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APPENDIX

A ARCHITECTURAL GENERALIZATION

A.1 EXTENDED RESULTS ON DIFFERENT ARCHITECTURES

Table 6: RAH-LoRA performance across different MLLM architectures. Results show consistent

improvements except for architectures with bottleneck designs.

Model Size VQAv2 TextVQA GQA POPE AvgA
Standard Multi-Head Attention

LLaVA-1.5 7B +1.3 +1.4 +1.1 +1.2 +1.25
LLaVA-1.5 13B +1.1 +1.2 +0.9 +1.3 +1.13
Qwen-VL-Chat 7B +1.2 +1.3 +1.0 +1.1 +1.15
VILA 7B +1.0 +1.1 +0.8 +1.0 +0.98

B DOMAIN MISMATCH ANALYSIS

B.1 CROSS-DOMAIN CALIBRATION

Table 7: Performance degradation with domain mismatch between calibration and evaluation data.

N VQA TextVQA GQA  SciQA
VQA 1.35 1.12 1.08 082
TextVQA 1.05 1.42 095 073
GQA 1.10 0.98 131 085
SciQA 0.75 0.68 071 148
CC3M 0.88 0.82 0.85  0.90

C SPECTRAL ANALYSIS OF WEIGHT UPDATES

C.1 SINGULAR VALUE ANALYSIS

Table 8: Singular value decay and variance captured across layers.

Layer Group Decay Rate  Var @ r=4 Var @ r=8 Var @ r=16 Effective Rank
Early (0-7) 0.68 68% 82% 91% 52
Middle (8-15) 0.71 71% 85% 93% 6.1
Late (16-23) 0.73 73% 87% 94% 6.8
Deep (24-31) 0.75 75% 89% 95% 7.3

C.2 ANALYSIS

Exponential decay rates (0.68-0.75) confirm the low-rank structure of beneficial updates. Deeper
layers show slightly higher effective rank, suggesting more complex cross-modal patterns. The 87%
variance captured at r=8 (late layers) validates our default rank choice, balancing expressiveness and

regularization.
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Table 9: Concentration of improvements across calibrated heads.

Head Percentile # Heads Cum. Gain Avga Avg |[AW|g

Top 20% 8 65% 0.124 0.218
20-40% 8 82% 0.091 0.156
40-60% 8 91% 0.073 0.112
60-80% 8 97% 0.058 0.089
Bottom 20% 8 100% 0.042 0.065

D PER-HEAD CONTRIBUTION ANALYSIS

D.1 CONTRIBUTION STATISTICS

D.2 ANALYSIS

Pareto principle confirmed: top 20% of heads contribute 65% of gains with 3x larger updates
(v = 0.124 vs 0.042). These high-impact heads cluster in layers 14-20, corresponding to peak
cross-modal pattern formation. The correlation between update magnitude and contribution (r=0.78)
suggests our selection criteria effectively identify bottlenecks.

E FAILURE CASE ANALYSIS

E.1 QUALITATIVE FAILURE EXAMPLES

Figure 4 shows representative success and failure cases. Success cases (left) demonstrate improved
focus on question-relevant regions, particularly for OCR and spatial tasks. Failure cases (right)
typically involve counting or pure language reasoning where dispersed attention may be beneficial.

F IMPLEMENTATION DETAILS

F.1 CALIBRATION DATA SELECTION

- Random sampling from training split with fixed seed (42) - Balanced sampling across question
types when available - Context length: maximum 256 tokens for questions - Image resolution: stan-
dard model preprocessing
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F.2 ALGORITHM PSEUDOCODE

Algorithm 1 RAH-LoRA: Representative Anchor Head Low-Rank Adaptation

Require: Model M, unlabeled calibration data D,

Ensure: Calibrated model M’

. // Step 1: Profile attention patterns

Compute [-SAL scores for all heads using Dy

Compute CAF scores via gradient-based importance

// Step 2: Select calibration targets

for each layer [ do
Identify heads with low I-SAL (bottom 10-15%)
Filter by CAF to exclude critical auxiliary heads
Add surviving heads to target set 7+

9: end for

10: // Step 3: Calibrate each target head

11: for each target head (I, h) € TH do

12: Find high-performing anchor heads in layer [

A A S e

13: Construct RAH via weighted aggregation of anchors
14: Compute low-rank approximation of difference

15: Apply update with trust-region bounded step size

16: end for

17: return M’
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G ADDITIONAL VALIDATION EXPERIMENTS

H IMPACT OF LAYER RANGE SELECTION
H.1 LAYER RANGE ANALYSIS

Table 10: Calibration statistics and performance across different layer ranges (LLaVA-1.5-7B).

Layer Range Layers Targets Calibrated AvgA  Time

Early (0-7) 8 42 8 +0.65 1.2m
Middle (8-15) 8 65 18 +0.92 1.8m
Late (16-23) 8 71 23 +0.78  2.1m
Deep (24-31) 8 38 12 +041 1.5m
Optimal (0-15) 16 107 26 +1.48 3.0m
Default (12-23) 12 124 38 +1.35  32m
Full (0-31) 32 284 72 +1.51 85m

H.2 KEY FINDINGS

The optimal range (layers 0-15) achieves the best performance (+1.48%) by capturing both early
visual feature extraction and initial cross-modal integration patterns. This range provides:

» Early layers (0-7): Foundation visual processing that benefits from alignment

* Middle layers (8-15): Critical cross-modal pattern formation where most coordination
failures occur

* Efficiency gain: 98% of full-model performance with only 50% of layers

While the full model achieves marginally higher gains (+1.51%), the 0-15 range offers the best
efficiency-performance trade-off with 2.8x faster calibration. For deployment, we recommend layers
0-15 as the optimal configuration.

H.3 KEY FINDINGS

The default range (layers 12-23) captures 73% of problematic heads while achieving 95% of full-
model gains. This sweet spot emerges because: - Early layers (0-7): Primarily unimodal processing,
few targets - Middle-late layers (12-23): Peak cross-modal pattern formation with coordination
failures - Deep layers (24-31): Most heads already well-aligned

Full model calibration yields marginal gains (+0.07%) for 2.6x computation, confirming diminish-
ing returns. For deployment, we recommend the default 12-23 range as optimal balance between
coverage and efficiency.
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