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Abstract

Pre-training & fine-tuning is a prevalent paradigm in computer

vision (CV). Recently, parameter-efficient transfer learning (PETL)

methods have shown promising performance in adapting to down-

stream tasks with only a few trainable parameters. Despite their

success, the existing PETL methods in CV can be computationally

expensive and require large amounts of memory and time cost

during training, which limits low-resource users from conducting

research and applications on large models. In this work, we pro-

pose Parameter, Memory, and Time Efficient Visual Adapter (E
3
VA)

tuning to address this issue. We provide a gradient backpropaga-

tion highway for low-rank adapters which eliminates the need for

expensive backpropagation through the frozen pre-trained model,

resulting in substantial savings of training memory and training

time. Furthermore, we optimise the E
3
VA structure for CV tasks

to promote model performance. Extensive experiments on COCO,

ADE20K, and Pascal VOC benchmarks show that E
3
VA can save up

to 62.2% training memory and 26.2% training time on average, while

achieving comparable performance to full fine-tuning and better

performance than most PETL methods. Note that we can even train

the Swin-Large-based Cascade Mask RCNN on GTX 1080Ti GPUs

with less than 1.5% trainable parameters.

CCS Concepts

• Computing methodologies→ Object detection; Image seg-

mentation.
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1 Introduction

With the development of computer vision (CV), the explosion in

model size and capacity has become an unstoppable trend [12, 30,

31, 55, 56, 59, 66]. Most latest large models are transformer-based

(e.g., Swin [35], ViT [8], BEiT [54], etc.) and can reach the scale of

billions of parameters [63]. Large models have shown tremendous

propulsive power in deep learning-based dense prediction vision

tasks, including instance segmentation [12], object detection [55],

semantic segmentation [54]. However, large models not only bring

impressive performance but also massive training and storage costs

[3, 35, 43, 47]. It is difficult for users with limited budgets to train or

even fine-tune high-quality large models. Meanwhile, cloud service

providers (e.g. Google and Amazon) have started to consider the

storage costs for massive downstream tasks [18, 49]. In order to

reduce the cost of training large models, well-resourced users pre-

train state-of-the-art (SOTA) vision models with advanced GPUs

and large data resources. After that, users with fewer resources can

fine-tune the pre-trainedmodels to achieve impressive performance.

However, this traditional "pre-training & fine-tuning" paradigm has

its limitations [2, 22, 46, 50, 52]. Fine-tuning still has high hardware

requirements as the model size and training memory is not reduced,

and new tasks produce the same-sized models as the pre-trained

model, which is inefficient for numerous downstream tasks.

Inspired by the success of recent study in Natural Language

Processing (NLP) [14, 37, 41, 42, 45, 64], many novel parameter-

efficient transfer learning (PETL) methods have recently emerged

in CV, including prompt-based [19, 24, 25, 29, 36, 39, 48, 53] and

adapter-based [4, 5, 13, 20, 34, 61]. Most of these works have fo-

cused on classification tasks, while we comprehensively compare

https://doi.org/10.1145/3664647.3680940
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Figure 1: Comparison of backpropagation processes, parameters, time and memory of three training paradigms. Left: The

backpropagation of full fine-tuning and the existing PETL methods (e.g., adapter-tuning) goes through all parameters, which

includes the frozen ( ) backbone. E
3
VA’s backpropagation highway contains only a tiny number of trainable ( ) parameters,

which avoid gradient backpropagation through the backbone. Right: E
3
VA can significantly save memory and time, allowing

for training SOTA large models (e.g. Swin-L with Cascade Mask RCNN) on cheaper GPUs (e.g. GTX 1080Ti).

the PETL methods on more challenging dense prediction tasks.

PETL methods select a small subset of pre-trained parameters or

insert extra structures into the backbone and freeze most of the

pre-trained backbone parameters during training, which means

only those selective or newly added parameters are trainable. PETL

can substantially reduce the number of trainable parameters for

downstream tasks (even by more than 95%), while maintaining

performance comparable to full tuning. However, existing PETL

methods are memory and time inefficient. Gradient computation for

these trainable parameters still requires backpropagation through

the backbone models, resulting in massive training memory and

time consumption during training [33, 51]. Sung et al. [51] proposes
a Ladder Side-Tuning (LST) architecture for NLP tasks (based on

T5 model [43]) to reduce the training memory. However, LST is not

directly applicable to CV models such as Swin Transformer [35],

and it cannot achieve comparable performance to full fine-tuning

and other PETL methods.

To address these issues, we propose a novel Parameter-Efficient,

Memory-Efficient and Time-EfficientVisualAdapter (E
3
VA) tuning

method that establishes a more efficient visual training paradigm.

