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Abstract

We identify incremental learning dynamics in transformers, where the difference1

between trained and initial weights progressively increases in rank. We rigorously2

prove this occurs under the simplifying assumptions of diagonal weight matrices3

and small initialization. Our experiments support the theory and also show that4

phenomenon can occur in practice without the simplifying assumptions.5

1 Introduction6

The transformer architecture achieves state of the art performance in various domains, yet we still7

lack a solid theoretical understanding of its training dynamics (Vaswani et al., 2017; Devlin et al.,8

2019; Liu et al., 2019; Dosovitskiy et al., 2020). Nevertheless, the theoretical toolbox has matured9

over the last years and there are promising new approaches. One important line of work examines the10

role that initialization scale plays on the trajectory taken by gradient descent (Jacot et al., 2018; Chizat11

et al., 2018; Geiger et al., 2019; Moroshko et al., 2020; Jacot et al., 2021; Stöger & Soltanolkotabi,12

2021; Kim & Chung, 2022). When the weights are initialized small, it has been shown for simple13

networks that an incremental learning behaviour occurs, where functions of increasing complexity14

are learned in stages. This regime is known to be richer than the large-initialization regime1, but the15

incremental learning dynamics are difficult to analyze, and are so far understood only for extremely16

simple architectures. Can we apply this analysis to transformers? Namely:17

Are there incremental learning dynamics when training a transformer architecture?18

An obstacle is that past work on incremental learning has mainly studied linear networks (Berthier,19

2022; Arora et al., 2019; Milanesi et al., 2021; Li et al., 2020; Woodworth et al., 2019; Jacot et al.,20

2021; Gissin et al., 2019), with one paper studying nonlinear 2-layer fully-connected networks21

(Boursier et al., 2022). In contrast, transformers have nonlinear attention heads that do not fall under22

previous analyses: givenX ∈ Rn×d, an attention head computes23

attention(X;WK ,WQ,WV ,WO) = smax(XWKW
⊤
QX

⊤)XWVW
⊤
O (1)

whereWK ,WQ,WV ,WO ∈ Rd×d′
are trainable matrices, and the softmax is applied row-wise. A24

transformer is even more complex, since it is formed by stacking alternating layers of attention heads25

and feedforward networks, along with residual connections.26

Main finding Our main finding is that transformers exhibit incremental learning dynamics, where27

the difference between the trained and initial weights incrementally increases in rank. Our results28

have a theoretical component and an experimental component.29

1In the large-initialization regime, deep learning behaves as a kernel method Jacot et al. (2018); Chizat et al.
(2018). Various separations with kernels are known for smaller initialization: e.g., Ghorbani et al. (2019); Abbe
et al. (2022); Malach et al. (2021).
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(a) (b)

Figure 1: For an attention head in
ViT trained on (a) CIFAR-10, and
(b) ImageNet, we plot the normal-
ized spectra of WKW

⊤
Q at initial-

ization (in red), and of the learned
perturbations to WKW

⊤
Q at differ-

ent epochs (in green).

Theoretical contributions For our theory, we study a simplification of the transformer architec-30

ture, where the attention head weights are diagonal matrices: i.e., in each attention head we have31

WK = diag(wK), where wK ∈ Rd are trainable weights, and similarly for WQ,WV and WO.32

We rigorously establish the training dynamics of this architecture under gradient flow when the33

initialization is small. We prove that dynamics occur in discrete stages: (1) during most of each stage,34

the loss plateaus because the weights remain close to a saddle point, and (2) at the end, the saddle35

point is quickly escaped and the rank of the weights increases by at most one.36

This theoretical result on transformers follows from a general theorem characterizing the learning37

dynamics of networks fNN that depend on the product of parameters u,v ∈ Rp as38

fNN(x;u,v) = h(x;u⊙ v) , (2)

where x is the input, ⊙ denotes the elementwise product, and h is a smooth function.39

Theorem 1.1 (Informal statement of incremental learning dynamics). Let fNN be a network of40

the form (2), and suppose that the weights are initialized very small: i.e., the entries of u,v are41

initialized on the order Θ(α) for some small α > 0. Then the dynamics of gradient flow training42

effectively proceeds in discrete stages, each one lasting time Θ(log(1/α)). In each stage, the number43

of nonnegligible entries of u⊙ v increases by at most one.44

A transformer with diagonal weight matrices falls under this result when we only train the attention45

head weights. For example, if the transformer has one attention head, then we can take u =46

[wK ,wV ] ∈ R2d and v = [wQ,wO] ∈ R2d to be concatenations of the diagonal entries of the47

weights of the head; see Example 3.2 for more details and the extension to transformers with many48

heads. Then, using Theorem 1.1, we see that in each stage eitherWKW
⊤
Q = diag(wK)diag(wQ)49

orWVW
⊤
O = diag(wV )diag(wO) increases in effective rank by at most one.250

Experimental contributions In our experiments, we first validate our theoretical results, which51

require the simplifying assumptions of small initialization and diagonal weight matrices.52

