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Transformers learn through gradual rank increase
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Abstract

We identify incremental learning dynamics in transformers, where the difference
between trained and initial weights progressively increases in rank. We rigorously
prove this occurs under the simplifying assumptions of diagonal weight matrices
and small initialization. Our experiments support the theory and also show that
phenomenon can occur in practice without the simplifying assumptions.

1 Introduction

The transformer architecture achieves state of the art performance in various domains, yet we still
lack a solid theoretical understanding of its training dynamics (Vaswanti et al.,2017; Devlin et al.|
2019; [Liu et al.l 2019; |Dosovitskiy et al.,|2020). Nevertheless, the theoretical toolbox has matured
over the last years and there are promising new approaches. One important line of work examines the
role that initialization scale plays on the trajectory taken by gradient descent (Jacot et al., 2018} |Chizat;
et al.| 2018} |Geiger et al.l 2019; [Moroshko et al.l 2020; Jacot et al., [2021; [Stoger & Soltanolkotabi,
2021; | Kim & Chung} 2022). When the weights are initialized small, it has been shown for simple
networks that an incremental learning behaviour occurs, where functions of increasing complexity
are learned in stages. This regime is known to be richer than the large-initialization regimeﬂ but the
incremental learning dynamics are difficult to analyze, and are so far understood only for extremely
simple architectures. Can we apply this analysis to transformers? Namely:

Are there incremental learning dynamics when training a transformer architecture?

An obstacle is that past work on incremental learning has mainly studied linear networks (Berthier,
2022; |Arora et al.l [2019; [Milanesi et al., 2021} |L1 et al., [2020; Woodworth et al., 2019; Jacot et al.,
2021}, |Gissin et al., [2019), with one paper studying nonlinear 2-layer fully-connected networks
(Boursier et al.,2022). In contrast, transformers have nonlinear attention heads that do not fall under
previous analyses: given X € R™*?, an attention head computes

attention(X; Wi, Wo, Wy, Wo) = smax(X W W X )XWy W, (D)

where Wi, Wy, Wy, Wg € R4¥4" are trainable matrices, and the softmax is applied row-wise. A
transformer is even more complex, since it is formed by stacking alternating layers of attention heads
and feedforward networks, along with residual connections.

Main finding Our main finding is that transformers exhibit incremental learning dynamics, where
the difference between the trained and initial weights incrementally increases in rank. Our results
have a theoretical component and an experimental component.

'In the large-initialization regime, deep learning behaves as a kernel method |Jacot et al.|(2018); |Chizat et al.
(2018). Various separations with kernels are known for smaller initialization: e.g.,/Ghorbani et al.| (2019); Abbe
et al.|(2022); Malach et al.[(2021).
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Figure 1: For an attention head in
ViT trained on (a) CIFAR-10, and
(b) ImageNet, we plot the normal-
ized spectra of Wy Wg at initial-
N\ ization (in red), and of the learned
6 25 50 75 100 125 "8 2 s 75 100 135 pertllrbatiOnS to Wk ‘/Vv(;gr at differ-

#Eigenvalue #Eigenvalue .
ent epochs (in green).

Theoretical contributions For our theory, we study a simplification of the transformer architec-
ture, where the attention head weights are diagonal matrices: i.e., in each attention head we have
Wy = diag(wg), where wx € R? are trainable weights, and similarly for W, Wy, and Wo,.
We rigorously establish the training dynamics of this architecture under gradient flow when the
initialization is small. We prove that dynamics occur in discrete stages: (1) during most of each stage,
the loss plateaus because the weights remain close to a saddle point, and (2) at the end, the saddle
point is quickly escaped and the rank of the weights increases by at most one.

This theoretical result on transformers follows from a general theorem characterizing the learning
dynamics of networks fyn that depend on the product of parameters u, v € RP as

fan(zsu,v) = h(z;u ©v), 2
where z is the input, ® denotes the elementwise product, and A is a smooth function.

Theorem 1.1 (Informal statement of incremental learning dynamics). Let fyn be a network of
the form (2), and suppose that the weights are initialized very small: i.e., the entries of u,v are
initialized on the order ©(«) for some small o > 0. Then the dynamics of gradient flow training
effectively proceeds in discrete stages, each one lasting time O (log(1/«)). In each stage, the number
of nonnegligible entries of u ® v increases by at most one.

A transformer with diagonal weight matrices falls under this result when we only train the attention
head weights. For example, if the transformer has one attention head, then we can take u =
[wi,wy] € R?? and v = [wg,wo] € R?* to be concatenations of the diagonal entries of the
weights of the head; see Example for more details and the extension to transformers with many
heads. Then, using Theorem , we see that in each stage either WKWE; = diag(wg )diag(wg)

or Wy W/ = diag(wy )diag(wo) increases in effective rank by at most one

Experimental contributions In our experiments, we first validate our theoretical results, which
require the simplifying assumptions of small initialization and diagonal weight matrices.

Then, we conduct experiments on vision transformers in settings closer to practice, without any of the
assumptions required by our theoretical analysis. Perhaps surprisingly, we again observe incremental
learning dynamics, even though the assumptions of the theory are not met. We observe that the
difference between trained and initial weights has low rank, and also that the rank of this difference
grows gradually during training; see Figure|l| The incremental nature of the dynamics is easier to see
for ImageNet, since for CIFAR-10 the rank of the weight difference does not grow as much.

1.1 Related work

Relation to LoORA We note an intriguing connection to the LoRA algorithm, where a pretrained
base model is cheaply fine-tuned by training a low-rank perturbation of the weights (Li et al., 2018
Aghajanyan et al.,2020; [Hu et al.,|2021). The method is surprisingly powerful, and recently LoORA
has been fundamental to allowing the open-source community to inexpensively fine-tune language
models (Patel & Ahmad, 2023; [Taori et al.,[2023)). On the other hand, in our work we observe that
the trained weights are a low-rank perturbation of the initial weights due to the training dynamics,
without having to apply an explicit rank constraint as in LoRA. This raises an exciting open question
for future work: can we explain and improve algorithms like LoRA by better understanding and
quantifying the incremental dynamics of large transformers?

*We also remark that Theorem is interesting in its own right and may have other applications beyond
transformers. In fact, it qualitatively recovers the incremental dynamics result of Berthier|(2022) when specialized
to linear diagonal networks, i.e., when fyn(; w, v) = >0, w;v;z;. Furthermore, it addresses an open question
of Berthier| (2022) for proving incremental learning dynamics without assuming « = v at initialization.
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Low-rank bias in nonlinear models For 2-layer networks, it is known that low-rank bias in the
weights emerges if the target function depends on a low-dimensional subspace of the input (Abbe
et al.,[2022,2023; IDamian et al.| 2022; Biett1 et al., [2022; Mousavi-Hosseini et al.| [2022). The results
of |Abbe et al.| (2022] [2023)) are especially relevant, since they show that the rank of the weights
increases in a sequential manner, determined by the “leap complexity” of the target function, which
is reminiscent of our empirical observations on transformers. See also [Frei et al.|(2022); Timor et al.
(2023)) for more investigations of low-rank bias in 2-layer networks under different assumptions. For
transformers, ' Yu & Wul(2023)) report that empirically the trained weights (using default initialization)
are not low-rank. This is consistent with our claim that the difference between initial and trained
weights is low-rank, since the initial weights might not be low-rank.

Incremental learning dynamics Several works prove incremental learning behaviour in deep
linear networks when the initialization is small. |Gidel et al.|(2019) has shown that gradient descent
dynamics on a 2-layer linear network with Lo loss effectively solve a reduced-rank regression
problem with gradually increasing rank. |Gissin et al.| (2019) prove a dynamical depth separation
result, allowing for milder assumptions on initialization scale. [Arora et al.| (2019); Milanesi et al.
(2021) show implicit bias towards low rank in deep matrix and tensor factorization. |Li et al.|(2020)
show deep matrix factorization dynamics with small initialization are equivalent to a greedy low-rank
learning (GLRL) algorithm. And[Jacot et al.|(2021) independently provides a similar description of
the dynamics, but without requiring balanced initialization. Finally, Berthier|(2022); Jin et al.| (2023)
overcome a technical hurdle from previous analyses by proving incremental learning for the entire
training trajectory, rather than just the first stage. In contrast to our result, these prior works apply
only to linear networks with certain convex losses, whereas our result applies to nonlinear networks.
In order to make our extension to nonlinear networks possible, we must make stronger assumptions
on the training trajectory, which we verify hold empirically. As far as we are aware, one other work
on incremental learning handles nonlinear networks: [Boursier et al.| (2022) proves that a 2-layer
network learns with a two-stage incremental dynamic; but that result needs the stylized assumption
that all data points are orthogonal.

