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MOTIVATION
• Leveraging ML and DFT for drug discovery — Foundation mod-

els, large language models (LLMs), and multi-agent natural lan-
guage societies of mind (NLSOMs) require significant computing
resources to achieve practical accuracies with up to trillions of pa-
rameters using explicit neural networks. As the number of layers
in a neural network approaches infinity, (Kolter, Duvenaud, John-
son; 2020) these models can be approximated with single-layer im-
plicit models, known as deep equilibrium (DEQ) models. Solving
for the parameters of a single implicit layer that takes both the in-
put, x, and the output, y, as inputs are reduced to a fixed point
iteration problem that is proven to converge to a deep equilib-
rium state with stable behavior under optimal hyperparameters
where the fixed point converges. Vector-to-vector iterative solvers
such as Anderson extrapolation (Anderson, 1965; 2019) can be em-
ployed to accelerate convergence (Al Dajani, Keyes; 2024), achiev-
ing similar performance similar to explicit networks while scaling
neural networks and reducing the necessary compute resources.

• Constructing artificial life and material scientists (ALMS) —
Drug discovery is at the intersection of life and materials science.
Density functional theory (DFT) is at the forefront of materials
modeling, yet suffers from computational limitations with high-
atom biological systems needed in the life sciences. Responding to
the COVID-19 pandemic required high-throughput, rapid meth-
ods to screen and discover drugs that could be pipelined into labo-
ratory and, ultimately, clinical trials to treat different and evolving
variants of the virus. Machine learning and scaling DFT enables
high-throughput classification of candidate drugs based on their
material properties, such as pore size for DNA/RNA capture and
dipole moment for polarity.

STATE-OF-THE-ART : EXTRAPOLATION

Mathematical formulation and vector representation. Adapted from Y. He
& H. De Sterck (Copper Mountain, 2022. ICERM, 2023.)

DESIGN OF FIXED POINT ACCELERATION
• Fixed point iteration z⋆ = f(z⋆, x)

• Forward iteration zk+1 = f(zk, x)

• Anderson acceleration zk+1 =
∑m

i=1 αif(z
k−i+1, x)

minimizeα ∥Gα∥22, subject to 1Tα = 1 (1)

G =
[
f(zk, x)− zk, · · · , (zk−m+1, x)− zk−m+1

]
(2)

where ν is a Lagrange multiplier for the constraint 1Tα = 1 in the
objective function: L(α, ν) = ∥Gα∥22 − ν(1Tα− 1).[
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where λ is a regularization term, incorporating a mixing param-
eter β > 0 to balance between original and extrapolated iterates:

zk+1 = (1− β)

m∑
i=1

αiz
k−1+1 + β

m∑
i=1

αif(z
k−i+1, x) (4)

The function f , the forward pass through the implicit layer, en-
sures that despite the intermediate expansion of the channel depth
to k1 inner channels, the output tensor Z retains the same dimen-
sions as the input tensor X ∈ Rn×d×H×W by setting the number of
outer channels k2 to number of input and output channels, d

• Tuning trade-off between acceleration and accuracy with m

Evaluating relative residual, ∥f(zk,x)−zk∥2
∥f(zk,x)+λ∥2

, for a random input x

• Anderson extrapolation has fewer more expensive iterations

Anderson can save up to ∼30-88% of compute towards AI carbon footprint,
projected to consume >2% of global electricity demand, >10% for data [3].

LEARNING ARCHITECTURE & HIERARCHY
• Architecture: Deep equilibrium neural network model

f(z, x) = norm(ReLU(z + norm(x+W2 ∗ (norm(ReLU(W1 ∗ z))))))

• Forward pass: Compute equilibrium point, logits, and loss

z∗ = f(z∗, x), ŷ = Az∗ + d, l(ŷ, y) = −
n∑
i

yi log ŷi

• Backward pass: Compute gradients by implicit function theorem
∂l
∂θ = ∂l

∂z∗ (I − ∂f
∂z∗ )

−1 ∂f
∂θ

LEARNING RESULTS

Algorithmic improvements to training and inference with augmentation vs.
CIFAR10 benchmark without augmentation, accelerated over standard.

Algorithm DEQ (ours) DEQ [Implicit, Bai et al. 2019] ResNet-18 [Explicit, He et al. 2016]

Number of parameters
Standard CIFAR10 64,842 ∼170,000 ∼170,000
Accelerated CIFAR10 64,842 - -
Standard ALMS 64,842 - -
Accelerated ALMS 64,842 - -

Training accuracy
Standard CIFAR10 64.7% - -
Accelerated CIFAR10 87.6% - -
Standard ALMS 98.2% - -
Accelerated ALMS 98.4% - -

Testing accuracy
Standard CIFAR10 64.2% 82.2% 81.6%
Accelerated CIFAR10 79.3% - -
Standard ALMS 97.9% - -
Accelerated ALMS 98.1% - -

Training time [seconds]
Standard CIFAR10 1.2×104 - -
Accelerated CIFAR10 1.4×103 - -
Standard ALMS 2.3×103 - -
Accelerated ALMS 5.3×102 - -

Inference time [seconds] Standard 0.20 - -
Accelerated 0.14 - -

Speedup relative to standard Accelerated CIFAR10 ratio 1.4-8.6 - -
Accelerated ALMS ratio 4.4-17.6 - -
Compute saved 77-94% - -

• COVID drugs to atom-bond then node-neighbor graph images

Compound (left). Graphical representation (center). Node-neighbor (right).

• Discovering drugs with artificial life and material scientists

Accelerating to fixed point deep equilibrium with accuracy near unity

LEARNING ANALYSIS
• Anderson extrapolation has a higher cost per iteration, measured

in function evaluations or epochs.

Deep equilibrium ∼1.4-17.6x faster to stable convergence with Anderson de-
spite more expensive iterations due to instability of standard forward

• Anderson extrapolation exhibits less fluctuation in accuracy as
seen in the test accuracy, whereas forward iteration shows more
significant ups and downs in both training and testing accuracy,
which suggest overfitting during training with forward iteration.

• Anderson acceleration reaches a higher accuracy plateau for both
training and test datasets. This could indicate a better generaliza-
tion capability when using Anderson acceleration.

SUMMARY AND FUTURE WORK
• This work shows that with accelerated deep equilibrium models,

artificial life and materials scientists could be constructed for prac-
tical industry applications based on first principles theory.

• A speedup of up to an order of magnitude enables an order of
magnitude larger models and/or 90% less computing resources
for similar accuracies, paving the way for LLMs, NLSOMs, and
foundation models for both training and running inferences.

• Future work: incorporate larger datasets to build multi-objective
optimized models, LLMs, NLSOMs, and foundation models that
make inferences for drug discovery and biocatalysis at scale, inte-
grating life and materials science in a novel, unprecedented way.
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