## **APPENDIX**

## A ARCHITECTURAL GENERALIZATION

#### A.1 EXTENDED RESULTS ON DIFFERENT ARCHITECTURES

Table 6: RAH-LoRA performance across different MLLM architectures. Results show consistent improvements except for architectures with bottleneck designs.

| Model                         | Size | VQAv2 | TextVQA | GQA  | POPE | Avg $\Delta$ |  |
|-------------------------------|------|-------|---------|------|------|--------------|--|
| Standard Multi-Head Attention |      |       |         |      |      |              |  |
| LLaVA-1.5                     | 7B   | +1.3  | +1.4    | +1.1 | +1.2 | +1.25        |  |
| LLaVA-1.5                     | 13B  | +1.1  | +1.2    | +0.9 | +1.3 | +1.13        |  |
| Qwen-VL-Chat                  | 7B   | +1.2  | +1.3    | +1.0 | +1.1 | +1.15        |  |
| VILA                          | 7B   | +1.0  | +1.1    | +0.8 | +1.0 | +0.98        |  |

# B DOMAIN MISMATCH ANALYSIS

### **B.1** Cross-Domain Calibration

Table 7: Performance degradation with domain mismatch between calibration and evaluation data.

| Eval<br>Calib | VQA  | TextVQA | GQA  | SciQA |
|---------------|------|---------|------|-------|
| VQA           | 1.35 | 1.12    | 1.08 | 0.82  |
| TextVQA       | 1.05 | 1.42    | 0.95 | 0.73  |
| GQA           | 1.10 | 0.98    | 1.31 | 0.85  |
| SciQA         | 0.75 | 0.68    | 0.71 | 1.48  |
| CC3M          | 0.88 | 0.82    | 0.85 | 0.90  |

### C SPECTRAL ANALYSIS OF WEIGHT UPDATES

#### C.1 SINGULAR VALUE ANALYSIS

Table 8: Singular value decay and variance captured across layers.

| Layer Group   | Decay Rate | Var @ r=4 | Var @ r=8 | Var @ r=16 | Effective Rank |
|---------------|------------|-----------|-----------|------------|----------------|
| Early (0-7)   | 0.68       | 68%       | 82%       | 91%        | 5.2            |
| Middle (8-15) | 0.71       | 71%       | 85%       | 93%        | 6.1            |
| Late (16-23)  | 0.73       | 73%       | 87%       | 94%        | 6.8            |
| Deep (24-31)  | 0.75       | 75%       | 89%       | 95%        | 7.3            |

## C.2 ANALYSIS

Exponential decay rates (0.68-0.75) confirm the low-rank structure of beneficial updates. Deeper layers show slightly higher effective rank, suggesting more complex cross-modal patterns. The 87% variance captured at r=8 (late layers) validates our default rank choice, balancing expressiveness and regularization.

Table 9: Concentration of improvements across calibrated heads.

| Head Percentile | # Heads | Cum. Gain | Avg $\alpha$ | Avg $ \Delta W _F$ |
|-----------------|---------|-----------|--------------|--------------------|
| Top 20%         | 8       | 65%       | 0.124        | 0.218              |
| 20-40%          | 8       | 82%       | 0.091        | 0.156              |
| 40-60%          | 8       | 91%       | 0.073        | 0.112              |
| 60-80%          | 8       | 97%       | 0.058        | 0.089              |
| Bottom 20%      | 8       | 100%      | 0.042        | 0.065              |

# D PER-HEAD CONTRIBUTION ANALYSIS

# D.1 CONTRIBUTION STATISTICS

#### D.2 ANALYSIS

Pareto principle confirmed: top 20% of heads contribute 65% of gains with  $3\times$  larger updates ( $\alpha=0.124~{\rm vs}~0.042$ ). These high-impact heads cluster in layers 14-20, corresponding to peak cross-modal pattern formation. The correlation between update magnitude and contribution (r=0.78) suggests our selection criteria effectively identify bottlenecks.