First, we separate adapters from the backbone network rather than

plug them into the backbone. This design creates a clear gradient

backpropagation highway exclusively for adapters, all trainable pa-

rameters are on this highway, preventing backpropagation through

the backbone model. Additionally, we adopt a design of parallel

adapters instead of stacked ones, aiming to further shorten the

length of the backpropagation highway. This not only minimizes

the memory required for activation, but also significantly reduces

the computational load during backpropagation, consequently sav-

ing substantial GPU memory and training time. Figure 1 illustrates

the differences between E
3
VA and previous methods. Furthermore,

we introduce a dual low-rank structure in E
3
VA adapter to mini-

mize the adapter’s parameters and training memory. To adapt for

visual models, we add downsampling layers into the highway, in-

heriting parameters from the backbone to accommodate dimension

reductions in visual models. Additionally, we integrate the highway

into the Feature Pyramid Network (FPN) alongside the backbone

and set FPN norms as trainable to optimize E
3
VA-tuning in dense

prediction tasks.

To demonstrate the effectiveness and efficiency of E
3
VA, we con-

duct extensive experiments on MS COCO [28], PASCAL VOC [11]

and ADE20K [65] for mainstream dense prediction tasks, including

instance segmentation, object detection and semantic segmentation.

Experimental results show that E
3
VA can save up to 62.2% train-

ing memory and 26.2% training time on average compared

to the full fine-tuning, while achieving comparable performance

to full fine-tuning and better performance than most PETL meth-

ods. It is worth noting that, based on results on COCO benchmark,

E
3
VA-tuning can tune Swin-Large+Cascade Mask RCNNs on the

Tesla P100/GTX 3090 and achieve even better performance than the

Swin-Base+Cascade Mask RCNNs which are fully fine-tuned on

the 32 GB Tesla V100 (Swin-Large+Cascade Mask RCNNs can’t be

fully fine-tuned on 32 GB Tesla V100), which means that E
3
VA en-

ables GPU-starved users to train large models efficiently. Moreover,

E
3
VA can alleviate the over-fitting issue in low-resource [10, 41, 60]

situations.

2 Related Works

2.1 Parameter-Efficient Transfer Learning

PETL has received much attention in the NLP field recently, as it

can achieve comparable performance of 100% fine-tuning by tun-

ing even less than 1% of the parameters [1, 23, 41, 45, 64]. PETL

methods in NLP freeze most of the parameters in the transformer

and train a small number of specified parameters. BitFit [62] only

tunes the bias terms, Prompt-tuning [32] adds learnable tokens to

the input layer, Adapter-tuning [14] adds some trainable bottle-

neck structures between layers, LoRA [16] injects trainable rank
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decomposition matrices into each layer of the transformer archi-

tecture, and compacter [23] introduces low-rank structures into

the adapter structure to further reduce the number of parameters.

After continuous optimization and extensive validation, PETL can

even outperforms full fine-tuning in NLP. Advanced results in NLP

have also brought new thinking to CV.

As a first attempt, Jia et al. [19] proposes VPT and demonstrates

that the prompt-based PETL approach outperforms full fine-tuning

in image classification tasks. Polyhistor [34] introduces PETL in the

multi-task setting. Kronecker Adaptation [13] reduces the number

of parameters in adapters by introducing the Kronecker product.

AdaptFormer [5] utilizes the adapter structure and surpasses VPT

in image classification. Convpass [20] replaces the bottleneck struc-

ture in LoRA with a CNN structure and improves the performance

of PETL on image classification tasks. LoRand [61] employs multi-

branch low-rank adapters for adapting dense prediction tasks. In

addition, PETL has also been applied to visual-language [21], ac-

tion recognition [40], dense scene understanding [58], and remote

sensing [17] tasks.

2.2 Memory-Efficient Transfer Learning

Although PETL methods can save most trainable parameters, they

do not reduce much memory requirement and training time. NLP

researchers first studied this issue. Since the inserted structures

are located inside the backbone models, to calculate gradients for

these parameters, the backpropagation still need to go through

the large backbone model, making the PETL methods not mem-

ory and time efficient [33, 51]. Gradient checkpointing [7] trades

extra time for reduced memory by clearing activations of certain

layers and recomputing them during a backward pass. Y-tuning

[33] learns extra task-specific label representations and fuses them

with the output of the backbone model. This design avoids back-

propagation through pre-trained model, but it does not achieve

good performance and is challenging to extend to tasks other than

classification. LST [51] utilizes lightweight transformer structures

pruned from the backbone as the side network. It’s designed for

NLP tasks and can not be directly used in CV models such as Swin

Transformer, and it cannot achieve comparable performance to full

fine-tuning and other PETL methods. In contrast, we design the

adapter highway to retain the expressiveness of adapter tuning

while saving memory and time cost. We propose several novel de-

signs to improve accuracy and training efficiency, which include

special designs for CV models. It achieves comparable performance

to full fine-tuning and other PETL methods.

3 Methods

We introduce the proposed approach in four parts, including train-

ing paradigms, overall framework of E
3
VA, and propagation com-

parisons with existing tuning methods.

3.1 Preliminaries

For datasetD = {(X𝑖 ,Y𝑖 )}𝑁𝑖=1, the loss L and optimization formula

of full fine-tuning, adapter-tuning, E
3
VA-tuning can be written as

follows:

Full Fine-tuning

L(D, 𝜙) =
𝑁∑︁
𝑖=1

𝑙𝑜𝑠𝑠 (𝑓𝜙 (𝑥𝑖 ), 𝑦𝑖 ), (1)

𝜙 ← argmin

𝜙

L(D, 𝜙), (2)

where 𝜙 is the parameters of the model, 𝑙𝑜𝑠𝑠 is the loss function

and 𝑓 (·) is the forward propagation function.