Then, we conduct experiments on vision transformers in settings closer to practice, without any of the53

assumptions required by our theoretical analysis. Perhaps surprisingly, we again observe incremental54

learning dynamics, even though the assumptions of the theory are not met. We observe that the55

difference between trained and initial weights has low rank, and also that the rank of this difference56

grows gradually during training; see Figure 1. The incremental nature of the dynamics is easier to see57

for ImageNet, since for CIFAR-10 the rank of the weight difference does not grow as much.58

1.1 Related work59

Relation to LoRA We note an intriguing connection to the LoRA algorithm, where a pretrained60

base model is cheaply fine-tuned by training a low-rank perturbation of the weights (Li et al., 2018;61

Aghajanyan et al., 2020; Hu et al., 2021). The method is surprisingly powerful, and recently LoRA62

has been fundamental to allowing the open-source community to inexpensively fine-tune language63

models (Patel & Ahmad, 2023; Taori et al., 2023). On the other hand, in our work we observe that64

the trained weights are a low-rank perturbation of the initial weights due to the training dynamics,65

without having to apply an explicit rank constraint as in LoRA. This raises an exciting open question66

for future work: can we explain and improve algorithms like LoRA by better understanding and67

quantifying the incremental dynamics of large transformers?68

2We also remark that Theorem 1.1 is interesting in its own right and may have other applications beyond
transformers. In fact, it qualitatively recovers the incremental dynamics result of Berthier (2022) when specialized
to linear diagonal networks, i.e., when fNN(x;u,v) =

∑p
i=1 uivixi. Furthermore, it addresses an open question

of Berthier (2022) for proving incremental learning dynamics without assuming u = v at initialization.
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Low-rank bias in nonlinear models For 2-layer networks, it is known that low-rank bias in the69

weights emerges if the target function depends on a low-dimensional subspace of the input (Abbe70

et al., 2022, 2023; Damian et al., 2022; Bietti et al., 2022; Mousavi-Hosseini et al., 2022). The results71

of Abbe et al. (2022, 2023) are especially relevant, since they show that the rank of the weights72

increases in a sequential manner, determined by the “leap complexity” of the target function, which73

is reminiscent of our empirical observations on transformers. See also Frei et al. (2022); Timor et al.74

(2023) for more investigations of low-rank bias in 2-layer networks under different assumptions. For75

transformers, Yu & Wu (2023) report that empirically the trained weights (using default initialization)76

are not low-rank. This is consistent with our claim that the difference between initial and trained77

weights is low-rank, since the initial weights might not be low-rank.78

Incremental learning dynamics Several works prove incremental learning behaviour in deep79

linear networks when the initialization is small. Gidel et al. (2019) has shown that gradient descent80

dynamics on a 2-layer linear network with L2 loss effectively solve a reduced-rank regression81

problem with gradually increasing rank. Gissin et al. (2019) prove a dynamical depth separation82

result, allowing for milder assumptions on initialization scale. Arora et al. (2019); Milanesi et al.83

(2021) show implicit bias towards low rank in deep matrix and tensor factorization. Li et al. (2020)84

show deep matrix factorization dynamics with small initialization are equivalent to a greedy low-rank85

learning (GLRL) algorithm. And Jacot et al. (2021) independently provides a similar description of86

the dynamics, but without requiring balanced initialization. Finally, Berthier (2022); Jin et al. (2023)87

overcome a technical hurdle from previous analyses by proving incremental learning for the entire88

training trajectory, rather than just the first stage. In contrast to our result, these prior works apply89

only to linear networks with certain convex losses, whereas our result applies to nonlinear networks.90

In order to make our extension to nonlinear networks possible, we must make stronger assumptions91

on the training trajectory, which we verify hold empirically. As far as we are aware, one other work92

on incremental learning handles nonlinear networks: Boursier et al. (2022) proves that a 2-layer93

network learns with a two-stage incremental dynamic; but that result needs the stylized assumption94

that all data points are orthogonal.95

1.2 Paper organization96

Sections 2, 3, and 4 contain theoretical preliminaries, definitions of the models to which our theory97

applies, and our main theoretical result on incremental dynamics. Section 5 provides experiments98

which verify and extend the theory. Section 6 discusses limitations and future directions.99

2 Preliminaries100

We consider training a network fNN(·;θ) parametrized by a vector of weights θ, to minimize a loss101

L(θ) = Ex,y[ℓ(y, fNN(x;θ))] ,

where the expectation is over samples (x,y) ∈ Rdy × Rdx from a training data distribution, and102

ℓ : Rdy × Rdout → R. Consider a solution θ(t) to the gradient flow103

θ(0) = αθ0,
dθ

dt
= −∇θL(θ) (3)

where α > 0 is a parameter governing the initialization scale, that we will take very small. For our104

theory, we henceforth require the following mild regularity assumption on the loss and data.105

