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Comparison of Density Functional Theory (DFT) and Deep Equi-
librium Models (DEQ)

Concept Density Functional Theory (DFT) Deep Equilibrium Models (DEQ)

Objective
Functional

Energy functional E[ρ] Loss function L(z,x, θ)

State Variable Electron density ρ(r) Equilibrium state z

External Input External potential Vext(r) Input data x

Functional Form E[ρ] = Ts[ρ] + Vext[ρ] + J [ρ] + Exc[ρ] z = fθ(z,x)

Implicit Equation Kohn-Sham equations:(
− ℏ2

2m
∇2 + Veff [ρ](r)

)
ψi(r) = ϵiψi(r)

Fixed-point equation: z∗ = fθ(z
∗,x)

Lagrangian L[ρ, λ] = E[ρ] + λ
(∫
ρ(r) dr−N

)
LDEQ(z, λ) =
L(z,x, θ) + λ⊤(z− fθ(z,x))

Constraint Normalization:
∫
ρ(r) dr = N Fixed-point condition: z = fθ(z,x)

Table 1: Corresponding variables and concepts in DFT and DEQ

Detailed Correspondence

• Objective Functional:

– DFT: The energy functional E[ρ] represents the total energy of the electron density ρ(r).

– DEQ: The loss function L(z,x, θ) represents the cost associated with the state z and the
input x, parameterized by θ.

• State Variable:

– DFT: The electron density ρ(r) is the primary variable that describes the distribution of
electrons in space.

– DEQ: The equilibrium state z is the primary variable that represents the point at which the
neural network reaches a stable configuration.

• External Input:

– DFT: The external potential Vext(r) influences the behavior of the electron density.

– DEQ: The input data x influences the equilibrium state of the neural network.

• Functional Form:

– DFT: The energy functional E[ρ] is composed of kinetic, external potential, Coulomb, and
exchange-correlation energies.

– DEQ: The equilibrium state z is defined as the fixed point of the function fθ.

• Implicit Equation:

– DFT: The Kohn-Sham equations are self-consistent equations that need to be solved to find
the electron density ρ(r).
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– DEQ: The fixed-point equation z∗ = fθ(z
∗,x) needs to be solved to find the equilibrium state

z∗.

• Lagrangian:

– DFT: The Lagrangian L[ρ, λ] incorporates the energy functional and a constraint ensuring
the electron density integrates to the total number of electrons.

– DEQ: The Lagrangian LDEQ(z, λ) incorporates the loss function and a constraint ensuring
the state z satisfies the fixed-point condition.

• Constraint:

– DFT: The constraint
∫
ρ(r) dr = N ensures that the total electron density equals the number

of electrons.

– DEQ: The constraint z = fθ(z,x) ensures that z is a fixed point of the function fθ.

Why These Approaches Work

Convergence to Physical/Optimal Solutions:

• DFT: The variational principle ensures that the electron density converges to the ground state,
minimizing the total energy.

• DEQ: The fixed-point approach ensures the neural network converges to a stable solution, mini-
mizing the loss function.

Handling Complexity:

• DFT: By focusing on the electron density rather than the full many-body wavefunction, DFT
simplifies the computational problem while retaining essential physical properties.

• DEQ: By defining the output as an equilibrium state, DEQ simplifies the training process and
enhances stability, making it easier to handle deep and complex networks.

By mapping these variables and concepts directly, we can see how both DFT and DEQ leverage
variational principles, implicit function formulations, and Lagrangian mechanics to achieve efficient and
effective solutions within their respective domains.

Reviewer c1eD

Review:

Review of Deep AndersoNN — Reviewer Feedback: There are some issues with this paper. It’s not
clear why the DEQ model architecture is favored for this application aside from the claimed speedups.
Is there some grounding of this model in the physical laws modeled by DFT? I’m also not sure why
CIFAR10 is included as a baseline given that it is irrelevant to the materials and life science tasks. Some
of the wording in the paper is confusing. However, the speedups are good and there is potential in the
work if some of the confusion behind the method and results can be clarified.