1.2 Paper organization

Sections [2] 3] and | contain theoretical preliminaries, definitions of the models to which our theory
applies, and our main theoretical result on incremental dynamics. Section [5] provides experiments
which verify and extend the theory. Section [6|discusses limitations and future directions.

2 Preliminaries

We consider training a network fyn(+; @) parametrized by a vector of weights 6, to minimize a loss
L(0) = Ea y[0(y, fun(;0))],

where the expectation is over samples (x,y) € R% x R% from a training data distribution, and
¢ : R x Rowt — R, Consider a solution () to the gradient flow

de
dt
where o > 0 is a parameter governing the initialization scale, that we will take very small. For our
theory, we henceforth require the following mild regularity assumption on the loss and data.

0(0) = aby, = — _VoL(6) 3)

Assumption 2.1 (Regularity of data distribution and loss). The function ¢(y, ¢) is continuously
twice-differentiable in the arguments [y, ¢] € R%Tdout, There exists C' > 0 such that almost surely
the data is bounded by ||z, ||y|| < C.

The assumption on ¢ is satisfied in typical cases such as the square and the cross-entropy losses. The
data boundedness is often satisfied in practice (e.g., if the data is normalized).

3 Neural networks with diagonal weights

Our theory analyzes the training dynamics of networks that depend on products of diagonal weight
matrices. We use ® to denote elementwise vector product.
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Definition 3.1. A network fyy is smooth with diagonal weights 6 = (u,v) € R?? if it is of the form
fan(x; 0) = h(z;u © v)
where h : R% x RP — R%ut is continuously twice-differentiable in its arguments in R%+7,

The assumption on h precludes the use of the ReLU function since it is not continuously-differentiable.
Otherwise the assumption is fairly mild since any & can be used to express an architecture of any
depth as long as the nonlinearities are twice-differentiable, which includes for example GeLUs (as
used in ViT). We describe how to express a transformer with diagonal weights.

Example 3.2 (Transformer with diagonal weights). Consider a transformer with L layers and H
attention heads on each layer. The transformer output at layer { is Z, € R"*?, which is given by
Zy = X and inductively for { > 0 by

* (Attention layer) Zy = Zy_1 + Zfil attention(Zy_1; Wf(’i, Wé’i, Wé’i, Wé’i)
« (Feedforward layer) Zy = Zy + o (Z;W5)(WE)T,

where Wél, Wé’l, Wé’l, Wé’l € R are attention parameters, and W5, W5 € R¥*? are the
feedforward parameters, and o is a continuously twice-differentiable activation.

Suppose that the only trainable parameters are the attention parameters, and that these are diagonal

matrices: i.e., Wf(l = diag(w?) for some w%i € RY, and similarly for the other attention
parameters. Because of the structure of the attention head (1)), the final output Zy, only depends on
the attention parameters through the elementwise products 'wﬁg ® wgl and 'wf/’l ® wé’l. In other

words, we can write
Z;, =h(X;u0v),
0,

for vectors u = [wi, wi i< € R and v = [wg W5 iy eln <) €
some smooth model h, which fits under Definition[3.1]

RQ(ZHL’ and

4 Incremental learning in networks with diagonal weights

Any model fyn with diagonal weights as in Definition [3.1]evolves under the gradient flow (3) as
d d
d—ltb =v©g(0), dit) =u®g(d) where 4)

g(0) = —E, ,[Dl(y, h(x;u ©v))  Dh(z;u©v)'].

Here D{(y, ) € R*dout is the derivative of £ in the second argument and Dh(x,-) € Réut*P js

the derivative of h in the second argument. We show that if initialization scale of 8 = (u,v) is

small, then learning proceeds in incremental stages, as given in Algorithm [T} where in each stage the

effective sparsity of v and v increases by at most one.

4.1 Intuition for incremental learning dynamics

We develop an informal intuition for the result. First, we observe a conservation law that simplifies
the dynamics. It can be viewed as the balancedness property for networks with linear activations
Arora et al.[(2018)); Du et al.| (2018]), specialized to the case of diagonal layers.

Lemma 4.1 (Conservation law). For any i € [p] and any time t, we have
ui (t) = vf(t) = u (0) — v} (0). )

(2

Proof. This follows from < (u? — v?) = u;v;9:(0) — u;v;9:(0) = 0. O
This reduces the degrees of freedom and means that we need only keep track of p parameters in total.
Specifically, if we define w; (t) := u;(t) + v;(t), then the vector w = u + v evolves by

dw

— = 0). 6
o WO g(0) (6)

Using the conservation law (5), one can compute 8(¢) from w(t), so it remains to analyze the
dynamics of w(t).
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4.1.1 Stage 1 of dynamics

Stage 1A of dynamics: loss plateau for time © (log(1/a))) At very early times ¢, we have 8(¢t) ~ 0
because the weights are initialized to be very small. Thus, we can approximate g(0(t)) ~ g(0) and
so we can solve for the evolution of w:

w(t) ~ w(0) ® eI O,

This approximation is valid until one of the entries of 8(t) reaches constant size, which one can show
happens around time ¢ ~ T3 - log(1/«) for

T) = min1/]gi(0)].
i€(p]

Until this time, the weights 0(t) are small, the network remains close to its initialization, and so we
observe a loss plateau.

Stage 1B of dynamics: nonlinear dynamics for time O(1) Subsequently, we observe a rapid
decrease of the loss and nonlinear dynamics during a O(1)-order time-scale. Indeed, suppose
that the dynamics are “non-degenerate” in the sense that there is a unique coordinate 7¢ such that
1/|gix(0)] = Ti. Under this assumption, in stage 1A, the weights only grow significantly at
coordinate ig. So one can show that for any small € > 0, there is a time ¢ (¢) = T - log(1/«) such
that w; (t1) ~ €, v;,(t;) ~ se for some sign s € {+1,—1}, and |u;(t;)], |vi(t;)| = 0a(1) for all

i zoiﬁ]

Because all coordinates except for ¢y are negligibly small after stage 1A, we may perform the
following approximation of the dynamics. Zero out the weights at coordinates except for iy, and
consider the training dynamics starting at = (ee;,, see;, ). After some constant time, independent
of «a, these dynamics should approach a stationary point. Furthermore, all coordinates of « and v
will remain zero except for the i coordinate, so the sparsity of the weights will be preserved. In other
words, we should expect there to be a time t; = ¢; + O(1) ~ T; - log(1/«) such that

0(t)) ~ (ae;,, sae;,) = 0",

for some a € R, such that 8! is a stationary point of the lossE] This is a good approximation
because ¢; — ¢; = O(1) is a constant time-scale, so the weights at coordinates except for iy remain
negligible between times ¢, and ¢;. Overall, we have argued that the network approximately reaches
stationary point that is 1-sparse, where only the weights at coordinate ¢y are nonzero.

4.1.2 Later stages

We can extend the argument to any number of stages k, where in each stage the weights remain close
to constant for time ©(log(1/a)) and then rapidly change during time O(1), with the sparsity of the
weights increasing by at most one. In order to analyze multiple stages, we must also keep track of the
magnitude of the weights on the logarithmic scale because these evolve nonnegligibly throughout
training. Inductively on k, suppose that there is some T}, € R, b* € R? and 8% € R?? and a time
tr & Ty - log(1/a) such that

log,, (w(t)) ~ bF and O(;,) ~ 6",

where 6% is a stationary point of the loss. We argue for the inductive step that there is Ty 11 € R such
that during times ¢ € ({5, Tp+1 - log(1/a) — ©(1)) the weights remain close to the stationary point
from the previous phase, i.e., @(t) ~ 6*. And at a time #;, 1 ~ Ty - log(1/a) we have

log,, (w(tk41)) ~ b ' and O(t41) ~ 081,

where 8511 and b**1! are defined below, and 8%+ is a stationary point of the loss whose support
has grown by at most one compared to %. The pseudocode for the evolution of b* and 8 along the
stages is given in Algorithm[I} and more details are provided below.

*Without loss of generality, we can ensure that at initialization w(0) and w(0) 4 v(0) are nonnegative. This
implies u(¢) is nonnegative. The fact that u;, and v;, are roughly equal in magnitude but might differ in sign is
due to the conservation law (). See Appendix [A.3|for details.