Assumption 2.1 (Regularity of data distribution and loss). The function ℓ(y, ζ) is continuously106

twice-differentiable in the arguments [y, ζ] ∈ Rdy+dout . There exists C > 0 such that almost surely107

the data is bounded by ∥x∥, ∥y∥ ≤ C.108

The assumption on ℓ is satisfied in typical cases such as the square and the cross-entropy losses. The109

data boundedness is often satisfied in practice (e.g., if the data is normalized).110

3 Neural networks with diagonal weights111

Our theory analyzes the training dynamics of networks that depend on products of diagonal weight112

matrices. We use ⊙ to denote elementwise vector product.113
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Definition 3.1. A network fNN is smooth with diagonal weights θ = (u,v) ∈ R2p if it is of the form114

fNN(x;θ) = h(x;u⊙ v)
where h : Rdx × Rp → Rdout is continuously twice-differentiable in its arguments in Rdx+p.115

The assumption on h precludes the use of the ReLU function since it is not continuously-differentiable.116

Otherwise the assumption is fairly mild since any h can be used to express an architecture of any117

depth as long as the nonlinearities are twice-differentiable, which includes for example GeLUs (as118

used in ViT). We describe how to express a transformer with diagonal weights.119

Example 3.2 (Transformer with diagonal weights). Consider a transformer with L layers and H120

attention heads on each layer. The transformer output at layer ℓ is Zℓ ∈ Rn×d, which is given by121

Z0 =X and inductively for ℓ > 0 by122

• (Attention layer) Z̃ℓ = Zℓ−1 +
∑H

i=1 attention(Zℓ−1;W
ℓ,i
K ,W ℓ,i

Q ,W ℓ,i
V ,W ℓ,i

O )123

• (Feedforward layer) Zℓ = Z̃ℓ + σ(Z̃ℓW
ℓ
A)(W

ℓ
B)

⊤ ,124

whereW ℓ,i
K ,W ℓ,i

Q ,W ℓ,i
V ,W ℓ,i

O ∈ Rd×d′
are attention parameters, andW ℓ

A,W
ℓ
B ∈ Rd×d′

are the125

feedforward parameters, and σ is a continuously twice-differentiable activation.126

Suppose that the only trainable parameters are the attention parameters, and that these are diagonal127

matrices: i.e., W ℓ,i
K = diag(wℓ,i

K ) for some wℓ,i
K ∈ Rd, and similarly for the other attention128

parameters. Because of the structure of the attention head (1), the final output ZL only depends on129

the attention parameters through the elementwise products wℓ,i
K ⊙w

ℓ,i
Q and wℓ,i

V ⊙w
ℓ,i
O . In other130

words, we can write131

ZL = h(X;u⊙ v) ,
for vectors u = [wℓ,i

K ,wℓ,i
V ](ℓ,i)∈[L]×[H] ∈ R2dHL and v = [wℓ,i

Q ,wℓ,i
O ](ℓ,i)∈[L]×[H] ∈ R2dHL, and132

some smooth model h, which fits under Definition 3.1.133

4 Incremental learning in networks with diagonal weights134

Any model fNN with diagonal weights as in Definition 3.1 evolves under the gradient flow (3) as135

du

dt
= v ⊙ g(θ), dv

dt
= u⊙ g(θ) where (4)

g(θ) = −Ex,y[Dℓ(y, h(x;u⊙ v))⊤Dh(x;u⊙ v)⊤] .
Here Dℓ(y, ·) ∈ R1×dout is the derivative of ℓ in the second argument and Dh(x, ·) ∈ Rdout×p is136

the derivative of h in the second argument. We show that if initialization scale of θ = (u,v) is137

small, then learning proceeds in incremental stages, as given in Algorithm 1, where in each stage the138

effective sparsity of u and v increases by at most one.139

4.1 Intuition for incremental learning dynamics140

We develop an informal intuition for the result. First, we observe a conservation law that simplifies141

the dynamics. It can be viewed as the balancedness property for networks with linear activations142

Arora et al. (2018); Du et al. (2018), specialized to the case of diagonal layers.143

Lemma 4.1 (Conservation law). For any i ∈ [p] and any time t, we have144

u2i (t)− v2i (t) = u2i (0)− v2i (0) . (5)

Proof. This follows from d
dt (u

2
i − v2i ) = uivigi(θ)− uivigi(θ) = 0.145

This reduces the degrees of freedom and means that we need only keep track of p parameters in total.146

Specifically, if we define wi(t) := ui(t) + vi(t), then the vector w = u+ v evolves by147

dw

dt
= w ⊙ g(θ) . (6)

Using the conservation law (5), one can compute θ(t) from w(t), so it remains to analyze the148

dynamics of w(t).149
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4.1.1 Stage 1 of dynamics150

Stage 1A of dynamics: loss plateau for time Θ(log(1/α)) At very early times t, we have θ(t) ≈ 0
because the weights are initialized to be very small. Thus, we can approximate g(θ(t)) ≈ g(0) and
so we can solve for the evolution of w:

w(t) ≈ w(0)⊙ eg(0)t.

