorch’s Torchvision5.

As in Section 3, we train two versions of each architecture: one on a clean ImageNet dataset, and
another on a modified ImageNet dataset containing a backdoor. We use the same hyperparameters
as the rest of the paper, except for the batch size, which we set to 512 instead of 1024. The reason
we lower the batch size is to fit these models in memory on a single A100 GPU.

Now, we transfer each of these models to a clean CIFAR-10 dataset, and test if the backdoor attack
transfers. Similar to the results of the main paper, we notice that backdoor attack indeed transfers
in the fixed-feature setting. We note however that for the full-network setting, all architectures other
than ResNet-18 (which we use in the rest of the paper) seem to be more robust to the backdoor
attack.

(a) CIFAR-10 Fixed-feature

(b) CIFAR-10 Full-network

Figure 9: Backdoor attack (bias) consistently transfers in the fixed-feature setting across various
architectures. However, this happens to a lesser degree in the full-network transfer setting.

We further repeat the backdoor experiments for three sizes of Vision Transformer (Figure 10). We
find that bias transfer still occurs in both the fixed-feature and full-network settings.

A.5 THE EFFECT OF WEIGHT DECAY IN FULL-NETWORK TRANSFER LEARNING

As mentioned in Section 3.2, we found weight decay to have a significant impact on bias transfer
in the full-network transfer learning setting. In particular, increasing weight decay reduces bias
transfer. Here, we present a formal explanation of why this happens by studying this within the

5These models can be found here https://pytorch.org/vision/stable/models.html

14

https://pytorch.org/vision/stable/models.html


Under review as a conference paper at ICLR 2024

Figure 10: We repeat the backdoor experiments for three sizes of ViT. We find that bias transfer still
occurs in both the fixed-feature and full-network settings.

logistic regression example we presented in Section 2. Recall that, following the setup in Section 2,
if we transfer a pretrained linear classifier wsrc to a target dataset {(xi, yi)}, wsrc is preserved in
all directions orthogonal to the span of the xi.

Now what happens if we add `2 regularization (i.e., weight decay) to the logistic regression problem?
As can be easily checked, the gradient updated of the logistic loss now becomes

r`w(xi, yi) = (�(w>xi)� yi) · xi + �w, (2)

= (�(w>
S xi)� yi) · xi + �(wS +wS0)

where � is the regularization strength, wS and wS0 are the projections of w on the span of the
target datapoints xi’s, denoted S, and on its complementary subspace, denoted S0. This gradient,
as before, restricts the space of updates to those in S. However due to regularization, this gradient
drives wS0 to zero. Therefore, any planted bias in S0 disappears as this subspace collapses to zero
with regularization.

Indeed, we observe in practice that as we increase weight decay in the full-network transfer learning
regime, bias transfer decreases over various downstream tasks as shown in Figure 11. On the other
hand, we find that weight decay does not reduce bias transfer in the fixed feature transfer learning
regime, where the weights of the pretrained model are frozen.

15



Under review as a conference paper at ICLR 2024

Figure 11: As weight decay increases, the ASR decreases which means bias transfers less across
various datasets. We increase weight decay until the clean accuracy on the target dataset significantly
deteriorates (see Figure 12). Error regions correspond to standard deviation over five random trials.

16



Under review as a conference paper at ICLR 2024

Figure 12: The clean accuracies corresponding to the weight-decay experiment. We increase weight
decay as long as the clean accuracy on the target dataset is roughly the same. Error regions (very
small) correspond to standard deviation over five random trials.

17



Under review as a conference paper at ICLR 2024

A.6 CLEAN ACCURACIES FOR EXPERIMENTS OF SECTION 3

In Figure 13, we report the clean accuracies of the transferred models that we use Section 3 on vari-
ous target datasets. Note how the accuracies of both models pretrained in biased and unbiased source
models, for both fixed-feature and full-network settings, are roughly the same. So the discrepancy
in ASR reported in the main paper is solely due to bias transfer.

(a) Fixed-feature transfer learning accuracies.

(b) Full-network transfer learning accuracies.

Figure 13: Clean accuracies of the fixed-feature and full-network experiments of Section 3.

A.7 COMPARISON WITH MODELS TRAINED FROM SCRATCH (ADDITIONAL RESULTS TO
SECTION 3)

In this section, we add an extra baseline to Figure 3a where we train models from scratch on the var-
ious target datasets to check if the yellow square bias already exists in these datasets. In Figure 14a,
we plot the accuracies of all the models across all target tasks. Note that since there is a significant
difference between the accuracies of the models trained from scratch and those finetuned, ASR is
no longer an informative metric to capture the existence of bias. Thus, we measure the change in
accuracy after adding the backdoor trigger and report the results in Figure 14b. Indeed, the addition
of the yellow square trigger do not significantly change the accuracy of the models trained from
scratch reflecting no existing bias in the target datasets.