Adapter-tuning

The parameters in adapter-tuning [14] can be divided into fixed

parameters 𝜙𝐹 and trainable parameters Ω, where trainable param-

eters Ω can be further divided into 𝜙𝐴 in adapters and 𝜙𝑂 outside

the backbone. Thus, the loss and optimization here can be written

as follows:

L(D, 𝜙𝐹 , 𝜙𝐴, 𝜙𝑂 ) =
𝑁∑︁
𝑖=1

𝑙𝑜𝑠𝑠 (𝑓𝜙𝐹 ,𝜙𝐴,𝜙𝑂
(𝑥𝑖 ), 𝑦𝑖 ), (3)

Ω ← argmin

Ω
L(D, 𝜙𝐹 ,Ω) . (4)

The loss and optimization of E
3
VA-tuning can also be represented

by equations 3 and 4.

3.2 E
3
VA-Tuning

Gradient Highway

We design a memory and time efficient E
3
VA framework based

on Swin Transformer [35]. The overall structure is illustrated in

Figure 2. The green box in Figure 2 is the original SwinBlock, and

the orange box outlines our E
3
VA Block. Specifically, we separate

the E
3
VA adapters from W/SW-MSA and MLP rather than plug

them in, thus provide a dedicated "highway" for the adapters. All

trainable parameters are on this highway, to calculate gradients for

these parameters, the backpropagation only need to go through

the adapter highway rather than the frozen layers. In this way, the

memory required for massive activations and the computational

load during backpropagation are reduced, leading to much reduced

training memory and time compared to the full-tuning and other

PETL methods. Additionally, we adopt a design of parallel adapters

instead of stacked ones, aiming to further shorten the length of the

backpropagation path.

Parallel Adapters

We consider parallel/stacked adapters when designing E
3
VA’s

highway, as shown in Figure 3. In stacked mode, the output of the

first adapter affects the second adapter, while the computations

of the two adapters are independent in parallel mode. We adopt

parallel adapters design in our E
3
VA as it continuously saves mem-

ory and time by simplifying the backpropagation path within a

stage compared to the stacked design. Specifically, the output of

each adapter is added to the output of previous adapters in this

pathway. The summation operations here play two roles: one is

to connect all adapters into a link that can be forward propagated,

and the other is to imitate the skip-connection operation in Swin-

Block. The equations in section 3.4 intuitively describe the forward

propagation process of the proposed method. Experiments (see

subsequent section 4.3 on ablation experiments) show that parallel

designs achieve better performance and faster inference speed. To
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Figure 2: The overall of E
3
VA. We provide a highway parallel to SwinBlock for the trainable E

3
VA adapters to avoid gradient

backpropagation through the backbone. Intermediate activations from W/SA-MSA and MLP are sent to E
3
VA. Downsampling

layers are added in the E
3
VA highway and are inherited from the backbone model. The highway is integrated to the FPN with

trainable norm .

 (a) Parallel  (b) Stacked

Figure 3: Schematic of the stacked/parallel adapters in a

SwinBlock. Parallel adapters are fused by summation, while

stacked adapters interact with each other in their propaga-

tion.

make E
3
VA applicable in most dense prediction frameworks, we

also consider some other details as follows.

Downsampling in E
3
VA

NLP transformers usually have fixed feature dimensions (e.g.

T5 [43]). However, CV models downsample multiple times in the

backbone, so this difference need to be considered in our E
3
VA.

Downsampling in SwinBlock consists of two main layers, a linear

layer without bias and a stage norm layer with bias. We insert the

same downsampling layers as SwinBlock into the E
3
VA pathway

and inherit the corresponding pre-trained parameters directly. Ex-

periments (see section 4.3 on ablation experiments) show that the

new trainable downsampling layers introduce numerous additional

parameters but cannot bring significant performance gains. There-

fore, we directly inherit the pre-trained downsampling layers in

the E
3
VA highway and freeze their parameters.

FPN in E
3
VA

The FPN [26] design is an important component of dense predic-

tion models. SwinBlock defines several norm layers before FPN (as

shown in Figure 2), but these norm layers are not pre-trained since

backbones are pre-trained by classification tasks. In E
3
VA, we inte-

grate the highway into the FPN alongside the backbone and train

the norms before FPN. Experimental results (see the section 4.3 on

ablation) show that training these layers can improve performance

without additional memory or parameter costs.

3.3 Parameter-Efficient E
3
VA Adapter

After introducing the framework of E
3
VA, this section describes the

parameter-efficient module in E
3
VA-tuning. We will first introduce

the standard structure of the adapter and then introduce the E
3
VA

adapter.