“The entries of w and v are close in magnitude (but may differ in sign) because of the conservation law ()
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Stage (k + 1)A, loss plateau for time O(log(1/a)) At the beginning of stage k + 1, the weights
are close to the stationary point 8%, and so, similarly to stage 1A, linear dynamics are valid.
w(t) ~ w(fy) © IO ) (7

Using the conservation law (3)), we derive a “time until active” for each coordinate ¢ € [p], which
corresponds to the time for the weight at that coordinate to grow from negligible to nonnegligible
magnitude:

Ag(i) = { OF =1+ 5gn(9:(8")))/9u(6%),  if 9u(6%) # 0 ®
00, if g;(0%) =0
The approximation (7)) therefore breaks down at a time ¢ ~ T}1 - log(1/«), where
Tit1 =Ty + Ag(ix), ik = arg Helﬁ Ag(i), 9
iclp

which corresponds to the first time at the weights at a coordinate grow from negligible to nonnegligible
magnitude. And at times ¢ ~ Tj11 - log(1/«), on the logarithmic scale w is given by

log,, (w(t)) =~ b*1 .= b — g(0F)Aw(ir), (10)

Stage (k+1)B of dynamics: nonlinear dynamics for time O(1) Subsequently, the weights evolve
nonlinearly during O(1) time. To see this, if we make the non-degeneracy assumption that there
is a unique coordinate ij such that Ay (i) = min; Ag(7), then this means that in stage (k + 1)A,
the only coordinate where weights grow from negligible to nonnegligible magnitude is ¢;. Roughly
speaking, for any € > 0, there is a time ¢,  (¢) = Ty - log(1/a) such that

O(tisr) = 0" + (ceiy,sgn(gi(6%))eei, ) ,
where the sign of the weights in coordinate i), comes from the conservation law (5). At this time,
the weights are approximately the stationary point from stage k, plus a small perturbation. Consider
the dynamics of 1" (¢, €) € R?P initialized at 1" (0, €) = 0% + (ee;, , sgn(g:(0"))ee;, ) and evolving
k
according to the gradient flow ’M’Tf’e) = —VgL(1p*). These dynamics may be highly nonlinear, so
to control them let us assume that as we take € to be small, they converge to a limiting point 8%+1
SN k _ pk+1
ll_r}(l) tligloqb (t,e) =07, (11)
Then we expect that at a time t1 = t;,,1 + O(1) & Tjp1 - log(1/c), we have O(t41) ~ ¥+,
This concludes the inductive step.

4.2 Formal statement of incremental dynamics

We formally state our result. For ease of notation, we write 8% = (u”* v*) and v* = s* ® u* for

some sign-flip vector s* € {41, —1}*. This form of 8" can be guaranteed by the conservation law
(@) of the dynamics; see Appendix [A] We also denote supp(8*) := supp(u”*) = supp(v*) C [p].

We state our assumptions formally. First, we require that the dynamics be non-degenerate, in the
sense that two coordinates do not become active at the same time. We also place a technical condition
to handle the corner case when a coordinate leaves the support of active coordinates.

Algorithm 1 Incremental learning in networks with diagonal weights

1: 8%,0°—0ecRP, Ty 0

2: for stage number £ =0,1,2,...do

3:  #(A) Pick new coordinate i), € [p] to activate.

4:  For each i, define time A(4) until active using (8).

5 Pick winning coordinate i) using (9)

6:  Calculate time T} using (9) and break if co

7:  Update logarithmic weight approximation b**1 using (T0)
8.

9

10:

# (B) Train activated coordinates to stationarity.
: @1 « limiting dynamics point from (TT)
end for
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Figure 2: Training a vision transformer on CIFAR-10 using Adam, while varying the initialization
scale (unit scale indicates default initialization). Plotted are the evolution of the eigenvalues of
AWKWC—Qr (a) - (c) and AWy, Wg (d) - (f) in a random self-attention head in the second layer
throughout training. Incremental learning dynamics and a low-rank bias are evident for all scales,
albeit more pronounced at smaller initialization scales.

Assumption 4.2 (Nondegeneracy of dynamics in part (A)). The initialization satisfies u;(0) # v;(0)
for all 4. For stage k, either T}, = oo or there is a unique minimizer 5 to min; Ay (ix) in (E) Finally,
for all i € supp(6*~!) \ supp(6*) we have g;(6*) # 0.

Next, we require that very small perturbations of the coordinates outside of supp(6*) do not change
the dynamics. For this, it suffices that 6% be a strict local minimum.
Assumption 4.3 (Stationary points are strict local minima). For stage k, there exist §; > 0 and
cx > 0 such that for 4 € B(u*, §) supported on supp(u*), we have

L(a,s" ©u) > cpllu’ — u?

Finally, we require a robust version of the assumption (T1)), asking for convergence to a neighborhood
of @1 even when the initialization is slightly noisy.

Assumption 4.4 (Noise-robustness of dynamics in part (B)). For any stage k with T},;; < oo and any
€ > 0, there are § > 0 and 7 : R> — R such that the following holds. For any @ € B(u*,§) NRZ,
supported on supp(@) C supp(u®) U {i}.}, there exists a unique solution 9 : [0, 00) — RP of the
gradient flow 2¥ = —V¢ £(4)) initialized at ¢(0) = (&, s*+! © @), and at times ¢ > 7(1);, ),

(1) — 0" <e.

These assumptions are validated experimentally in Appendix [C] Using them, we prove that incremen-
tal learning Algorithm|T] tracks the gradient flow dynamics if the initialization scale is small.

Theorem 4.5 (Incremental dynamics with untied weights). For any stage k and time t € (Tg, Ti+1)
the following holds under Assumptions 4.2 and There is o (t) > 0 such that for all a < oy,
there exists a unique solution 0 : [0, tlog(1/a)] — RP to the gradient flow (3) and

. . k
01613100(75 log(1l/a)) — 6%,

and at each stage the sparsity increases by at most one: supp(0**1) \ supp(8*) C {ir}.

Example 4.6 (Application: Incremental learning in diagonal transformer). In Example 3.2} we
showed that a diagonal transformer falls under Theorem[|.3| As a corollary, the gradient flow on a
transformer with small initialization will learn in stages, where in each stage there will be at most one
head i € [H] on one layer { € [L] such that either the rank OfW;;2 (VVé’Z)T = diag(wﬁj)diag(wgz)

or the rank of Wé’i (VVé’i)T = diag(wf}i)diag(wéi) increases by at most one.
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Figure 3: A network containing a single self-attention layer with diagonal (a) - (c) and full (d)
- (f) weight matrices, trained with gradient descent in the incremental learning regime. (a) The
diagonal entries of Wy, Wg and (d) the singular values of Wy, Wg are learned incrementally. (b)
The diagonal entries of W Wg and (e) the singular values of Wi W(:?r are learned incrementally.
(c), (f) The loss curves show stagewise plateaus and sharp decreases.
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Figure 4: Stable rank of AW Wg per initialization scale (Unit scale refers to the default initializa-
tion) in different self-attention heads post-training, at layers 1, 3, 5. At each layer, the stable rank
mean and standard deviation are computed across 8 heads per layer, for each initialization scale. All
models were trained on CIFAR-10 using the Adam optimizer. Smaller initialization scales lead to
lower-rank attention heads. Analogous plots for AWy, Wg are in the appendix.

S Experimental results

We experimentally support our theoretical findings in a series of experiments: first on a toy model
given by Equation (1)), followed by experiments on a vision transformer on the CIFAR datasets. We
defer additional experimental details and results to the appendix.

Toy models We consider a toy model comprised of one self-attention layer with a single head as in
(1), with either diagonal or full weight matrices. We initialize Wy, W, Wy, W, using Gaussian
initialization with a small standard deviation, and train the model using GD on a regression task with
50-dimensional random Gaussian token inputs and targets from a teacher model. During training,
we track the diagonal entries of Wi Wg and Wy W in the diagonal case, and the singular values

of W W/ and WVWOT in the full weights case. Our results are summarized in Figure For the
diagonal model, as predicted, diagonal components are learned incrementally, resulting in progressive
increase in the rank; in Appendix [C]we run additional experiments to verify that the assumptions of
Theorem 4.5]indeed hold. For the full-weights model, we also observe incremental learning with
progressively-increasing rank, even though this setting falls beyond our theory.

Vision transformers We next run experiments that go well beyond our toy model to test the
extent to which incremental learning with a low-rank bias exists in popular models used in practice.
We conduct experiments with vision transformers (ViT) [Dosovitskiy et al.| (2020) trained on the
CIFAR-10/100 and ImageNet datasets. We use a ViT of depth 6, with 8 self-attention heads per layer
(with layer normalization). We use an embedding and MLP dimension of dey, = 512, and a head
dimension of dj, = 128 (i.e Wx, Wo, Wy, W € RmXdn) We train the transformer using Adam
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Figure 5: Spectrum of the weight perturbation AW W, vs. initialization in a vision transformer
trained on CIFAR-10, using Adam and default initialization scale, in random self-attention heads in
different layers. The learned perturbation exhibits extreme low-rank bias post-training even in default
initialization scales. Analogous plots for AWy, WOT are in the appendix.

on the CIFAR-10/100 and ImageNet classification tasks with cross-entropy loss. We train all layers
(including the feedforward layers) while varying the initialization scale of all layers by multiplying
their initial values by a scale factor (we fix the scale of the initial token mapper). To illustrate
the effect of training on weights with a non-vanishing initialization scale, we plot the spectrum
of the difference AWKWg and AWy W, between the weights post-training, and their initial

values. Figure|2|shows the evolution of the principal components of AW W, and AWy, Wg for
a randomly-chosen self-attention head and layer throughout training, exhibiting incremental learning
dynamics and a low-rank bias. Note that incremental learning and low-rank bias are increasingly
evident with smaller initialization scales, as further demonstrated in Figure ] Finally, we plot the
spectrum of AW Wg against that of its initialized state in Figure|S|for different self-attention heads,
illustrating that the weight perturbation learned during the training process is extremely low-rank
when compared to the initial spectrum. All figures in this section are given for models trained on
CIFAR-10. In the appendix we conduct further experiments on CIFAR-100 and ImageNet, as well as
different model sizes for completeness, and these show similar trends. Further experimental details
and results are provided in the appendix.