Rating: 4: Ok but not good enough - rejection
Confidence: 2: The reviewer is willing to defend the evaluation, but it is quite likely that the

reviewer did not understand central parts of the paper

Response:

• 1. Why is the DEQ model architecture favored for this application aside from the
claimed speedups?

The DEQ model architecture is favored for its ability to reach equilibrium states, which is con-
ceptually similar to the self-consistent field iterations in DFT. This equilibrium-seeking property
ensures stable and consistent solutions, aligning well with the iterative nature of solving DFT
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equations. Moreover, DEQs are highly expressive, capable of capturing complex dependencies and
interactions in the data, which is crucial for accurately modeling physical systems.

Response: DEQ Model Architecture - We have clarified why the DEQ model is favored,
emphasizing its equilibrium-seeking properties and conceptual alignment with the iterative nature
of DFT.

• 2. Is there some grounding of this model in the physical laws modeled by DFT?

Yes, the grounding of the DEQ model in the physical laws modeled by DFT lies in the concept
of finding equilibrium states. In DFT, the electron density is found by solving the Kohn-Sham
equations self-consistently, seeking a stable configuration that minimizes the energy. Similarly,
DEQ models find an equilibrium state by iteratively solving a fixed-point equation, achieving
a stable representation of the input data. This parallel in seeking stable solutions provides a
conceptual bridge between the two approaches.

Response: Grounding in Physical Laws - We have provided an explanation of how the
DEQ model is grounded in the physical principles of DFT through the concept of finding stable
equilibrium states.

• 3. Why is CIFAR10 included as a baseline given that it is irrelevant to the materials
and life science tasks?

CIFAR10 is included as a baseline to demonstrate the general applicability and robustness of the
DEQ model across different domains, including image classification, which is a well-established
benchmark in machine learning. While it may seem irrelevant to materials and life sciences, show-
casing the model’s performance on a variety of tasks highlights its versatility and effectiveness,
which can boost confidence in its application to more domain-specific problems.

Response: CIFAR10 Baseline - We have justified the inclusion of CIFAR10 to demonstrate
the model’s general applicability and robustness across various domains, highlighting its versatility.

• 4. Some of the wording in the paper is confusing.

We acknowledge that some of the wording may be confusing. We will revise the manuscript to
improve clarity and ensure that key concepts and justifications are presented in a straightforward
manner. This includes defining technical terms more clearly and providing more context where
necessary to aid understanding.

Response - Wording Clarity: We revised the manuscript to improve clarity and ensure that
technical terms and concepts are presented in a more understandable manner.

We believe that these clarifications will address the confusion and highlight the potential of the DEQ
model in this application. Thank you for your constructive critique.

Reviewer VUUy

Review:

Benchmarks of Anderson accelerated DEQ models showcase order of magnitude improved
training efficiency over structural datasets — Reviewer Feedback: The manuscript ”Constructing
artificial life and materials scientists with accelerated AI using Deep AndersoNN” describes the bench-
marking of Anderson accelerated DEQ models applied to materials and life science. Trained over QMugs
[Covid-related drug structures], OQMD [1M compounds], and QMOF [20k MOFs] to predict from a
molecular structure some properties such as dipole moment, pore size, and band gap. The order of
magnitude acceleration is fundamentally important, more studies showing these translational properties
from image analysis to materials science will have an important impact on science and sustainability and
are strongly encouraged.

Rating: 6: Marginally above acceptance threshold
Confidence: 3: The reviewer is fairly confident that the evaluation is correct
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Response:

• Quality - We appreciate the feedback on the organization and writing quality of the manuscript.
We will include more discussions about failures in predicting dipole properties, specifically address-
ing the issues in Fig 4 lower left panel.

• Clarity - Thank you for acknowledging the clarity of our presentation. We will continue to ensure
that the topic, data, methods, benchmarks, and results are clearly presented.

