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A IMPLEMENTATION DETAILS

For the selection of the image-specific sensing matrix H we used the unconditional diffusion models
from [Dhariwal & Nichol| (2021)) and 25 DDRM (Kawar et al., [2022a)) steps to generate 16 samples,
using 7 = 1.0 and 9, = 0.0. We added 12 rows to H in every iteration, and used matched the
number of iterations to the desired rate. We restore the images using the same model with either
IIGDM (Song et al.,[2023)) with 100 denoising steps and default hyperparameters for high perceptual
quality restoration, or an average of 64 DDRM (Kawar et al.,2022a) samples which where produced
as detailed above for low-distortion restoration.

In the latent diffusion experiment we used stable—diffusion—Z—baseE] (Rombach et al., [2022) and 25
DDPM steps with projection to generate 64 samples for selecting the sensing matrix. We added 48
rows to H in every iteration. We restore the images using the same model with either IIGDM (Song
et al.,[2023)) with 100 denoising steps and default hyperparameters. To increase the decoded image’s
perceptual quality, we do not use the IIGDM modification to the sampling algorithm in the last 5
steps.

We used publictly available third party software for JPEG (Wallace, [1991), JPEG2000 (Skodras
et al.,|2001)), and BPG (Bellard, [2018)). For HiFiC (Mentzer et al., 2020), we trained our own model
using the pytorch implementation publicly available on github El We trained the models using the
default parameters for each rate, and pruned networks that failed to converge to the desired rate.
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Figure 7: Rate-Distortion (top) and Rate-Perception (bottom) curves for ImageNet256 com-
pression, using DDRM (left) and PiGDM (right). Distortion is measured as average PSNR of
images for the same desired rate or specified compression quality, while Perception (image quality)
is measured by FID.

Ynttps://huggingface.co/stabilityai/stable-diffusion-2-base
Shttps://github.com/Justin-Tan/high-fidelity-generative—-compression
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FID (Heusel et al., |2017) is measured using Pytorch Fidelity E[, and the Range Encoder from con-
striction (Bamler, 2022) as an entropy encode(ﬁ

B EFFECT OF MEASUREMENT RANK

We repeat the imagenet experiment with different values of the hyperparameter r, which determines
how adaptive our algorithm would be. We modify the number of samples generated at each iteration
s accordingly to account for the rank required by the emperical covariance matrix. Based on the
original implementation of AdaSense (Elata et al., [2024)), we expect performance to improve the
lower the value of 7 is. In the results, demonstrated in [Figure 7} the variation of the rank seems
to have only a marginal effect, even for low rates. We conclude that PSC is not sensitive to this
parameter, and r can be tuned according to the system’s hardware (namely, maximum available
batch size).

C PSC PSeuDO-CODE

| from utilities import posterior_sampler, restoration_fuction,
entropy_encode, entropy_decode

5

3 def AdaSense_Step(H, y, r, shape, s=None):

4 c, h, w = shape

5 s = s if s is not None else (r x 4) // 3

6 noise = torch.randn((s, ¢, h, w))

7 samples = posterior_sampler (noise, H, V)

8 samples = samples.reshape(s, -1)

9 samples = samples - samples.mean (0, keepdim=True)

0 new_rows = torch.linalg.svd(samples, full_matrices=False) [-1][:r]

return new_rows
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13 def PSC_compress (image, N, r)
1
I
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4 c, h, w = image.shape

5 H = torch.zeros((0, ¢ » h x w)) # Empty sensing matrix
6 y = H @ image.reshape((-1, 1)) # Empty measurements
17 compressed_representation = y.clone ()

19 for n in range (N) :

20 new_rows = AdaSense_Step(H, y, r, (c, h, w))

21 H = torch.cat ([H, new_rows])

22 y = torch.cat([y, new_rows @ image.reshape((-1, 1)])

24 compressed_representation = y.to(torch.float8_ed4m3fn) # Quantize
25 y = compressed_representation.to(torch.float32)

26

27 return entropy_encode (compressed_representation)

29 def PSC_decompress (compressed_representation, N, r)

30 compressed_representation = entropy_decode (compressed_representation)
31 c, h, w = image.shape

32 H = torch.zeros((0, ¢ » h x w)) # Empty sensing matrix

33 y = H @ image.reshape((-1, 1)) # Empty measurements

35 for n in range (N) :

36 new_rows = AdaSense_Step(H, vy, r, (c, h, w))

37 H = torch.cat ([H, new_rows])

38 y = compressed_representation[: (nxr)].to(torch.float32)

40 return restoration_fuction(H, vy)

Our complete code will be published upon acceptance.

®https://github.com/toshas/torch-fidelity
"nttps://github.com/bamler-lab/constriction
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D IMAGE SPECIFIC RATE-DISTORTION

Below in [Figure 8| we present image-specific rate-distortion curves for the images displayed in
Figure 3] These graphs provide additional evidence that the trends shown in is general to
many images and not only to their avarage.
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Figure 8: Rate-Distortion curves for specific images from ImageNet256. The images from
ure 3|are used, numbered from top to bottom. Distortion is measured by PSNR of images.
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