6 Discussion

We have identified incremental learning dynamics in transformers, proved them rigorously in a
simplified setting, and shown them experimentally in networks trained with practical hyperparameters.

Limitations There are clear limitations to our theory: the diagonal weights and small initialization
assumptions. More subtly, the theory does not apply to losses with exponential-like tails because the
weights may not converge to a finite value and so Assumption[4.3]is not met (this could possibly be
addressed by adding regularization). Also, the architecture must be smooth, which precludes ReL.Us —
but allows for smoothed ReL.Us such as the GeLUs used in ViT (Dosovitskiy et al.,[2020). Finally,
the theory is for training with gradient flow, while other optimizers such as Adam are used in practice
instead (Kingma & Bal 2014)). Nevertheless, our experiments on ViTs indicate that the incremental
learning dynamics occurs even when training with Adam.

Future directions A promising direction of future research is to examine the connection between
our results on incremental dynamics and the LoRA method (Hu et al.| 2021), with the goal of
explaining and improving on this algorithm; see also the discussion in Section|I.1] Another interesting
avenue is to develop a theoretical understanding of the implicit bias in function space of transformers
whose weights are a low-rank perturbation of randomly initialized weights.
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A Proof for dynamics of networks with diagonal parametrization

(Theorem

A.1 Assumptions

Recall we have defined 8°, ..., 8%, ... € R?P as the sequence of weights such that 8 = 0 and *+!

is defined inductively as follows. Consider the dynamics of 1" (¢, ¢) € R?? initialized at ¥*(0, ¢) =
k

0% + (ee;, ,segn(g;(0%))ee;, ) and evolving according to the gradient flow dd’digf’e) = —VoL(9F).

We assume that there is a limiting point %1 of these dynamics as e is taken small and the time is

taken large:

lim lim " (t,e) = 1.

e—0t—o00
Under the above assumption that this sequence 8°, ..., 0%, ... is well-defined, we can derive a useful
property of it for free. Namely, the conservation law (3)) implies that w ® © — v ® v is preserved. It
follows that for each k we have that 8% = (u*, v*) satisfies |u”| = |v”| entrywise. In other words,
there is s¥ € {+1, —1}” satisfying

0" = (u”,s" ©ub) e R?.
We also abuse notation and write supp(6*) := supp(u”) C [p], since the support of % on the first p
coordinates matches its support on the last p coordinates.
Having fixed this notation, we now recall the main assumptions of the theorem.
Assumption A.1 (Nondegeneracy of dynamics in part (A); Assumption 4.2). The initialization
satisfies u;(0) # v;(0) for all 7. For stage k, either Ty 1 = oo or there is a unique minimizer 7, to
min; A(ix) in (@©). Finally, for all i € supp(6*~1) \ supp(6*) we have g;(8*) # 0.
Assumption A.2 (Stationary points are strict local minima; Assumption[4.3). For stage k, there exist
Sk > 0 and ¢, > 0 such that for w € B(u”, §) supported on supp(u*), we have

L(a,s* ©a) > cpljuf —al?.

Assumption A.3 (Noise-robustness of dynamics in part (B); Assumption[#.4). For stage k, either
Ty+1 = oo or the following holds. For any € > 0, there are 6 > 0 and 7 : Ryy — R such that
the following holds. For any @ € B(u",§) N R supported on supp(z) C supp(u®) U {i\},
there exists a unique solution ) : [0, 00) — R? of the gradient flow ‘fi—t = —VgL() initialized at
¥(0) = (a, s¥*1 © @), and at times t > 7(7;, ),

l9p(t) — 65| < e.

A.2 Rescaling time for notational convenience

For ease of notation, we rescale time
ua(0) = au(0), v,(0) = av(0)
dv,

=log(1/a)vy ® g(ug, va), - = log(1/a)ug © g(ta, V). (12)

duq
dt
We also define
0., (1) = (ua(t),va(t)) € R?P,

Because of this time-rescaling, we equivalently state Theorem {.5]as:

Theorem A.4 (Restatement of Theorem[.5). Let K € Zxq be such that Assumptions[4.2| 4.3| hold
forallk < K and Assumptionholdsfor allk < K. Then forany k < K and time t € (Tk, Ti+1)
the following holds. There is ao(t) > 0 such that for all o < «y, there exists a unique solution
0, : [0,t] — RP to the gradient flow (12) and

lim 0, (t) — 6",
a—0

where at each stage |supp(u”) \ supp(uf~1)| < 1.

For shorthand, we also write
Sy, = supp(u”) and S = [p] \ supp(u”).

12
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A.3 Simplifying problem without loss of generality

For each coordinate i € [p] we have |uq,;(0)| # |va,:(0)| by the non-degeneracy Assumption
So we can assume |uq,;(0)| > |vq,;(0)] without loss of generality. Furthermore, we can assume the
entrywise inequality

uq(0) >0
by otherwise training weights @, (t), ¥, (t) initialized at @, (0) = sgn(us(0))u,(0) and 9,(0) =
$en(V4,(0))v,(0), as Ua (t) @ Da(t) = ua(t) © v, (t) at all times.
Since u2 ;(t) — v2 ;(t) = u2 ;(0) — v2 ;(0) by the conservation law (@), it holds that |u;(t)| >
|va,i(t)| throughout. So by continuity

uq(t) >0
throughout training.

A.4 Tracking the sum of the weights

We define
Wo (1) = un(t) + va(t) .
The reason for this definition is that during training we have
dw
d; = log(1/a)w, © g(0.), (13)

Notice that since that we have assumed uq ;(0) > |v4,;(0)] for each i € [p] we have w,(0) > 0
entrywise. So, by (13) forall ¢t > 0,

we(t) > 0.

It suffices to track w,, (t) because we can relate the log-scale magnitude of w,, (¢) to the magnitudes
of the corresponding coordinates in u,,(t) and v, (t) — see technical Lemmas and[B.3]

A.5 Claimed invariants in proof of Theorem[A.4]

In order to prove Theorem we consider any gradient flow 6,, : [0, 7*] — R? solving (T2)) where
T* € (Tk,Tk+1). For now, we focus only on proving properties of this gradient flow, and defer its
existence and uniqueness to Section[A8]

We show the following invariants inductively on the stage k. For any € > 0, any stage k£ < K, there
is a; := ag(€) > 0 such that for all @ < ay, the following holds. There are times 5, := t;(«, €) and
tpi 1 = L1 (e, €), such that

tp € [Tk — €, Tk + €, (14)
[Ths1 — € Thyr + €], ifThpr < oo
. 1
tk)-‘rl € {{T*}, lf Tk-‘,—l = 00 ( 5)
and the weights approximate the greedy limit for all times ¢ € [ty, ;4]
16a(t) — 0] < e, (16)

and the weights at times ¢, and ¢, ; are correctly estimated by the incremental learning dynamics on
the logarithmic-scale

1ogq (wa (tr)) — b¥[| < e (17)

and if T} 1 < oo then
Hogq (wa(ty41)) — b <. (18)
Base case k = 0: Take to(cv, €) = 0. Then statement (T4) holds since T, = 0. Notice that as o — 0
we have that u, (0), v4(0) — 0 = u, and also log,, w,(0) — 1 = b°. So statement follows if

we take o small enough. In Section[A.6] we show how to construct time ¢, such that (I6) and (T8)
hold.

Inductive step: Suppose that (T4), (T6), (T7) and (T8) hold for some iteration & < K. We prove them
for iteration k + 1. In Section we construct time ¢;. In Sectionwe construct time ¢y, ;.
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440 A.6 Dynamics from time ¢;, to time ¢, , (Linear dynamics for O(log(1/c)) unrescaled time)

a1 Let k < K, and suppose that we know that for any €, > 0, there is ax(€x) > 0 such that for all
a2 0 < a < @y, there is a time ¢, = {(«, €) satisfying

T — tr| < &
164 (te) — 6| < &
[1og,, (wa (£r)) — b*|| < €.