• Originality - We acknowledge that the manuscript benchmarks existing methods over different
datasets. While it does not introduce a novel technique, the transferability of the method across
domains is a significant contribution.

• Significance - We are glad that the significance of the improved efficiency of Anderson accelerated
DEQ models has been recognized. This is indeed crucial for processing large datasets, and we will
emphasize its implications further in the manuscript.

Additional Notes:

• The claim “artificial life scientists” is indeed ambitious. We will revise this claim to better reflect
the scope of our work.

• Combining Table 1 and Table 2 for better informativeness is a good suggestion; however, due to
space and formatting limitations on the paper, we made the necessary adjustments to the results
table displayed on the poster.

• The CIFAR10 benchmark results were included to provide a broad comparison. However, we will
address them more clearly in the text to justify their inclusion.

• We will ensure that all figures are readable with consistent and appropriately sized text.

Conclusion:
We appreciate the recognition of the importance of our benchmarks in demonstrating the efficiency

of Anderson accelerated DEQ models. We will enhance the manuscript by addressing the lack of novelty
and providing further discussion on understanding failure modes.

Reviewer 9Xmf

Review:

Promising work for accelerated AI in industry — Reviewer Feedback: The work introduces
the Deep AndersoNN framework, which accelerates AI by treating neural networks as deep equilibrium
models, solving parameters using nonlinear fixed point iteration problems, leveraging v2v iterative solvers
and windowing techniques like Anderson Extrapolation. Deep AndersoNN achieves significant speed-
ups, up to an order of magnitude, in both training and inference tasks compared to traditional methods.
I believe this acceleration might become important for practical applications in industry in the near
future. The work is also demonstrated in applications related to density functional theory in industrial
contexts. It showcases the ability to construct artificial life and materials scientists capable of tasks
such as classifying biomolecules, drugs, compounds, sorting metal-organic frameworks, and classifying
crystalline materials. Results exhibit high accuracy, up to 98%, while utilizing fewer computing resources.
I would like to see the source code and the public weight files in the future to verify the claims.

The authors suggest significant reductions in computational resources required, which could con-
tribute to environmental sustainability goals. The authors outline future directions, including incorpo-
rating larger datasets to build more robust models, democratizing access to training large models like
LLMs, NLSOMs, and foundation models, and integrating life and materials science for drug discovery
and biocatalysis at scale. Overall, the work presents a framework with practical applications in industry,
which I believe is promising in both efficiency gains and environmental benefits.

Rating: 7: Good paper, accept
Confidence: 3: The reviewer is fairly confident that the evaluation is correct
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Response:

• Acceleration Claims - We appreciate the recognition of the significant speed-ups achieved by the
Deep AndersoNN framework. We will provide the source code and public weight files in a future
release to allow for verification of our claims.

• Industrial Applications - We are pleased that the industrial applications of our work have been
acknowledged. We will continue to explore and demonstrate the practical applications of Deep
AndersoNN in various industrial contexts.

• Environmental Sustainability - The potential for reducing computational resources and con-
tributing to environmental sustainability is a key aspect of our work. We will further emphasize
this in the revised manuscript.

• Future Directions - Thank you for highlighting our outlined future directions. We are committed
to incorporating larger datasets, democratizing access to large model training, and integrating life
and materials science for impactful applications such as drug discovery and biocatalysis.

Conclusion:
We are grateful for the positive feedback and constructive comments. We will address the suggestions,

provide additional resources for validation, and continue to develop the Deep AndersoNN framework to
maximize its practical and environmental benefits.

Statistics

The paper rating is about average, with fair confidence of reviewers in its evaluation.
Overall Rating: 5.67 (∼71%): Marginally above acceptance threshold
Overall Confidence: 2.67: The reviewer is fairly confident that the evaluation is correct
Average Rating for ICML: 5.75 ± 0.66 (∼72%±8%)
Max Rating for ICML: 8.0 (100%)
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