(a) Full-network transfer learning accuracies.

(b) Full-network transfer learning change in accuracy after adding the backdoor trigger.

Figure 14: Additional baseline ("Scratch") for the experiment of Figure 3a.

18



Under review as a conference paper at ICLR 2024

A.8 MS-COCO

In this section, we provide experimental details for the experiment on MS-COCO in Section 4.1. We
consider the binary task of predicting cats from dogs, where there is a strong correlation between
dogs and the presence of people.

Dataset construction. We create two source datasets which are described in Table 2.

Table 2: The synthetic datasets we create from MS-COCO for the experiment in Section 4.1.

Class: Cat Class: Dog
Dataset With People Without People With People Without People

Non-Spurious 0 1000 0 100
Spurious 1000 4000 4000 1000

We then fine-tune models trained on the above source datasets on new images of cats and dogs
without people (485 each). We use the cats and dogs from the MS-COCO test set for evaluation.

Experimental details. We train a ResNet-18 with resolution 224 ⇥ 224. We use SGD with mo-
mentum, and a Cyclic learning rate. We use the following hyperparameters shown in Table 3:

Table 3: Hyperparameters used for training on the MS-COCO dataset.

Hyperparameter Value for pre-training Value for fine-tuning

Batch Size 256 256
Epochs 25 25

LR 0.01 0.005
Momentum 0.9 0.9

Weight Decay 0.00005 0.00005
Peak Epoch 2 2

A.9 CELEBA

In this section, we provide experimental details for the CelebA experiments in Section 4.2. Here, the
task was to distinguish old from young faces, in the presence of a spurious correlation with gender
in the source dataset.

Dataset construction. We create two source datasets shown in Table 4:

Table 4: The synthetic source datasets we create from CelebA for the experiment in Section 4.2.

Class: Young Class: Old
Dataset Male Female Male Female

Non-Spurious 2500 2500 2500 2500
Spurious 1000 4000 4000 1000

Due to imbalances in the spurious dataset, the model trained on this dataset struggles on faces of
young males and old females. We then fine-tune the source models on the following target datasets
(see Table 5), the images of which are disjoint from that in the source dataset.

Due to space constraints, we plotted the results of fixed-feature transfer setting on Only Women
and 80% Women|20% Men in the main paper. Below, we display the results for fixed-feature and
full-network transfer settings on all 3 target datasets.

Experimental details. We train a ResNet-18 with resolution 224 ⇥ 224. We use SGD with mo-
mentum, and a cyclic learning rate. We use the following hyperparameters shown in Table 6:

19



Under review as a conference paper at ICLR 2024

Table 5: The synthetic target datasets we create from CelebA for the experiment in Section 4.2.

Class: Young Class: Old
Dataset Male Female Male Female

Only Women 0 5000 0 5000
80% Women|20% Men 1000 4000 1000 4000
50% Women|50% Men 2500 2500 2500 2500

Table 6: Hyperparameters used for training on the CelebA datasets.

Batch Size Epochs LR Momentum Weight Decay Peak Epoch

1024 20 0.05 0.9 0.01 5

Results. We find that in both the fixed-feature and full-network transfer settings, the gender cor-
relation transfers from the source model to the transfer model, even though the target task is itself
gender balanced as shown in Figure 15. As the proportion of men and women in the target dataset
change, the model is either more sensitive to the presence of women, or more sensitive to the pres-
ence of men. In all cases, however, the model transferred from the spurious backbone is more
sensitive to gender than a model transferred from the non-spurious backbone.

20



Under review as a conference paper at ICLR 2024

(a) Source Model Accuracy

(b) Fixed-Feature transfer. Target
Dataset: Only Women

(c) Fixed-Feature transfer. Target
Dataset: 80% Women, 20% Men

(d) Fixed-Feature transfer. Target
Dataset: 50% Women, 50% Men

(e) Full-network transfer. Target
Dataset: Only Women

(f) Full-network transfer. Target
Dataset: 80% Women, 20% Men

(g) Full-network transfer. Target
Dataset: 50% Women, 50% Men

Figure 15: CelebA Experiment. We consider transfer from a source dataset that spuriously correlate
age with gender — such that old men and young women are overrepresented. We plot the difference
in accuracies between male and female examples, and find that the model transferred from a spurious
backbone is sensitive to gender, even though the target dataset was itself gender balanced.

21



Under review as a conference paper at ICLR 2024

B IMAGENET BIASES

B.1 CHAINLINK FENCE BIAS.