443 A.6.1 Analysis in case where T} ; < 00

444 Consider first the case where T}, < co. We show that, for any €, ; > 0, there is py11(€, ;) > 0
a5 such that for all 0 < p < pr41(€py1) thereis ay,1(p, €, 1) > 0 such that for all o < a4, there
ws isatimet, , =1, (a,p, €, ) satisfying

Tht1 = Loyrl < €xpa (19)

[100(t) — 0%|| < €41 forall t € [Ey,t;, 4] (20)

[10g 4 (wa (1)) — 8| < €y 1)
Uaiy, (tri1) € [P, 3p] (22)

se(Vaiy (i) = 55, - (23)

447 For any p, o, let & = pe;, | /(4p) and choose ¢, = t1 (v, &). Then define

tpr = £k+1(a,p,§k+1) (24)
= inf{t € [ty, 00) : ||Ua,s5¢(t) = wa,s¢ (k)| + [|Va,s¢ (t) — va,sg ()| > 4p} -

448 Now we show that the weights 0, (t) cannot move much from time #; to ¢, ;. The argument uses the

449 local Lipschitzness of the loss £ (from technical Lemma|B.7), and the strictness of 8% as a stationary
450 point (from Assumption[d.3).

451 Lemma A.S (Stability of active variables during part (A) of dynamics). There is py41 small enough
a52  and qy,,(p) small enough depending on p,such that for all p < pri1 and o < ay,,, and all
453t € [ty by q)

104(t) — 0F|| < p' == max(24p, 18\/pKg, /ci) - (25)

454 where cy, is the strict-minimum constant from Assumptionand KR, is the Lipschitzness constant
455 from Lemma @for the ball of radius Ry, = ||0%|| + 1.

Proof. Assume by contradiction that (23) is violated at some time ¢ < ¢, ;. Let us choose the first
such time

t* = inf{t € [Tr, ty1) : [ua(t’) —ubl| + va(t") — s" 0 u®| > o'}
w6 Define @ = (1, ) by

. Uai (%), i€ Sk _ fwaultt), i€ Sy
_{0, igs, ™ ”’_{0, ig S,

457 By the definition of ¢, 4, this satisfies

1% — wa ()| = [[wa,s¢ (8] < 4p + [[wa,s; (G:) ]| < 4p + €, < 5p,
[ = va (t)I| = [[va,s; ()| < 4p + [|va,s¢ (B)l| < 4p+ € < 5p-

458 Also

s~ + 5 — 8% © M| = luas, (1) — 25, ]| + [vas, () — s, © 2, 1| = o' — 100> p'/2.
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Using (a) the strict minimum Assumptionwith constant ¢, since ||@ — 6% || < p’ and we take p’
small enough,

. ; @ cx(p)?
L(84(t")) > L(B) — 4pKr, > L") — 4pKr, +

16
> [ F = c(p)? T
> L(0a(tk)) = (4p+ &) Kr, + == > L(Ba(fr)) -
This is a contradiction because £ is nondecreasing along the gradient flow. O

Lemma A.6 (Log-scale approximation is correct during part (A)). There are functions pyy1(€j.41) >
0 and a1 (p,€,y1) > 0 such that for all p < pri1 and o < oy, and for all t € (ty, 1, ) we
have for a constant C depending on k,

[ og, (wa (t)) — b" + (t = 1)g(8°) | < pesr +Cp'(t —tk) . (26)
Furthermore, for all i € S§, and t € (ty,t;.,,) we have
sgn(g:(0a(t))) = sgn(g:(6%)). 27)

Proof. By Lemma and Lemma there is a constant C' depending on 8* such that for all
t € (tkhtk.l,_l),
lg(6a(t) —g(6")| < Cp'.

For shorthand, write g(6%) = g(6*) + Cp'1 and g(0%) = g(8%) — Cp'1. Since wy(t) > 0
entrywise as we have assumed without loss of generality (see Section[A.3)), we have the following
entrywise inequalities

g(0%) © wu(t) < g(Ba(t)) © wa(t) < g(6*) © walt) . (28)

Since the dynamics are given by d;‘;“ =log(1/a)g(w,) © wa,

wa(fk)e(t—t’k)log(l/a)g(ek) <wu(t) < wa(t‘k)e(t—fk)log(l/a)g(ek) _
Taking the logarithms with base a € (0, 1),
(t — tr)g(u") <log, (wa(fr)) —log, (wa(t) < (t —tx)g(u").

The bound (26) follows since || log,, (wa (fx)) — b*|| < & < pej -

Finally, the claim (27) follows from (28) since sgn(g(6")) = sgn(g(6*)) = sgn(g(6")) if we take
p small enough. O

First, we show that the weights must move significantly by time roughly 7}, . This is because of the
contribution of coordinate ;..

Lemma A.7 (¢, is not much larger than Ty 1). Suppose that Ty 1 < oo. Then there are
Pr+1(€pr1) > 0and oy 1 (p,€,41) > 0 such that for all p < pii1 and o < a4, the following
holds.

Uopr < Tht1 + €41 -
Proof. Assume by contradiction that ¢, | < Tj41 + €. Forall times t € [ty min(t; |, Thy1 +
€r41)], by Lemma
|Log (wa,iy (1)) — b, + (t — 1) 95, (0%)] < O(V/p).-
Since we know |Ay(ix) — (Ths1 — )| < & and b¥ — Ay (ir)gs, (%) € {0,2}, it follows that
100 (Waiy (Ter1 + €x41)) & (=19, (0% (ensr — 1), 2+ 196, (0% (€41 — E+1)) + O(V/p).

By taking p small enough, we see that |g;, (6")|(€,41 — €x+1) + O(/p) > & > 0 for some § > 0
that is independent of «, so

loga(wa,’ik (Tk+1 + §k+1)) € (—6, 2+ 5) .

So |ua,iy (Th+1 + €441)] > 1 by Lemma But by the construction of ¢, this means that
topr < Tht1 + €pqr- O
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Next, we show that until time ¢, , ;, none of the coordinates in S, move significantly, with the possible
exception of coordinate 7.

Lemma A.8 (No coordinates in S§ \ {ix} move significantly during part (A)). Suppose Ty 1 < oo.
Then there are py1(€;41) > 0and oy (p, €,.41) > 0 such that for all p < pyy1 and o < oy,
the following holds. There is a constant ¢ > 0 depending on k such that for all i € S\ {ix} and
t € [th, tpsa)

Uer,i (1) — Ueri (B)|, [Va,i (B) — Vi (Br)| < @ 4 €

Proof. The previous lemma combined with the inductive hypothesis gives

tpr — e < Dp(in) + 26,00 \ {ix}-

We analyze the movement of each coordinate ¢ € S5, \ {i} by breaking into two cases:

* Coordinate i # i), such that b¥ € (0,2). By Assumption there is a unique winning
coordinate so b} — 7g;(0%) € (c,2 — c) for some constant ¢ > 0 forall 7 € [0, ¢,y — ] C
[0, Ay (ix) + 2€;,1]. By Lemma |A.6, log,(wa,i(t)) € (—¢/2,2 — ¢/2) for all times
t € [fk, L y1)- So by LemmaB. 1} [uq i(t)], [va.i(t)] < ac/%.

» Coordinate i # i), such that b¥ = 0. By Lemma we must be in the corner case where

i € Sk—1 NS} (i.e., the coordinate was active in the previous stage but was dropped from
the support in this stage).

By Lemma since b¥ = 0 we have ¢;(6*) < 0. By Lemma this means
sgn(gi(0a(t))) = sgn(gi(0%)) < 0forallt € (fy, ) 4,).

We break the analysis into two parts. Since b¥ = 0, the sign is s¥ = +1. The inductive
hypothesis |0, (t) — 6% | < &, implies that |uq i () — 2¥| < & and |va;(tx) — 2F| < &.
For small enough € this means that sgn(us ;(tx)) = sgn(ve(tx)) = +1. Now let
t* = min(ty,inf{t >t : va(t) = 0}). Since uq,i(t) > vq,i(t) without loss of
generality (see Section[A.3), we have sgn(uq,i(t)) = sgn(va,i(t)) = +1 forall t € [fx, t*].

So du‘zli‘;(t), dv‘%(t) < Oforallt € [ty,t*]. So, for any ¢ € [t),t*],

|tha,i(8) = i (B [Va,i(8) = vai(Er)] < &

Also, since log,, (wq,i(t*)) ~ 1, by Lemmal[A.6| we have t* > ¢ > 0 for some constant ¢
independent of a.. So for all ¢ € [t*,¢,,,] we have b¥ — 7¢;(8") € (c,2 — ¢) for some

constant ¢ > 0. S0 [tq,i(t)], [va,i(t)| < a®/* forall t € [t*,t,_ ). The conclusion follows
by triangle inequality.