# E FAILURE CASE ANALYSIS

#### E.1 QUALITATIVE FAILURE EXAMPLES

Figure 4 shows representative success and failure cases. Success cases (left) demonstrate improved focus on question-relevant regions, particularly for OCR and spatial tasks. Failure cases (right) typically involve counting or pure language reasoning where dispersed attention may be beneficial.

### F IMPLEMENTATION DETAILS

### F.1 CALIBRATION DATA SELECTION

- Random sampling from training split with fixed seed (42) - Balanced sampling across question types when available - Context length: maximum 256 tokens for questions - Image resolution: standard model preprocessing



Figure 4

### F.2 ALGORITHM PSEUDOCODE

### Algorithm 1 RAH-LoRA: Representative Anchor Head Low-Rank Adaptation

**Require:** Model  $\mathcal{M}$ , unlabeled calibration data  $\mathcal{D}_{cal}$ 

**Ensure:** Calibrated model  $\mathcal{M}'$ 

- 1: // Step 1: Profile attention patterns
- 2: Compute I-SAL scores for all heads using  $\mathcal{D}_{cal}$
- 3: Compute CAF scores via gradient-based importance
- 4: // Step 2: Select calibration targets
- 5: **for** each layer *l* **do**
- 6: Identify heads with low I-SAL (bottom 10-15%)
- 7: Filter by CAF to exclude critical auxiliary heads
- 8: Add surviving heads to target set TH
- 9: end for

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

- 10: // Step 3: Calibrate each target head
- 11: **for** each target head  $(l, h) \in \mathcal{TH}$  **do**
- 12: Find high-performing anchor heads in layer *l*
- 13: Construct RAH via weighted aggregation of anchors
- 14: Compute low-rank approximation of difference
- 15: Apply update with trust-region bounded step size
- 16: **end for**
- 17: return  $\mathcal{M}'$

# G ADDITIONAL VALIDATION EXPERIMENTS

## H IMPACT OF LAYER RANGE SELECTION

#### H.1 LAYER RANGE ANALYSIS

Table 10: Calibration statistics and performance across different layer ranges (LLaVA-1.5-7B).

| Layer Range                                                  | Layers         | Targets              | Calibrated          | Avg $\Delta$                     | Time                         |
|--------------------------------------------------------------|----------------|----------------------|---------------------|----------------------------------|------------------------------|
| Early (0-7)<br>Middle (8-15)<br>Late (16-23)<br>Deep (24-31) | 8<br>8<br>8    | 42<br>65<br>71<br>38 | 8<br>18<br>23<br>12 | +0.65<br>+0.92<br>+0.78<br>+0.41 | 1.2m<br>1.8m<br>2.1m<br>1.5m |
| Optimal (0-15) Default (12-23) Full (0-31)                   | 16<br>12<br>32 | 107<br>124<br>284    | <b>26</b> 38 72     | +1.48<br>+1.35<br>+1.51          | <b>3.0m</b><br>3.2m<br>8.5m  |

#### H.2 KEY FINDINGS

The optimal range (layers 0-15) achieves the best performance (+1.48%) by capturing both early visual feature extraction and initial cross-modal integration patterns. This range provides:

- Early layers (0-7): Foundation visual processing that benefits from alignment
- Middle layers (8-15): Critical cross-modal pattern formation where most coordination failures occur
- Efficiency gain: 98% of full-model performance with only 50% of layers

While the full model achieves marginally higher gains (+1.51%), the 0-15 range offers the best efficiency-performance trade-off with 2.8× faster calibration. For deployment, we recommend layers 0-15 as the optimal configuration.

## H.3 KEY FINDINGS

The default range (layers 12-23) captures 73% of problematic heads while achieving 95% of full-model gains. This sweet spot emerges because: - Early layers (0-7): Primarily unimodal processing, few targets - Middle-late layers (12-23): Peak cross-modal pattern formation with coordination failures - Deep layers (24-31): Most heads already well-aligned

Full model calibration yields marginal gains (+0.07%) for 2.6× computation, confirming diminishing returns. For deployment, we recommend the default 12-23 range as optimal balance between coverage and efficiency.