In this section we show the results for the “chainlink fence” bias transfer. We first demonstrate in
Figure 16 that the “chainlink fence” bias actually exists in ImageNet. Then in Figures 17, 18, 19,
and 20, we show the output distribution—after applying a chainlink fence intervention—of models
trained on various datasets either from scratch, or by transferring from the ImageNet model. The
from-scratch models are not affected by the chainlink fence intervention, while the ones learned via
transfer have highly skewed output distributions.

(a) Example images from the “chainlink fence” class in ImageNet.

(b) Shift in ImageNet predicted class distribution after adding a “chainlink fence” intervention, establishing
that the bias holds for the source model.

Figure 16: The chainlink fence bias in ImageNet.

(a) Example Birdsnap images after applying the chain-link fence intervention.

(b) Output distribution of Birdsnap models with a chainlink fence intervention.

Figure 17: The chainlink fence bias transfers to Birdsnap.

22



Under review as a conference paper at ICLR 2024

(a) Example Flowers images after applying the chain-link fence intervention.

(b) Output distribution of Flowers models with a chainlink fence intervention.

Figure 18: The chainlink fence bias transfers to Flowers.

(a) Example Food images after applying the chain-link fence intervention.

(b) Output distribution of Food models with a chainlink fence intervention.

Figure 19: The chainlink fence bias transfers to Food.

(a) Example SUN397 images after applying the chain-link fence intervention.

(b) Output distribution of SUN397 models with a chainlink fence intervention.

Figure 20: The chainlink fence bias transfers to SUN397.

23



Under review as a conference paper at ICLR 2024

B.2 HAT BIAS.

In this section we show the results for the “Hat” bias transfer. We first demonstrate in Figure 21
that the “Hat” bias actually exists in ImageNet (shifts predictions to the “Cowboy hat” class). Then
in Figure 22, we show the output distribution—after applying a hat intervention—of models trained
on CIFAR-10 either from scratch, or by transferring from the ImageNet model. The from-scratch
model is not affected by the hat intervention, while the one learned via transfer have highly skewed
output distributions.

(a) ImageNet images from the class “Cowboy hat”.

(b) ImageNet distribution shift after intervention.

Figure 21: The hat bias in ImageNet.

(a) Example CIFAR-100 images after applying the “Hat” intervention.

(b) Output distribution of CIFAR-10 models with the Hat intervention.

Figure 22: The hat bias transfers to CIFAR-10.

24



Under review as a conference paper at ICLR 2024

B.3 TENNIS BALL BIAS.

In this section we show the results for the “tennis ball” bias transfer. We first demonstrate in Fig-
ure 23 that the “tennis ball” bias actually exists in ImageNet. Then in Figures 24, 25, 26, and 27,
we show the output distribution—after applying a tennis ball intervention—of models trained on
various datasets either from scratch, or by transferring from the ImageNet model. The from-scratch
models are not affected by the tennis ball intervention, while the ones learned via transfer have
highly skewed output distributions.

(a) ImageNet images from the class “tennis ball”.

(b) ImageNet distribution shift after intervention.

Figure 23: The tennis ball bias in ImageNet.

(a) Example CIFAR-100 images after applying the “tennis ball” intervention.

(b) Output distribution of CIFAR-100 models with the tennis ball intervention.

Figure 24: The tennis ball bias transfers to CIFAR-100.

25



Under review as a conference paper at ICLR 2024

(a) Example Aircraft images after applying the “tennis ball” intervention.

(b) Output distribution of Aircraft models with the tennis ball intervention.

Figure 25: The tennis ball bias transfers to Aircraft.

(a) Example Birdsnap after applying the “tennis ball” intervention.

(b) Output distribution of Birdsnap models with the tennis ball intervention.

Figure 26: The tennis ball bias transfers to Birdsnap.

(a) Example sun397 after applying the “tennis ball” intervention.

(b) Output distribution of SUN397 models with the tennis ball intervention.

Figure 27: The tennis ball bias transfers to SUN397.

26


	Introduction
	Biases Can Transfer
	Exploring the Landscape of Bias Transfer
	Bias consistently transfers in the fixed-feature transfer setting
	Factors mitigating bias transfer

	Bias Transfer Beyond Backdoor Attacks
	Transferring co-occurrence biases in object recognition
	Transferring gender bias in facial recognition

	Bias Transfer in the Wild
	Related Work
	Conclusion
	Experimental Setup
	ImageNet Models
	Transfer details from ImageNet to downstream image classification tasks
	Compute and training time
	Varying architectures
	The effect of weight decay in full-network transfer learning
	Clean accuracies for experiments of Section 3
	Comparison with models trained from scratch (Additional results to Section 3)
	MS-COCO
	CelebA

	ImageNet Biases
	Chainlink fence bias.
	Hat bias.
	Tennis ball bias.