Standard Adapter

The standard adapter structure [14] is illustrated on the left of

Figure 4 (bias is hidden). As mentioned in the [23], the compu-

tational process for the standard adapter layer can be written as

𝐴𝑙 = 𝑈 𝑙 (𝐺𝑒𝐿𝑈 (𝐷𝑙 (𝑥))) + 𝑥 , where 𝐴𝑙
is the adapter of layer 𝑙 ,

𝑈 𝑙
and 𝐷𝑙

denote the up and down projections. Linear layers in

up/down projections can be described as:𝑦 =𝑊𝑥 +𝑏. Parameters in

linear layers mainly come from𝑊 , which brings lots of parameters

especially when the dimension is large.

E
3
VA Adapter

Karimi et al. [23] and He et al.[13] demonstrate that low-rank

structures can reduce large amounts of parameters in PETL with im-

pressive performance. Therefore, we propose a simple and effective

Dual Low-Rank Branches structure to reduce the number of new

trainable parameters as much as possible. Our parameter-efficient

module is illustrated on the right side of Figure 4. Inspired by the

Mixture of Expert (MoE) [38], we approximate a matrix𝑊 ∈ R𝑚×𝑛
by the sum of two matrices 𝑤1,𝑤2 ∈ R𝑚×𝑛 with lower degrees

of freedom to increase the robustness of the structure. For each

𝑤 ∈ R𝑚×𝑛 , we synthesise it by the product of two low-rank ma-

trices 𝑠 ∈ R𝑚×𝛼 and 𝑡 ∈ R𝛼×𝑛 . Thus, the up and down projection

matrices in E
3
VA can be expressed as𝑊𝑢 =

∑
2

𝑖=1𝑤
𝑢
𝑖
=
∑
2

𝑖=1 𝑠
𝑢
𝑖
×𝑡𝑢

𝑖
,

and𝑊 𝑑 =
∑
2

𝑖=1𝑤
𝑑
𝑖
=
∑
2

𝑖=1 𝑠
𝑑
𝑖
× 𝑡𝑑

𝑖
.𝑊 ∈ R𝑚×𝑛 contains𝑚𝑛 param-

eter, while �̂� ∈ R𝑚×𝑛 synthesized via Dual Low-Rank Branches

contains 2𝛼 (𝑚 +𝑛) parameter. Given 𝛼 << 𝑚𝑖𝑛(𝑚,𝑛), it is obvious
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Figure 4: Internal structure of E
3
VA adapter. Left: Standard

adapter structure (bias is hidden). Right: Dual low-rank

branches in E
3
VA. Weight𝑊 is the sum of𝑤1 and𝑤2 with low

degrees of freedom.𝑤1 and𝑤2 are synthesized by the product

of two low-rank matrices. Low-rank design can reduce most

parameters in the adapter and slightly reduce the gradient

size of the E
3
VA.

that 2𝛼 (𝑚 + 𝑛) << 𝑚𝑛. In Swin Transformer, this design can save

over 90% parameters in standard adapters.

3.4 Comparisons with adapter-tuning

Here, we illustrate the feature learning difference of E
3
VA with

adater-tuning by analyzing the forward propagation process, and

explain why E
3
VA can save a lot of training memory by analyzing

the gradient backpropagation process.
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paradigms. Orange structures are trainable and blue ones are

frozen. (a) In full fine-tuning, all parameters are trained. (b)

In adapter-tuning, only the adapters are trained, but the back-

propagation go through the backbone. (c) In E
3
VA-tuning,

only the adapters are trainable and the backpropagation only

need to go through the adapter highway.

Forward Propagation

Figure 5 shows the forward processes of three tuning frameworks

in SwinBlock. LN1 and W/SW-MSA in SwinBlock are simplified as

𝑓𝑃1, LN2 and MLP are simplified as 𝑓𝑃2. Two adapter layers can be

simplified as 𝑓𝐴1 and 𝑓𝐴2. For the 𝑖-th block, the output 𝑙𝑖+1 of full
fine-tuning can be written as follows:

𝑙𝑖+1 = 𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 ) + 𝑓𝑃2 (𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 )), (5)

and that of adapter-tuning is:

𝑙𝑖+1 = 𝑙𝑖 + 𝑓𝐴1 (𝑓 𝑃1 (𝑙𝑖 )) + 𝑓𝐴2 (𝑓𝑃2 (𝑙𝑖 + 𝑓𝐴1 (𝑓𝑃1 (𝑙𝑖 )))). (6)

E
3
VA has another pair of (input, output), (𝑒𝑖 , 𝑒𝑖+1), and the for-

ward process of 𝑙 and 𝑒 can be represented as follows:

𝑙𝑖+1 = 𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 ) + 𝑓𝑃2 (𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 )), (7)

𝑒𝑖+1 = 𝑒𝑖 + 𝑓𝐴1 (𝑓 𝑃1 (𝑙𝑖 )) + 𝑓𝐴2 (𝑓𝑃2 (𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 ))). (8)

It is easy to see that 𝑙𝑖+1 is calculated in the same way in full fine-

tuning and E
3
VA-tuning. Equations 6 show that adapters in adapter-

tuning are inserted into the backbone so that the subsequent cal-

culation of the backbone depends on the preceding adapters, thus

the update of adapters depends on the backpropagation throught

the backbone. In contrast, the update of E
3
VA’s adapters do not

depend on the backpropagation of backbone as the adapters are not

inserted to the backbone. We rewrite equations 6 and 8 as follows:

𝑙𝑖+1 − 𝑙𝑖 = 𝑓𝐴1 (𝑓 𝑃1 (𝑙𝑖 )) + 𝑓𝐴2 (𝑓𝑃2 (𝑙𝑖 + 𝑓𝐴1 (𝑓𝑃1 (𝑙𝑖 )))), (9)

𝑒𝑖+1 − 𝑒𝑖 = 𝑓𝐴1 (𝑓 𝑃1 (𝑙𝑖 )) + 𝑓𝐴2 (𝑓𝑃2 (𝑙𝑖 + 𝑓𝑃1 (𝑙𝑖 ))) . (10)

We can see Equations 9 and 10 are very similar except for the

last term of adapter-tuning, which has an extra 𝑓𝐴1 (i.e., 𝑓𝐴1 is

inserted into the backbone). It shows both adapters in adapter-

tuning and E
3
VA-tuning take the intermediate activations from the

backbone as input. This design keeps E
3
VA-tuning to have sufficient

expressiveness as adapter-tuning.

Back Propagation

We derive the gradient calculation process for the parameter

𝜃𝑖 of the adapter layer in the 𝑖-th block. 𝐿 denotes the loss, 𝜃𝑖 ={
𝜗1
𝑖
, 𝜗2

𝑖
, 𝜗3

𝑖
, . . . , 𝜗𝑛

𝑖

}
, the output of the 𝑖-th layer is 𝑙𝑖+1, and the

function of adapter in the 𝑖-th block is 𝑓𝐴 . First, the partial derivative

of 𝑙𝑖+1 with respect to 𝑓𝐴 is:

𝜕𝑙𝑖+1
𝜕𝑓𝐴

=
𝜕𝑙𝑖+1
𝜕𝑓 1
𝑖

𝜕𝑓 1
𝑖

𝜕𝑓 2
𝑖

𝜕𝑓 2
𝑖

𝜕𝑓 3
𝑖

. . .
𝜕𝑓𝑚
𝑖

𝜕𝑓𝐴
, (11)

where 𝑓
𝑗
𝑖
is the intermediate process from layer 𝑙𝑖+1 to 𝑓𝐴 . Then,

the partial derivative of 𝐿 with respect to 𝜃𝑖 is:

𝜕𝐿

𝜕𝜃𝑖
=

𝜕𝐿

𝜕𝑙𝑖+1

𝜕𝑙𝑖+1
𝜕𝑓𝐴

𝜕𝑓𝐴

𝜕𝜃𝑖

=
𝜕𝐿

𝜕𝑙𝑖+1
( 𝜕𝑙𝑖+1
𝜕𝑓 1
𝑖

𝜕𝑓 1
𝑖

𝜕𝑓 2
𝑖

𝜕𝑓 2
𝑖

𝜕𝑓 3
𝑖

. . .
𝜕𝑓𝑚
𝑖

𝜕𝑓𝐴
)

𝑛∑︁
𝑘=1

𝜕𝑓𝐴

𝜕𝜗𝑘
𝑖

.

(12)

Standard adapter reduces the number of trainable parameters, but

do not reduce the intermediate procedure
𝜕𝑙𝑖+1
𝜕𝑓𝐴

. Recent PETL meth-

ods [4, 5, 13, 20, 34] reduce the number of 𝜗𝑛
𝑖
in the adapter, but still

do not simplify
𝜕𝑙𝑖+1
𝜕𝑓𝐴

. In fact, E
3
VA greatly reduces the process of

𝜕𝑙𝑖+1
𝜕𝑓𝐴

(or𝑚 in equation 11) through a parallel gradient highway, so

E
3
VA can save much more memory and time in each block. More-

over, E
3
VA also reduces the processes from loss to the 𝑖-th block

𝜕𝐿
𝜕𝑙𝑖+1

, so the memory advantages are enlarged again.

4 Experiments

We conduct comprehensive experiments on mainstream dense pre-

diction tasks to demonstrate the effectiveness and advantages of

E
3
VA, including instance segmentation, object detection and seman-

tic segmentation. Experimental settings are introduced in Section

4.1. Main results are presented in Section 4.2. Section 4.3 shows the

ablation experiments on several designs. Implementation details

and inference comparisons can be found in Appendix.
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Swin-L

(198M)

Trained∗
Params

𝚫𝑭𝒖𝒍𝒍
Memory

(VOC)

𝚫𝑭𝒖𝒍𝒍
(VOC)

Extra

Structure

Pascal VOC

(RetinaNet)

ADE20K

(UPerNet)