This approximation is valid until one of the entries of θ(t) reaches constant size, which one can show151

happens around time t ≈ T1 · log(1/α) for152

T1 = min
i∈[p]

1/|gi(0)| .

Until this time, the weights θ(t) are small, the network remains close to its initialization, and so we153

observe a loss plateau.154

Stage 1B of dynamics: nonlinear dynamics for time O(1) Subsequently, we observe a rapid155

decrease of the loss and nonlinear dynamics during a O(1)-order time-scale. Indeed, suppose156

that the dynamics are “non-degenerate” in the sense that there is a unique coordinate i0 such that157

1/|gi0(0)| = T1. Under this assumption, in stage 1A, the weights only grow significantly at158

coordinate i0. So one can show that for any small ϵ > 0, there is a time t1(ϵ) ≈ T1 · log(1/α) such159

that ui0(t1) ≈ ϵ, vi0(t1) ≈ sϵ for some sign s ∈ {+1,−1}, and |ui(t1)|, |vi(t1)| = oα(1) for all160

i ̸= i0.3161

Because all coordinates except for i0 are negligibly small after stage 1A, we may perform the162

following approximation of the dynamics. Zero out the weights at coordinates except for i0, and163

consider the training dynamics starting at θ̃ = (ϵei0 , sϵei0). After some constant time, independent164

of α, these dynamics should approach a stationary point. Furthermore, all coordinates of u and v165

will remain zero except for the i0 coordinate, so the sparsity of the weights will be preserved. In other166

words, we should expect there to be a time t̄1 = t1 +O(1) ≈ T1 · log(1/α) such that167

θ(t̄1) ≈ (aei0 , saei0) := θ
1 ,

for some a ∈ R>0, such that θ1 is a stationary point of the loss.4 This is a good approximation168

because t̄1 − t1 = O(1) is a constant time-scale, so the weights at coordinates except for i0 remain169

negligible between times t1 and t̄1. Overall, we have argued that the network approximately reaches170

stationary point that is 1-sparse, where only the weights at coordinate i0 are nonzero.171

4.1.2 Later stages172

We can extend the argument to any number of stages k, where in each stage the weights remain close173

to constant for time Θ(log(1/α)) and then rapidly change during time O(1), with the sparsity of the174

weights increasing by at most one. In order to analyze multiple stages, we must also keep track of the175

magnitude of the weights on the logarithmic scale because these evolve nonnegligibly throughout176

training. Inductively on k, suppose that there is some Tk ∈ R, bk ∈ Rp and θk ∈ R2p and a time177

t̄k ≈ Tk · log(1/α) such that178

logα(w(t̄k)) ≈ bk and θ(t̄k) ≈ θk,

where θk is a stationary point of the loss. We argue for the inductive step that there is Tk+1 ∈ R such179

that during times t ∈ (t̄k, Tk+1 · log(1/α)− Ω(1)) the weights remain close to the stationary point180

from the previous phase, i.e., θ(t) ≈ θk. And at a time t̄k+1 ≈ Tk+1 · log(1/α) we have181

logα(w(t̄k+1)) ≈ bk+1 and θ(t̄k+1) ≈ θk+1,

where θk+1 and bk+1 are defined below, and θk+1 is a stationary point of the loss whose support182

has grown by at most one compared to θk. The pseudocode for the evolution of bk and θk along the183

stages is given in Algorithm 1, and more details are provided below.184

3Without loss of generality, we can ensure that at initialization u(0) and u(0) + v(0) are nonnegative. This
implies u(t) is nonnegative. The fact that ui0 and vi0 are roughly equal in magnitude but might differ in sign is
due to the conservation law (5). See Appendix A.3 for details.

4The entries of u and v are close in magnitude (but may differ in sign) because of the conservation law (5).
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Stage (k + 1)A, loss plateau for time Θ(log(1/α)) At the beginning of stage k + 1, the weights185

are close to the stationary point θk, and so, similarly to stage 1A, linear dynamics are valid.186

w(t) ≈ w(t̄k)⊙ eg(θ
k)(t−t̄k) . (7)

Using the conservation law (5), we derive a “time until active” for each coordinate i ∈ [p], which187

corresponds to the time for the weight at that coordinate to grow from negligible to nonnegligible188

magnitude:189

∆k(i) =

{
(bki − 1 + sgn(gi(θ

k)))/gi(θ
k), if gi(θk) ̸= 0

∞, if gi(θk) = 0
(8)

The approximation (7) therefore breaks down at a time t ≈ Tk+1 · log(1/α), where190

Tk+1 = Tk +∆k(ik), ik = argmin
i∈[p]

∆k(i) , (9)

which corresponds to the first time at the weights at a coordinate grow from negligible to nonnegligible191

magnitude. And at times t ≈ Tk+1 · log(1/α), on the logarithmic scale w is given by192

logα(w(t)) ≈ bk+1 := bk − g(θk)∆k(ik) , (10)