* Coordinate i # i) such that b¥ = 2. The analysis is analogous to the case b¥ = 0, except
that we have s¥ = —1 instead and g;(8*) > 0 by Lemma

O

Finally, we use this conclude that £; ,; = T} 1 and that the weights at coordinate 5, are the only
weights that change significantly, and by an amount approximately p.

Lemma A.9 (Coordinate ¢, wins the part (A) race at time £, | ~ Ty 11). Suppose that Ty, {1 < oo.
Then there are py11(€,4q) > 0 and oy, 1 (p, €,41) > 0 such that for all p < py1 and o < a1,
the following holds.

[tir1 — Thsrl < €q1s
Uer, iy, (tk-‘rl) € [pa 3/0} )

k
g (Ve iy, (Qﬁ-l)) = Sik—H .
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Proof. Let us analyze the case that b¥. € (0,2). Notice that b} = bf — Ay (ix)g;, (8%) € {0,2}
and that if b "' = 0 then g;, (0*) > 0 and if it is 2 then bf"! = g;, (8%) < 0. So by Lemma|A.6]
for all times ¢ € [ty, min(t;, 1, Th41 — €44 1)), We have wq 5, (t) € (¢, 2 — ¢) for some ¢ > 0. So for
small enough by Lemma|[B.1| [t i, (£)], [va,i, (t)] < a*/2. Combining this with Lemma we
see that for ¢ € [ty, min(t; 1, Tk41 — €;,41)] We have

[wa(t) = walti)l| + lva(t) — valts)]| < 2(a+&)p <p,

for small enough «. So by definition of ¢, ,; we must have ¢, ,; > Tyy1 — €, ;. Combined
with Lemma |A.7, we conclude that [T} —t; ;| < €, which is the first claim of the lemma.
Furthermore, by Lemma[A8]

Y lwailtirn) = uai @)l + [vai(tig) = vailfi)| < 2p(a° + &) < p/2,
i€eSg\{ir}
so by definition of ¢, ; and triangle inequality we have |uq i, (t541)| + [Va,i, (Ers1)] = 40— p/2 =
7p/2. Also, since u?, ;, (tyy1) — v2,, (tyy1) = O(a?) we have uq i, (t,11) € [p,3p]. Finally, if
bf:l = 2, then sf}jl = —1 and log, (wq,i, (x4 1)) > 1.5 50 sgn(va,q, (t)) < 0 by Lemma
analogously, if b;*' = 0, we have s;"' = 1 and log,, (Wi, (ts11) < 0.5 50 5g(Va,i, (fpq) > 0.
The case bfk € {0, 2} can be proved similarly to the analysis in Lemma where one shows that

during the first period of time the magnitudes of |u;, ()| and |v;, (¢)| decrease, until the sign of v;,
flips and they once again increase.

O

We have shown the claims (19), (20), 1) 22), and (23) for the time ¢, ;. In fact, if we let
.41 € [tk,00) be the first time ¢ such that uq ;, (t) = p we still have (T9), @5 (21) and (23) by the
same analysis as above, and (22)) can be replaced with the slightly more convenient

Ua,iy, (t;chl) =p-
A.6.2 Analysis in case where T}, 1 = 0o

In this case that T}, 1, we just have to show that the weights remain close to 8*. We show that for
any €, > 0, there is ;. (€, ;) > O such that for all & < o, and times ¢ € [T}, + €, 1,T"],
k
160 (t) — 07| < €j11-

We can use Lemmas and[A.6] which were developed for the case of T}, < oo, but still hold for
Ty+1 = oo. Lemma guarantees that the weights do not move much until time ¢, , ;, and so we

only need to show that t; , ; > T* when we take p small enough. For this, observe that gi(Gk) =0
for all ¢ ¢ Sj, because otherwise T}, 1 < oo. Therefore Lemma @ guarantees that until time
min (7%, ;) all weights are close to the original on the logarithmic scale. Namely,

o, (wa () — b < peysy + Cp/ (T — &)

Furthermore, by the non-degeneracy Assumption we know that b¥ € (0,2) for all i € Sy by
Lemma@ So if we take p small enough and ¢, , ; small enough, we must have that £ , ; > T™.

A.7 Dynamics from time ¢, to time ¢, (Nonlinear evolution for O(1) unrescaled time)

Suppose that we know for some & < K that for any ¢, > 0, there is py(€;,) > 0 such that for all
p < pg there is a;,(p, €;,) > 0 such that for all & < q,, there is a time t;, = t;.(«, p, €;,) satisfying

T — t,] < €, (29)
16a(t),) — 0" 1| <& (30)

[ log,, (wa(ty)) — b"|| < &, 31)
Ua iy, (L) = p, (32)
sgn(Vaiy_, (t)) = 55, - (33)
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Now we will show that for any € > 0, there is oy, = ay(€;) > 0 such that forall 0 < o < ay, there
is a time ¢y, = tx (v, €) satisfying

Ty — tr] < & (34)
[0 (te) — 6% < & (35)
[ log,, (wa (k) — b¥|| < & (36)

We give the construction for ;. For any desired accuracy €, > 0 in this stage, we will construct an
accuracy €, = €, (€;) = €;/3 > 0. We will also constructa p = p(¢g;,) > 0 which is sufficiently small,
and we will construct an cutoff for « equal to &y = @+1(€x) > 0 which satisfies & < oy (p, €)-
The values for these parameters ¢;, and p and &, will be chosen in the following lemma, and will
depend only on €.

Lemma A.10 (New local minimum reached in time O(1/log(1/a))). For any &, > 0, we can

choose ay, = ay(€x) > 0 small enough so that, for any 0 < o < &, there is ti, = ti (o, €) for
which conditions (34) to (36) hold.

Furthermore, there is a constant C" independent of « such that |0,,(t)|/104(t,,)| € [1/C”,C"]?F at
all times t € [t;,, ).

Proof. Let t;, = t; (o, p,€;) be given by the induction. Let us compare the dynamics starting at
0. (t;,) with the dynamics starting at 0(t,,) = (@(t), 9(t;)) which is given by

- Ua,i(ty), %€ Sk—1U{ig_1} - Va,i(ty), @€ Sk—1U{ix—1}
i t = ’ . . d i t = ’ . .
i(ty) {0, otherwise an Oite) 0, otherwise

and run with

de 7]
o= —log(1l/a)V,L(0) .

By Assumptionwe know there exists a unique solution 6 : [t;, 00) — RP as long as we take ¢,
small enough because supp(6(t;,)) = Sk—1 U {ix—_1} and ||0;(t,) — 0*~!|| < €. Furthermore, by
Assumptionif we take €, small enough there must be a time 7 := 7(&, p) < oo such that
10(t) — 6| < &/2fort >t, +7/log(1/c) (37)
Define
i = ty + 7/ log(1/a).

So for a small enough, |7}, — t;| < 2¢;, < €, proving (34).

We now compare 0, (%) with @(%;,), and show that if we take o small enough, then the dynamics of 6
closely match the dynamics of 6,,(¢) for times ¢, + O(1/log(1/c)). The argument uses Gronwall’s
inequality. Let t* = inf{t > t, : ||@(t*) — 0, (t)|| > 1/3}. For times ¢ € [t,, t*) by Lemma|B.7|we
have

d

II%é(t) — 0.0l = log(1/a)[[VeL(B(t) — Vo L(Ba(1)]| < Kg() log(1/a)[16(t) — Ba(1)]],

where K, is the smoothness constant from Lemma Note that since ||0(t)| < oo for large
enough ¢ by (37), the trajectory of 6 must lie in a compact set. Therefore, there must be a finite

set of times s1, ..., 8m € [ty, ") such that Uy, ) B(60(t),1/2) C UL, B(0(s;),3/4). So letting
C = max]*, Ké(s y <00 for all times ¢ € [t;,,t*) we have

i

d - ~
7 110(t) = 0a(1)]| < Clog(1/)[0(2) — Ba ()]
By Gronwall’s inequality, for all times ¢ € [t;,,t*),
10(t) — Ba ()] < [18(t) — Oa(ty)llexp(Clog(1/a)(t — 1)) -

18



583
584

585
586

587
588

589

590

592

593

594

595
596
597
598
599

600
601
602

603
604

605

607

608
609

610
611
612
613
614

615
616

617
618
619

620
621

We know from LemmalA_§]that there is a constant ¢ > 0 such that for any small enough 0 < a < o,
such that

||é(§k) —0,(t,)|| < af

If we take o small enough that a¢ exp(C'T) < €,/2 < 1/3, we must have t* > t, + 7/log(1/a)
and so we prove (33)