APBox 𝚫𝑭𝒖𝒍𝒍 mIoU 𝚫𝑭𝒖𝒍𝒍

Baselines

Full 198.58 M - 15679 MB - ✗ 83.5 % - 52.10 % -

Fixed 0.00 M -100.00 % 3967 MB -74.70 % ✗ 83.6 % +0.1 % 46.84 % -5.26 %

Bitfit 0.30 M -99.85 % 10861 MB -30.73 % ✗ 85.7 % +2.2 % 48.37 % -3.73 %

Norm-Tuning 0.09 M -99.95 % 10123 MB -35.44 % ✗ 85.8 % +2.3 % 47.98 % -4.12 %

Partial-1 28.34 M -85.47 % 3943 MB -74.85 % ✗ 85.4 % +1.9 % 47.44 % -4.66 %

Adapter 4.66 M -97.65 % 10793 MB -31.16 % ✓ 87.1 % +3.6 % 50.78 % -1.32 %

LoRA 4.57 M -97.70 % 10127 MB -35.41 % ✓ 87.5 % +4.0 % 50.34 % -1.76 %

AdaptFormer 4.66 M -97.65 % 11036 MB -29.61 % ✓ 87.3 % +3.8 % 50.83 % -1.27 %

LoRand 1.31 M -99.34 % 11986 MB -23.55 % ✓ 86.8 % +3.3 % 50.76 % -1.34 %

Our Methods

E
3
VA 1.79 M -99.08 % 4819 MB -69.26 % ✓ 86.5 % +3.0 % 49.64 % -2.46 %

E
3
VA + 3.53 M -98.19 % 5175 MB -66.99 % ✓ 86.8 % +3.3 % 50.20 % -1.90 %

E
3
VA ++ 7.00 M -96.42 % 5405 MB -65.53 % ✓ 87.0 % +3.5 % 51.01 % -1.09 %

Table 1: Results of baselines and our methods on Pascal VOC and ADE20K datasets. Swin-L is employed as the pre-trained

model here.

Swin-B

(87M)

Trained∗
Params

𝚫𝑭𝒖𝒍𝒍 Memory 𝚫𝑭𝒖𝒍𝒍
Extra

Structure

COCO

(Cascade Mask R-CNN)

APBox 𝚫𝑭𝒖𝒍𝒍 APMask 𝚫𝑭𝒖𝒍𝒍

Baselines

Full 86.75 M - 17061 MB - ✗ 51.9 % - 45.0 % -

Fixed 0.00 M -100.00 % 7137 MB -58.17 % ✗ 43.5 % -8.4 % 38.6 % -6.4 %

Bitfit 0.20 M -99.77 % 13657 MB -19.95 % ✗ 47.9 % -4.0 % 41.9 % -3.1 %

Norm-Tuning 0.06 M -99.93 % 12831 MB -24.79 % ✗ 48.0 % -3.9 % 41.4 % -3.6 %

Partial-1 12.60 M -85.47 % 7301 MB -57.21 % ✗ 49.2 % -2.7 % 42.8 % -2.2 %

Adapter 3.11 M -96.41 % 12557 MB -26.40 % ✓ 50.9 % -1.0 % 43.8 % -1.2 %

LoRA 3.03 M -96.51 % 11975 MB -29.81 % ✓ 51.2 % -0.7 % 44.3 % -0.7 %

AdaptFormer 3.11 M -96.41 % 13186 MB -22.71 % ✓ 51.4 % -0.5 % 44.5 % -0.5 %

LoRand 1.20 M -98.66 % 14038 MB -17.72 % ✓ 51.0 % -0.9 % 43.9 % -1.1 %

Our Methods

E
3
VA 1.20 M -98.62 % 7639 MB -55.23 % ✓ 50.5 % -1.4 % 43.8 % -1.2 %

E
3
VA + 2.35 M -97.29 % 7761 MB -54.51 % ✓ 51.0 % -0.9 % 44.2 % -0.8 %

E
3
VA ++ 4.66 M -94.63 % 8941 MB -47.59 % ✓ 51.6 % -0.3 % 44.5 % -0.5 %

E
3
VA(Swin-L) 1.80 M - 9471 MB - ✓ 52.2 % +0.3 % 45.2 % +0.2 %

Table 2: Results of baselines and our methods on COCO benchmark. Swin-B is employed as the pre-trained model here. Given

that E
3
VA can train the Swin-L-based instance segmentation model with very little memory, we show its results to demonstrate

the superiority of the proposed method. Other Swin-L-based baselines cannot be trained on Tesla V100 (batch size is 2 for each),

so they are not shown here.

4.1 Experimental Setup

Dataset. We conduct extensive experiments on MS COCO [28],

ADE20K [65] and Pascal VOC [11]. MS COCO is a commonly used

instance segmentation benchmark, which includes 118k training

and 5k validation images. All experiments on COCO dataset employ

Cascade Mask RCNN [35] as the framework. ADE20K is a widely

used semantic segmentation benchmark, including 20k training and

2k validation images. All experiments on ADE20K employ UPerNet

[57] as the framework. For the object detection task, we use Pascal

VOC 0712 with 16k training and 5k validation images. Since VOC

0712 has far fewer samples than the latest CV benchmark, we treat

it as a low-resource condition in CV. Low-resource conditions can

better reflect the advantages of PETL methods. Experiments on

VOC employ RetinaNet [27] as the framework.