Stage (k+1)B of dynamics: nonlinear dynamics for timeO(1) Subsequently, the weights evolve193

nonlinearly during O(1) time. To see this, if we make the non-degeneracy assumption that there194

is a unique coordinate ik such that ∆k(ik) = mini ∆k(i), then this means that in stage (k + 1)A,195

the only coordinate where weights grow from negligible to nonnegligible magnitude is ik. Roughly196

speaking, for any ϵ > 0, there is a time tk+1(ϵ) ≈ Tk+1 · log(1/α) such that197

θ(tk+1) ≈ θk + (ϵeik , sgn(gi(θ
k))ϵeik) ,

where the sign of the weights in coordinate ik comes from the conservation law (5). At this time,198

the weights are approximately the stationary point from stage k, plus a small perturbation. Consider199

the dynamics of ψk(t, ϵ) ∈ R2p initialized at ψk(0, ϵ) = θk + (ϵeik , sgn(gi(θ
k))ϵeik) and evolving200

according to the gradient flow dψk(t,ϵ)
dt = −∇θL(ψk). These dynamics may be highly nonlinear, so201

to control them let us assume that as we take ϵ to be small, they converge to a limiting point θk+1202

lim
ϵ→0

lim
t→∞

ψk(t, ϵ) = θk+1 . (11)

Then we expect that at a time t̄k+1 = tk+1 + O(1) ≈ Tk+1 · log(1/α), we have θ(t̄k+1) ≈ θk+1.203

This concludes the inductive step.204

4.2 Formal statement of incremental dynamics205

We formally state our result. For ease of notation, we write θk = (uk,vk) and vk = sk ⊙ uk for206

some sign-flip vector sk ∈ {+1,−1}k. This form of θk can be guaranteed by the conservation law207

(5) of the dynamics; see Appendix A. We also denote supp(θk) := supp(uk) = supp(vk) ⊆ [p].208

We state our assumptions formally. First, we require that the dynamics be non-degenerate, in the209

sense that two coordinates do not become active at the same time. We also place a technical condition210

to handle the corner case when a coordinate leaves the support of active coordinates.211

Algorithm 1 Incremental learning in networks with diagonal weights
1: b0, θ0 ← 0 ∈ Rp, T0 ← 0
2: for stage number k = 0, 1, 2, . . . do
3: # (A) Pick new coordinate ik ∈ [p] to activate.
4: For each i, define time ∆k(i) until active using (8).
5: Pick winning coordinate ik using (9)
6: Calculate time Tk+1 using (9) and break if∞
7: Update logarithmic weight approximation bk+1 using (10)
8: # (B) Train activated coordinates to stationarity.
9: θk+1 ← limiting dynamics point from (11)

10: end for

6



(a) (b) (c)

(d) (e) (f)

Figure 2: Training a vision transformer on CIFAR-10 using Adam, while varying the initialization
scale (unit scale indicates default initialization). Plotted are the evolution of the eigenvalues of
∆WKW

⊤
Q (a) - (c) and ∆WVW

⊤
O (d) - (f) in a random self-attention head in the second layer

throughout training. Incremental learning dynamics and a low-rank bias are evident for all scales,
albeit more pronounced at smaller initialization scales.

Assumption 4.2 (Nondegeneracy of dynamics in part (A)). The initialization satisfies ui(0) ̸= vi(0)212

for all i. For stage k, either Tk =∞ or there is a unique minimizer ik to mini ∆k(ik) in (9). Finally,213

for all i ∈ supp(θk−1) \ supp(θk) we have gi(θk) ̸= 0.214

Next, we require that very small perturbations of the coordinates outside of supp(θk) do not change215

the dynamics. For this, it suffices that θk be a strict local minimum.216

Assumption 4.3 (Stationary points are strict local minima). For stage k, there exist δk > 0 and217

ck > 0 such that for ũ ∈ B(uk, δ) supported on supp(uk), we have218

L(ũ, sk ⊙ ũ) ≥ ck∥uk − ũ∥2

Finally, we require a robust version of the assumption (11), asking for convergence to a neighborhood219

of θk+1 even when the initialization is slightly noisy.220

Assumption 4.4 (Noise-robustness of dynamics in part (B)). For any stage k with Tk+1 <∞ and any221

ϵ > 0, there are δ > 0 and τ : R>0 → R such that the following holds. For any ũ ∈ B(uk, δ)∩Rp
≥0222

supported on supp(ũ) ⊆ supp(uk) ∪ {ik}, there exists a unique solution ψ : [0,∞)→ Rp of the223

gradient flow dψ
dt = −∇θL(ψ) initialized at ψ(0) = (ũ, sk+1 ⊙ ũ), and at times t ≥ τ(ψ̃ik),224

∥ψ(t)− θk+1∥ < ϵ .