16% — 6 (E)I| < &/2 + [8(F) — BalFi) | < &

It remains to show that (3) is satisfied. Since ||@(t) — 0, (t)|| < 1/3 forall ¢ € [t,,, 4], it holds that
the trajectory of 6,,(t) lies in a compact set. So by Lemmawe have ||g(6.(t))|| < C’ for some
constant C” at all times ¢ € [¢,{x]. Since m|% = |wa.i(t)]|gi(wa (1)) < C'|wa,i(t)],
we must have |wq,;(t)|/|wa.:(t)] € [1/C”, C"] for some constant C”’ independent of « and all
E?CL% ) Ct:;fl}].z;l"herefore, follows from (31). A similar argument shows that |0,(t)/0.(t;)| €

O

A.8 Concluding the proof of Theorem|[A.4]

We have shown that Theorem is true for solutions 6, : [0,7*] — R?” to the gradient flow,
where T, € (Tx,Trk+1). To establish Theorem it remains only to show that for any T} €
(Tk, Tk +1) and small enough « such a solution to the gradient flow exists and is unique. To
see this, note that in the inductive proof of the invariants we construct a sequence of times 0 =
to <t <ty <--- <tg <ty > T, where we guarantee that any gradient flow solution
0. : (0,1, 1] — RP satisfies 6, € Uke{owa}B(ek, 1) forall t € Ugeqo,... k3 [tk Ly 1]- And also
fort € Ugeqo,.... k—1} [t trt1], we have 8,(t) € B(0, C}/0%) for some constant C}, independent
of « by Lemma So 0, (t) € B(0,Ck) for some constant Ck at all times ¢t € [0,T*]. By
Lemma the loss gradient Vg £(0) = (v ® g(0),u © g(0)) is Lipschitz-continuous on the
compact set B(0,Ck). So 6, : [0,T*] — RP exists and is unique by the Cauchy-Lipschitz theorem.

O

B Technical lemmas

B.1 Relating the sum of the weights to the original weights using the conservation law

Lemma B.1. If for some constant 0 < ¢ < 1 we have log,(wa.(t)) € (¢,2 — ¢), then for small
enough o

max([ua,i(t)], [va,i(t)]) < /.

Proof. Let w,(t) = wuq(t) — v,(t). By the conservation law @), wq,;(t)Wa(t) =
Wa,i(0)Wa,i(0) = 1qa,;(0)? — v4,4(0)%. By the non-degeneracy of initialization (Assumption ,
the right-hand-side is ©(a?). So if log, (wa(t)) € (c¢,2 — ¢) then for small enough «, we
have log,, (|Wa.i(t)]) € (3¢/4,2 — 3¢/4). S0 |uni(t)] < |wa,i(t) + Wai(t)] < a2 and

i (8)] < wai(t) — ai(t)] < a2, 0
Lemma B.2. Iffor some constant 0 < c we have log,, (wq i(t)) & (—c¢, 2+ c), then for small enough
Q,

[ta,:(£)] > 1.

Proof. Define w, = u, — v, as in the proof of Lemma If log, (wa,i(t)) < —c then
log,, (|a.i(t)]) > 2 — ¢/2 for small enough a, so u;(t) > a~¢ — a?~%2 > 1. Similarly, if
log,, (wa.i(t)) > 2+ cthen log,, (| (t)]) < —c/2 so |ui(a)| > a™¢/2 —a?+e > 1. O

Lemma B.3. Iffor some constant ¢ > 0, there is small enough o such that if we have log,, (wq (1)) >
1+ ¢ then sgn(va,i(t)) < 0. Otherwise, iflog, (wa ;(t)) < 1 — c then sgn(vy ;(t)) > 0.
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622 Proof. Follows from v, = 1(w, — w,). Recall that w,(t) > 0 and notice that w,(t) > 0.
623 In the first case, w, ;(t) < a'T¢ and W, ;(t) > a'~%/2. In the latter case w, ;(t) > o'~ and
624 Wy (1) < a'TC/2, O

625 B.2 Sign of gradients on coordinates that leave support

26 Lemma B.4. Forany k > landi € Sg, if b¥ € {0,2} then we must have i € supp(u*~—1)\
627 supp(u®), and we must have g;(u*) < 0 if b¥ = 0 and g;(0%) > 0 if b¥ = 2. In particular,
628 Ay (ix) > 0forall k.

620 Proof. This is by induction on k and using the non-degeneracy Assumption 4.2 O

630 B.3 Local lipschitzness and smoothness

631 We provide several technical lemmas on the local Lipschitzness and smoothness of ¢, h, and g.

632 Lemma B.5. The function {(y, ) is locally Lipschitz and smooth in its second argument: for any
633 R > 0, there exists Kg such that for any ¢, ¢’ € B(0, R)

[6(y, ¢) — Uy, <) < Kr[ ¢ =]
1Dy, ¢) — DUy, ¢ < Krll¢ =<,

634 almost surely over y. Here D{(y, )" € Reut is the derivative in the second argument.

635 Proof. Since ¢ is continuously twice-differentiable, for each y € R%, ¢ € R%w¢ there is Ky ¢ <oo
636 suchthat forally € B(y,1/K, ¢)and ¢’ € B({,1/K, ¢) we have

IDe(y’, ¢l < Ky and [ D*(y',¢)]| < Ky ¢,

637 where D¢ and D?/ denote the first and second derivative in the second argument. So for all such
68 Yy € B(y,1/Ky¢)and (', ¢" € B({,1/Ky ¢) we have

[0y, ¢") = Ly ¢ < Kyl = <"l and  [DL(y',¢") — DUy, ¢")| < Ky cI¢" =<7
s39  Cover the set {(y,¢) : |ly|l| < C,|[¢|| < R} with the balls UyB(y,1/K, ¢). By compactness,

s40 there is a finite subcover (y1,¢1), ..., (Yr, ¢r), SO we can take Kr = max;c[, Ky, ¢, < oo and the
s41 lemma holds since ||y < C almost surely by Assumption 2.1] O

s42 Lemma B.6. The function h(x;-) is locally bounded, Lipschitz and smooth in its second argument:
643 for any R > 0 there exists K such that for any 1,1’ € B(0, R),

[h(a; ¥)|| < Kr
1h(x; ) — h(@; ¢")|| < Krllv — 4|
[Dh(x; 4p) — Dh(z; o) || < Kgllvp — 4|,

s4a  almost surely over x. Here Dh(x,-) € Réut x RP is the derivative in the second argument.

645 Proof. Analogous to proof of Lemma[B.5] using continuous twice-differentiability of i and bounded-
46 ness of ||| O

67 Lemma B.7 (Local Lipschitzness of loss and loss derivative). When 8 = (u,v) € R?’ and
s48  fun(x;0) = h(z; u © u) the following holds for g(0) defined in @). For any R > 0, there exists
s49 Kpg < oo such that for any 6,0 € B(0, Kg),

19(8) —g(8)|| < Kr||6 - o'
IVeL(0) — VRL(O')|| < Kol|6 — 6|
|£(0) — L(0")| < Krll6 — ¢
650  Proof. Let 0 = (u,v),0 = (u',v’). This follows immediately from the local Lipschitzness and
651 smoothness of i and £ in Lemmas|[B.5]and[B.6] as well as
19(8) — 9(6')]| = Il Ea y [Dh (1 © v) T De(y, b 0 v)) T — Dh(as ' © o) De(y, b u’ © v')) 7]
652 O
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Training loss vs. rescaled time, for various alpha

—— alpha=0.1
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alpha = 0.0001
alpha = 1e-08
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time / log(1/alpha)

Figure 6: Evolution of loss versus rescaled time initializing at various scalings « in the toy task of
learning an attention head with diagonal weights. The loss curves converge as o — 0 to a curve with
loss plateaus and sharp decreases, as predicted by the theory.

C Experimental validation of the assumptions in Theorem

In Figures @, and (8] we plot the evolution of the losses, of the entries of Wi Wg =
diag(wy )diag(wg), and of the entries of Wy W] = diag(wy )diag(wo) in the toy task of
training an attention head (1)) with diagonal weights. The model is trained with SGD on the mean-
squared error loss on 1000 random samples (X, y). Each random sample has X € R19*%0 which a
sequence of 10 tokens, each of dimension 50, which is distributed as isotropic Gaussians. The label
y is given by a randomly-generated teacher model that is also an attention head (1) with diagonal
weights. In Figures@and for a € {0.1,0.01,0.0001,10~8,10716, 10732} we plot the evolu-
tion of the loss and of the weights when initialized at 8(0) = a8, for some random Gaussian 6.
Qualitatively, as o — 0 we observe that the loss curve and the trajectories of the weights appear to
converge to a limiting stagewise dynamics, where there are plateaus followed by movement on short
time-scales, as predicted by the theory.

Validation of Assumption #.2| (non-degeneracy of dynamics) As a — 0, notice that the stages
appear to separate and happen at distinct times. Furthermore, at no stage do any of the nonnegligible
coordinates leave the support of 8, so the extra technical condition on coordinates i € supp(8*) \
supp(6*~1) in Assumptionis automatically satisfied since supp(6*) \ supp(6*~1) is empty.