Pretrained Backbones.We conduct experiments on the advanced

Swin-Transformer [35] series. All backbones in this section are

pre-trained by ImageNet-22K [9].
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Baselines.We select two kinds of baselines, a total of 9 methods,

based on whether extra structures are introduced in backbone. 1)

Without Extra Structures. Full: all parameters in the backbone are

trainable. Fixed: fix pre-trained parameters in Swin and train other

parts (neck, head). BitFit [44]: only biases in backbone are train-

able. Norm-Tuning: only norm layers in backbone are trainable.

Partial-1: the last SwinBlock is trainable, while the other Swin-

Blocks are frozen. Partial-1: the last SwinBlock is trainable, while

the other SwinBlocks are frozen. 2) With Extra Structures (middle

dim of these methods are set to 64). Adapter [14]: add standard

adapters behind MSA and MLP layers in SwinBlocks. LoRA [15]:

add trainable matrices in parallel to weight matrices in MSA/MLP.

AdaptFormer [6]: add adapters and scales in parallel to MSA/MLP

of Swin. LoRand [61]: add LoRand layers after the MSA/MLP layers

of each SwinBlock.

E
3
VA settings.We experiment on three kinds of E

3
VA settings. The

following three settings differ in the rank 𝛼 of low-rankmatrices 𝑠 ∈
R𝑚×𝛼 and 𝑡 ∈ R𝛼×𝑛 (𝑛,𝑚 represent input and middle dimensions).

E
3
VA’s middle dims are half of input dims. E

3
VA: 𝛼 = 8, E

3
VA+:

𝛼 = 16, and E
3
VA++: 𝛼 = 32.

4.2 Main Results

We compare E
3
VAwith the baselinemethods in terms of the number

of trainable parameters, memory, training time and performance,

and bold the best PETL results. Table 2 shows the results of COCO,

which employ Swin-Base as the backbone. Table 1 shows the results

of Pascal VOC and ADE20K, which employs Swin-Large. Table 3

compares the training time of different methods. We analyze the

GPU usage for Swin-L on COCO in Tables 4. We can summarise

three main conclusions from Tables 2∼4:

Time VOC %𝐹𝑢𝑙𝑙 ADE20K %𝐹𝑢𝑙𝑙 COCO %𝐹𝑢𝑙𝑙

Full 30h 100.00% 49h 100.00% 81h 100.00%

Fixed 12h 40.00% 30h 61.22% 52h 64.20%

BitFit 23h 76.67% 43h 87.76% 71h 87.65%

Norm-Tuning 23h 76.67% 39h 79.59% 69h 85.19%

Partial-1 14h 46.67% 31h 63.27% 54h 66.67%

Adapter 23h 76.67% 43h 87.76% 76h 93.83%

LoRA 23h 76.67% 41h 83.67% 75h 92.60%

AdaptFormer 23h 76.67% 43h 87.76% 76h 93.83%

LoRand 24h 80.00% 46h 93.88% 79h 97.53%

E
3
VA 17h 56.67% 39h 79.59% 69h 85.19%

E
3
VA+ 17h 56.67% 39h 79.59% 70h 86.42%

E
3
VA++ 17h 56.67% 39h 79.59% 71h 87.65%

Table 3: Time comparisons on three benchmarks.

1) E
3
VA can save lots of parameters, memory and time. Tables

2 and 1 show that E
3
VA can save up to 55.2% and 69.3% memory

on COCO and VOC, and save 98.6% and 99.1% trainable parameters

on COCO and VOC/ADE20K compared to full fine-tuning. Table

3 shows that E
3
VA can save 43.3%, 20.4% and 14.8% time on VOC,

ADE20K and COCO respectively compared to full fine-tuning. Com-

pared to PETL methods with extra structures on similar parameter

size, E
3
VAs also save much more memory and time. Methods with-

out additional structures (e.g., Fixed and Partial-1) are efficient

but cannot achieve competitive performance. Experiments are con-

ducted with batch size 2. If a larger batch size is used, E
3
VA can

Method

Batch Size 1080Ti P100 3090 V100

per GPU 11GB 16GB 24GB 32GB

Full

1 ✗ ✗ ✓ ✓

2 ✗ ✗ ✗ ✗

BitFit

1 ✗ ✗ ✓ ✓

2 ✗ ✗ ✗ ✗

Adapter

1 ✗ ✗ ✓ ✓

2 ✗ ✗ ✗ ✗

LoRA

1 ✗ ✗ ✓ ✓

2 ✗ ✗ ✗ ✗

E
3
VA

1 ✓ ✓ ✓ ✓

2 ✗ ✓ ✓ ✓

Table 4: GPU for Swin-L+Cascade Mask RCNN. FULL and

other baselines need to be trained on 3090/V100, whereas the

proposed method only needs to be trained on 1080Ti/P100.

save more memory, as activations might consume more memory.

We can see E
3
VA significantly improves training efficiency.