These assumptions are validated experimentally in Appendix C. Using them, we prove that incremen-225

tal learning Algorithm 1 tracks the gradient flow dynamics if the initialization scale is small.226

Theorem 4.5 (Incremental dynamics with untied weights). For any stage k and time t ∈ (Tk, Tk+1)227

the following holds under Assumptions 4.2 4.3 and 4.4. There is α0(t) > 0 such that for all α < α0,228

there exists a unique solution θ : [0, t log(1/α)]→ Rp to the gradient flow (3) and229

lim
α→0

θ(t · log(1/α))→ θk ,

and at each stage the sparsity increases by at most one: supp(θk+1) \ supp(θk) ⊆ {ik}.230

Example 4.6 (Application: Incremental learning in diagonal transformer). In Example 3.2, we231

showed that a diagonal transformer falls under Theorem 4.5. As a corollary, the gradient flow on a232

transformer with small initialization will learn in stages, where in each stage there will be at most one233

head i ∈ [H] on one layer ℓ ∈ [L] such that either the rank ofW ℓ,i
K (W ℓ,i

Q )⊤ = diag(wℓ,i
K )diag(wℓ,i

Q )234

or the rank ofW ℓ,i
V (W ℓ,i

O )⊤ = diag(wℓ,i
V )diag(wℓ,i

O ) increases by at most one.235
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(a) (b) (c)

(d) (e) (f)

Figure 3: A network containing a single self-attention layer with diagonal (a) - (c) and full (d)
- (f) weight matrices, trained with gradient descent in the incremental learning regime. (a) The
diagonal entries ofWVW

⊤
O and (d) the singular values ofWVW

⊤
O are learned incrementally. (b)

The diagonal entries ofWKW
⊤
Q and (e) the singular values ofWKW

⊤
Q are learned incrementally.

(c), (f) The loss curves show stagewise plateaus and sharp decreases.

(a) (b) (c)

Figure 4: Stable rank of ∆WKW
⊤
Q per initialization scale (Unit scale refers to the default initializa-

tion) in different self-attention heads post-training, at layers 1, 3, 5. At each layer, the stable rank
mean and standard deviation are computed across 8 heads per layer, for each initialization scale. All
models were trained on CIFAR-10 using the Adam optimizer. Smaller initialization scales lead to
lower-rank attention heads. Analogous plots for ∆WVW

⊤
O are in the appendix.

5 Experimental results236

We experimentally support our theoretical findings in a series of experiments: first on a toy model237

given by Equation (1), followed by experiments on a vision transformer on the CIFAR datasets. We238

defer additional experimental details and results to the appendix.239

Toy models We consider a toy model comprised of one self-attention layer with a single head as in240

(1), with either diagonal or full weight matrices. We initializeWK ,WQ,WV ,WO using Gaussian241

initialization with a small standard deviation, and train the model using GD on a regression task with242

50-dimensional random Gaussian token inputs and targets from a teacher model. During training,243

we track the diagonal entries ofWKW
⊤
Q andWVW

⊤
O in the diagonal case, and the singular values244

ofWKW
⊤
Q andWVW

⊤
O in the full weights case. Our results are summarized in Figure 3. For the245

diagonal model, as predicted, diagonal components are learned incrementally, resulting in progressive246

increase in the rank; in Appendix C we run additional experiments to verify that the assumptions of247

Theorem 4.5 indeed hold. For the full-weights model, we also observe incremental learning with248

progressively-increasing rank, even though this setting falls beyond our theory.249

Vision transformers We next run experiments that go well beyond our toy model to test the250

extent to which incremental learning with a low-rank bias exists in popular models used in practice.251

We conduct experiments with vision transformers (ViT) Dosovitskiy et al. (2020) trained on the252

CIFAR-10/100 and ImageNet datasets. We use a ViT of depth 6, with 8 self-attention heads per layer253

(with layer normalization). We use an embedding and MLP dimension of demb = 512, and a head254

dimension of dh = 128 (i.eWK ,WQ,WV ,WO ∈ Rdemb×dh ). We train the transformer using Adam255

8



(a) (b) (c)

(d) (e) (f)

Figure 5: Spectrum of the weight perturbation ∆WKW
⊤
Q vs. initialization in a vision transformer

trained on CIFAR-10, using Adam and default initialization scale, in random self-attention heads in
different layers. The learned perturbation exhibits extreme low-rank bias post-training even in default
initialization scales. Analogous plots for ∆WVW

⊤
O are in the appendix.

on the CIFAR-10/100 and ImageNet classification tasks with cross-entropy loss. We train all layers256

(including the feedforward layers) while varying the initialization scale of all layers by multiplying257

their initial values by a scale factor (we fix the scale of the initial token mapper). To illustrate258

the effect of training on weights with a non-vanishing initialization scale, we plot the spectrum259

of the difference ∆WKW
⊤
Q and ∆WVW

⊤
O between the weights post-training, and their initial260

values. Figure 2 shows the evolution of the principal components of ∆WKW
⊤
Q and ∆WVW