Validation of Assumption d.3|(stationary points are strict local minima) In Figure[0we consider
the o = 10732 trajectory, since this is closest to the dynamics in the & — 0 limit. We randomly select
several epochs. Since the transitions between stages are a vanishing fraction of the total training time,
each of these randomly-selected epochs is likely during a plateau, as we see in the figure. For each
epoch perform the following experiment. For each nonnegligible coordinate of the weights (those
where the weight is of magnitude greater than the threshold 7 = 107°), we perturb the weights by
adding noise of standard deviation 0.05. We then run the training dynamics starting at this perturbed
initialization for 1000 epochs. We observe that the training dynamics quickly converge to the original
unperturbed initialization, indicating that the weights were close to a strict local minimum of the loss.

Validation of Assumption [4.4] (noise-robustness of dynamics) In Figure [I0]we perform the same
experiment as in Figure [9] except that the epochs we select to perturb the weights are those where
there is a newly-nonnegligible coordinate (less than 10~° in magnitude in the previous epoch, and
more than 10~° in magnitude in this epoch). We find that the nonlinear dynamics are robust and tend
to the limiting endpoint even under a random Gaussian perturbation of standard deviation 10~2 on
each of the nonnegligible coordinates, supporting Assumption
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Figure 7: Evolution of diag(wg)diag(wx ) entries over rescaled time initializing at various scalings
«. Notice that as o« — 0, the training trajectories tend to a limiting trajectory. Each line corresponds
to a diagonal entry of diag(wq)diag(wx).
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Figure 8: Evolution of diag(wy )diag(wo ) entries in the toy task of learning an attention head with
diagonal weights. Each line corresponds to the evolution of an entry of diag(wy )diag(wo) over
rescaled time. Each plot corresponds to a different initialization magnitude «.. Notice that as av — 0,
the training trajectories tend to a limiting trajectory.
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Figure 9: Evolution of weights of toy attention model under perturbation, validating Assumption 4.3}
At 5 different random times during training, we perturb the nonnegligible weight coordinates and
continue to train with SGD. The evolution of each of the weights under the initial perturbation (solid
line) is compared to the original evolution without perturbation (dashed line). Observe that the
training dynamics quickly brings each weight back to the unperturbed weight trajectory, indicating
that the weights are originally close to a strict local minimum.

24



Entries of W\, W], perturb time / log(1/alpha) = 202.5

L oErjErj.gs of WxW{, perturb time / log(1/alpha) = 202.5

2.54 '/
S 20+ ':' 5 0519
g | g
@ 154 ! 2
g i g 007
5 104 ! £
g i S o051
O 0.54 I‘ &) -
1
001 = -1.0 . . :
200 220 240 260 280 300 200 220 240 260 280 300
time / log(1/alpha) time / log(1/alpha)
Entries of WyWJ, perturb time / log(1/alpha) = 321.4 Entries of WxWJ, perturb time / log(1/alpha) = 321.4
e ——— 0.00
s E
25 =
[ S -0.024
7 g
2 2
T 14 5 —0.04 4
o o
o o
O o
—0.06 -
04
3225 325.0 327.5 330.0 3325 335.0 337.5 3225 325.0 327.5 330.0 3325 335.0 3375
time / log(1/alpha) time / log(1/alpha)
Entries of W,WJ, perturb time / log(1/alpha) = 356.8 Entries of WxWJ, perturb time / log(1/alpha) = 356.8
3 e ——
0.51
S 24 E
g g
%} ] [) 4
2 1 2 0.0
£ £
F= 2
o 1 o
S 8 -0.51
-1 [ — RIS
35‘7.5 366.0 36‘2.5 365.0 36‘7.5 37‘040 37‘2.5 375.0 37‘7.5 35‘745 366.0 36‘2.5 365.0 36‘7.5 376.0 37‘2.5 375.0 37‘7.5
time / log(1/alpha) time / log(1/alpha)
Entries of WyWJ, perturb time / log(1/alpha) = 405.4 Entries of WxWJ, perturb time / log(1/alpha) = 405.4
3
0.51
ERES E
g g
2 14 2 0.0 = =
© ©
£ £ ==
° °
g 01 8 -0.51
o O
—14
T T T T T T T -1.0 T T T T T T T
406 408 410 412 414 416 418 406 408 410 412 414 416 418
time / log(1/alpha) time / log(1/alpha)
Entries of WyWJ, perturb time / log(1/alpha) = 486.5 Entries of WxWJ, perturb time / log(1/alpha) = 486.5
3 2] 3 0.5
g g
2 14 2 0.0
E | 77 g
s / 5
8 07 8 0.5
o o
1 -1.04

560 52‘5 55‘:0 5‘75 660 6é5 650
time / log(1/alpha)

560 5é5 550 5‘75 660 6é5 6_";0
time / log(1/alpha)

Figure 10: Validating Assumption[4.4] with the same experiment as in Figure[9] except that the epochs
for the perturbation chosen are those where there is a newly nonnegligible coordinate. Perturbed
dynamics (solid lines) are again robust to perturbation and track the original dynamics (dashed lines).
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D Vision Transformers

The practice of training transformer models often deviate substantially from the assumptions made
in our theoretical analysis, and it is unclear to what extent gradual rank increase behaviour, and
a low rank bias are manifested in setups more common in practical applications. To gauge the
relevancy of our findings we conduct experiments on popular vision benchmarks, using algorithms
\‘||s ‘Il\% i
the spectrum, as a smooth approximation of rank. We track the value of the stablez rank for the
different attention matrices throughout training. Although we do not expect our theoretical results to
to hold precisely in practice, we find evidence of gradual increase in stable rank, leading to a low
rank bias Figures[T2] [T4and[I6] In these experiments we use off the shelf vision transformers (ViT)
Dosovitskiy et al.|(2020) trained on popular vision benchmarks. For the Cifar-10/100 datasets we
use a VIT with 6 layers, patchsize of 4, 8 heads per self attention layer, an embedding and MLP
dimension of 512, and a head dimension of 128. We train the model using the Adam optimizer for 500
epochs with a base learning rate of le-4, a cyclic learning rate decay with a linear warmup schedule
for 15 epochs and a batchsize of 512. For Imagenet, we use the VIT-Base/16 from |Dosovitskiy et al.
(2020) trained with Adam for 360 epochs with a base learning rate of 3e-3, a cyclic learning rate
decay with a linear warmup schedule for 15 epochs and a batchsize of 4096. We use no weight
decay or dropout in our experiments. All models were initialized using the default initialization scale.
Our results are summarized in Figures [IT)and[I2|for Cifar-10, Figures[I3]and [I4]for Cifar-100 and

Figures[T5]and[T6]for imagenet.

where s is

and hyperparameters common in the literature. We use the stable rank given by
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D.1 Cifar 10
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Figure 11: cifar-10: normalized spectrum at different stages of training. (a) - (c) Normalized spectrum
of Wiy Wér at initialization and AWy W(:?r during training for different attention heads at different

layers. (d) - (e) equivalent figures for Wy, Wg .

Layer 0 Layer 1 Layer 2
25 3.0
k- £ 2.5 £3
®20 [ o
° 20 ]
(@) 3 (d) 3 © 3
15 S5 ]
] n - n
1.0 1.0 1
0 20000 40000 0 20000 40000 0 10000 20000 30000 40000 50000
Iterations Iterations Iterations
Layer 3 Layer 4 s Layer 5
4 4
% % £4
c3 c3 c 5
o o o
() 3 (e 3 ® 3
82 &2 =2
» » Il
1 1 1
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

Iterations

Iterations

Iterations

Figure 12: cifar-10: Stable rank of AWKWJ (blue) and AWy, Wg (red) throughout training.
Mean and standard deviation (shaded area) are computed across 8 heads per attention layer.
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705 D.2  Cifar 100
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Figure 13: cifar-100: normalized spectrum at different stages of training. (a) - (c¢) Normalized

spectrum of Wi Wg at initialization and AWy Wg during training for different attention heads at
different layers. (d) - (e) equivalent figures for Wy, WOT .
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Figure 14: cifar-100: Stable rank of AWKWC—Q'— (blue) and AWVWJ (red) throughout training.
Mean and standard deviation (shaded area) are computed across 8 heads per attention layer.
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706 D.3 Imagenet
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Figure 15: Imagenet: normalized spectrum at different stages of training. (a) - (¢) Normalized
spectrum of Wi Wg at initialization and AWy Wg during training for different attention heads at

different layers. (d) - (e) equivalent figures for W7y, Wg .
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Figure 16: Imagenet: Stable rank of AWKWQ;r (blue) and AWVWJ (red) throughout training.
Mean and standard deviation (shaded area) are computed across 12 heads per attention layer.
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