To illustrate the significant advantage of E
3
VA in situations with

limited GPU resources, we present the trainability of the Cascade

Mask RCNN (Swin-L-based) with multiple training methods on

different types of GPUs in Table 4. For batchsize=1, E
3
VA reduces

the minimum training unit from RTX 3090 to GTX 1080Ti. It is

worth noting that, for batchsize=2, E
3
VA can train on 16GB Tesla

P100 while other methods cannot train even on the expensive 32GB

Tesla V100. E
3
VA can increase the batch size per GPU of the same

type, thereby reducing the need for multiple GPUs, resulting in

even greater performance and efficiency.

2) E
3
VA achieves comparable performance compared to full

fine-tuning andperforms better in low-memory regime.Based

on tables 2 and 1, compared to full fine-tuning, E
3
VA series achieves

competitive performance on COCO and ADE20K and outperforms

full fine-tuning on Pascal VOC. Experiments on E
3
VA variants

show that larger ranks bring better results, and E
3
VA++ achieves

the best results. Besides, E
3
VA++ outperforms other PETL meth-

ods on COCO/ADE20K and performs comparably on VOC. It is

worth noting that, with a much smaller memory usage, E
3
VA can

tune larger models (e.g., Swin-L+Cascade Mask RCNN) and surpass

both full fine-tuning and other PETL methods that utilize the same

GPU resources. Certainly, larger models also lead to more inference

costs.

3) E
3
VA can alleviate over-fitting issue in low-resource data.

The Pascal VOC dataset can be treated as a relatively low-resource

dataset here. Full on VOC performs worse than all other PETL

methods, even when compared to Fixed. The results demonstrate

that full fine-tuning large CV models with insufficient data can

result in severe over-fitting, which is similar to findings in NLP. In

contrast, PETL methods preserve the powerful knowledge of pre-

trained models by freezing the pre-trained parameters. Experiments

on VOC show that the E
3
VA series can effectively avoid over-fitting

when training on low-resource datasets and achieve promising

results.

4.3 Ablation Study

Low-rank/Standard Adapters. The low-rank structure is intro-

duced to E
3
VA to enhance tuning efficiency. We compare the dual
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low-rank adapters with the standard adapters [14] in Table 5 (rows

1 to 3). The intermediate dimension of the standard adapter is set

to 32 to ensure similar parameter sizes. It shows that the low-rank

setting performs better even with fewer parameters.

Adapter Parameter Size AP𝑏𝑜𝑥

E
3
VA Standard 2.35 M 85.4%

E
3
VA Low-rank 1.79 M 86.5%

Structure Inference Speed AP𝑏𝑜𝑥

E
3
VA-Stacked 8.2 batch/s 85.9%

E
3
VA-Parallel 8.5 batch/s 86.5%

Table 5: Ablations on Standard/Low-rank adapters and Paral-

lel/Stacked structures (Pascal VOC).

Parallel/Stacked Structures.We compare the performance and

inference speed of parallel and stacked adapters in Table 5 (rows

4 to 6). Parallel structures with fewer computational steps have a

notable advantage in inference speed. In addition, Table 5 (rows 4

to 6) shows that parallel adapters also achieve better performance.

Reduction

(Swin-L)

COCO

(AP𝑏𝑜𝑥 )

ADE20K

(mIoU)

Pascal VOC

(AP𝑏𝑜𝑥 )

Inherited 52.2 % 49.64 % 86.5 %

Trainable 51.7 % 49.97 % 86.7 %

FPN Norm

(Swin-L)

COCO

(AP𝑏𝑜𝑥 )

ADE20K

(mIoU)

Pascal VOC

(AP𝑏𝑜𝑥 )

Fixed 51.8 % 48.51 % 85.9 %

Trainable 52.2 % 49.64 % 86.5 %

Table 6: Ablations on two E
3
VA designs.

Ablation study on downsampling and FPN designs.We also

ablate two designs of E
3
VA-tuning (as mentioned in Sec. 3.2) in

Table 6. We first test the impact of trainable/inherited stage reduc-

tion on the overall performance (“inherited” means the parameters

in the newly added downsampling layers are initialised by the

pre-trained reduction layers from the backbone and fixed during

training). Rows 1 to 3 of Table 6 show that trainable stage reduction

only slightly improves performance on VOC and ADE20K, and per-

forms even worse on COCO. Furthermore, the parameter-inefficient

trainable stage reduction results in an additional 5∼10% new param-

eters and more memory. So we inherit the pre-trained reduction

layers in the original backbone models in our design. Additionally,

we compare the trainable/fixed norms before the FPN. Rows 4 to

6 of Table 6 show that the trainable norms significantly improve

performance. As a result, we set the norms before FPN trainable

which doesn’t bring much extra memory and time costs during the

training process.

4.4 Conclusion

Traditional model training paradigmsmay no longer be suitable and

effective for training largemodels with limited resources. This paper

presents a parameter, memory, and time efficient visual adapter

(E
3
VA) tuning for dense predictions, which significantly reduces the

memory and time cost of PETL methods in computer vision with

promising performance. E
3
VA enhances the possibilities of training

larger models for users with insufficient hardware resources, and

we hope that E
3
VA can motivate more effective computer vision

training paradigms in the era of large models.
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