⊤
O for261

a randomly-chosen self-attention head and layer throughout training, exhibiting incremental learning262

dynamics and a low-rank bias. Note that incremental learning and low-rank bias are increasingly263

evident with smaller initialization scales, as further demonstrated in Figure 4. Finally, we plot the264

spectrum of ∆WKW
⊤
Q against that of its initialized state in Figure 5 for different self-attention heads,265

illustrating that the weight perturbation learned during the training process is extremely low-rank266

when compared to the initial spectrum. All figures in this section are given for models trained on267

CIFAR-10. In the appendix we conduct further experiments on CIFAR-100 and ImageNet, as well as268

different model sizes for completeness, and these show similar trends. Further experimental details269

and results are provided in the appendix.270

6 Discussion271

We have identified incremental learning dynamics in transformers, proved them rigorously in a272

simplified setting, and shown them experimentally in networks trained with practical hyperparameters.273

Limitations There are clear limitations to our theory: the diagonal weights and small initialization274

assumptions. More subtly, the theory does not apply to losses with exponential-like tails because the275

weights may not converge to a finite value and so Assumption 4.3 is not met (this could possibly be276

addressed by adding regularization). Also, the architecture must be smooth, which precludes ReLUs –277

but allows for smoothed ReLUs such as the GeLUs used in ViT (Dosovitskiy et al., 2020). Finally,278

the theory is for training with gradient flow, while other optimizers such as Adam are used in practice279

instead (Kingma & Ba, 2014). Nevertheless, our experiments on ViTs indicate that the incremental280

learning dynamics occurs even when training with Adam.281

Future directions A promising direction of future research is to examine the connection between282

our results on incremental dynamics and the LoRA method (Hu et al., 2021), with the goal of283

explaining and improving on this algorithm; see also the discussion in Section 1.1. Another interesting284

avenue is to develop a theoretical understanding of the implicit bias in function space of transformers285

whose weights are a low-rank perturbation of randomly initialized weights.286
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A Proof for dynamics of networks with diagonal parametrization373

(Theorem 4.5)374

A.1 Assumptions375

Recall we have defined θ0, . . . ,θk, . . . ∈ R2p as the sequence of weights such that θ0 = 0 and θk+1376

is defined inductively as follows. Consider the dynamics of ψk(t, ϵ) ∈ R2p initialized at ψk(0, ϵ) =377

θk + (ϵeik , sgn(gi(θ
k))ϵeik) and evolving according to the gradient flow dψk(t,ϵ)

dt = −∇θL(ψk).378

We assume that there is a limiting point θk+1 of these dynamics as ϵ is taken small and the time is379

taken large:380

lim
ϵ→0

lim
t→∞

ψk(t, ϵ) = θk+1 .

Under the above assumption that this sequence θ0, . . . ,θk, . . . is well-defined, we can derive a useful381

property of it for free. Namely, the conservation law (5) implies that u⊙ u− v ⊙ v is preserved. It382

follows that for each k we have that θk = (uk,vk) satisfies |uk| = |vk| entrywise. In other words,383

there is sk ∈ {+1,−1}p satisfying384

θk = (uk, sk ⊙ uk) ∈ R2p .

We also abuse notation and write supp(θk) := supp(uk) ⊆ [p], since the support of θk on the first p385

coordinates matches its support on the last p coordinates.386

Having fixed this notation, we now recall the main assumptions of the theorem.387

Assumption A.1 (Nondegeneracy of dynamics in part (A); Assumption 4.2). The initialization388

satisfies ui(0) ̸= vi(0) for all i. For stage k, either Tk+1 =∞ or there is a unique minimizer ik to389

mini ∆k(ik) in (9). Finally, for all i ∈ supp(θk−1) \ supp(θk) we have gi(θk) ̸= 0.390

Assumption A.2 (Stationary points are strict local minima; Assumption 4.3). For stage k, there exist391

δk > 0 and ck > 0 such that for ũ ∈ B(uk, δ) supported on supp(uk), we have392

L(ũ, sk ⊙ ũ) ≥ ck∥uk − ũ∥2 .
Assumption A.3 (Noise-robustness of dynamics in part (B); Assumption 4.4). For stage k, either393

Tk+1 = ∞ or the following holds. For any ϵ > 0, there are δ > 0 and τ : R>0 → R such that394

the following holds. For any ũ ∈ B(uk, δ) ∩ Rp
≥0 supported on supp(ũ) ⊆ supp(uk) ∪ {ik},395

there exists a unique solution ψ : [0,∞)→ Rp of the gradient flow dψ
dt = −∇θL(ψ) initialized at396

ψ(0) = (ũ, sk+1 ⊙ ũ), and at times t ≥ τ(ũik),397

∥ψ(t)− θk+1∥ < ϵ .

A.2 Rescaling time for notational convenience398

For ease of notation, we rescale time399

uα(0) = αu(0), vα(0) = αv(0)

duα

dt
= log(1/α)vα ⊙ g(uα,vα),

dvα
dt

= log(1/α)uα ⊙ g(uα,vα). (12)

We also define400

θα(t) = (uα(t),vα(t)) ∈ R2p .

Because of this time-rescaling, we equivalently state Theorem 4.5 as:401

Theorem A.4 (Restatement of Theorem 4.5). Let K ∈ Z≥0 be such that Assumptions 4.2 4.3 hold402

for all k ≤ K and Assumption 4.4 holds for all k < K. Then for any k ≤ K and time t ∈ (Tk, Tk+1)403

the following holds. There is α0(t) > 0 such that for all α < α0, there exists a unique solution404

θα : [0, t]→ Rp to the gradient flow (12) and405

lim
α→0

θα(t)→ θk ,

where at each stage |supp(uk) \ supp(uk−1)| ≤ 1.406

For shorthand, we also write
Sk = supp(uk) and Sc

k = [p] \ supp(uk) .
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A.3 Simplifying problem without loss of generality407

For each coordinate i ∈ [p] we have |uα,i(0)| ̸= |vα,i(0)| by the non-degeneracy Assumption 4.2.408

So we can assume |uα,i(0)| > |vα,i(0)| without loss of generality. Furthermore, we can assume the409

entrywise inequality410

uα(0) > 0

by otherwise training weights ũα(t), ṽα(t) initialized at ũα(0) = sgn(uα(0))uα(0) and ṽα(0) =411

sgn(vα(0))vα(0), as ũα(t)⊙ ṽα(t) = uα(t)⊙ vα(t) at all times.412

Since u2α,i(t) − v2α,i(t) = u2α,i(0) − v2α,i(0) by the conservation law (5), it holds that |uα,i(t)| >413

|vα,i(t)| throughout. So by continuity414

uα(t) > 0

throughout training.415

A.4 Tracking the sum of the weights416

We define417

wα(t) = uα(t) + vα(t) .

The reason for this definition is that during training we have418

dwα

dt
= log(1/α)wα ⊙ g(θα) , (13)

Notice that since that we have assumed uα,i(0) > |vα,i(0)| for each i ∈ [p] we have wα(0) > 0419

entrywise. So, by (13) for all t > 0 ,420

wα(t) > 0 .

It suffices to track wα(t) because we can relate the log-scale magnitude of wα(t) to the magnitudes421

of the corresponding coordinates in uα(t) and vα(t) – see technical Lemmas B.1 B.2 and B.3.422

A.5 Claimed invariants in proof of Theorem A.4423

In order to prove Theorem A.4, we consider any gradient flow θα : [0, T ∗]→ Rp solving (12) where424

T ∗ ∈ (TK , TK+1). For now, we focus only on proving properties of this gradient flow, and defer its425

existence and uniqueness to Section A.8.426

We show the following invariants inductively on the stage k. For any ϵ > 0, any stage k ≤ K, there427

is αk := αk(ϵ) > 0 such that for all α < αk the following holds. There are times t̄k := t̄k(α, ϵ) and428

tk+1 := tk+1(α, ϵ), such that429

t̄k ∈ [Tk − ϵ, Tk + ϵ] , (14)

tk+1 ∈
{
[Tk+1 − ϵ, Tk+1 + ϵ] , if Tk+1 <∞
{T ∗}, if Tk+1 =∞ . (15)

and the weights approximate the greedy limit for all times t ∈ [t̄k, tk+1]430

∥θα(t)− θk∥ < ϵ , (16)
and the weights at times t̄k and tk+1 are correctly estimated by the incremental learning dynamics on431

the logarithmic-scale432

∥ logα(wα(t̄k))− bk∥ < ϵ (17)
and if Tk+1 <∞ then433

∥ logα(wα(tk+1))− bk+1∥ < ϵ . (18)

Base case k = 0: Take t̄0(α, ϵ) = 0. Then statement (14) holds since T0 = 0. Notice that as α→ 0434

we have that uα(0),vα(0)→ 0 = u0, and also logαwα(0)→ 1 = b0. So statement (17) follows if435

we take α0 small enough. In Section A.6 we show how to construct time t1 such that (16) and (18)436

hold.437

Inductive step: Suppose that (14), (16), (17) and (18) hold for some iteration k < K. We prove them438

for iteration k + 1. In Section A.7 we construct time t̄k. In Section A.6 we construct time tk+1.439
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A.6 Dynamics from time t̄k to time tk+1 (Linear dynamics for O(log(1/α)) unrescaled time)440

Let k ≤ K, and suppose that we know that for any ϵ̄k > 0, there is ᾱk(ϵ̄k) > 0 such that for all441

0 < α < ᾱk, there is a time t̄k = t̄k(α, ϵ̄k) satisfying442

|Tk − t̄k| < ϵ̄k

∥θα(t̄k)− θk∥ < ϵ̄k

∥ logα(wα(t̄k))− bk∥ < ϵ̄k .

A.6.1 Analysis in case where Tk+1 <∞443

Consider first the case where Tk+1 <∞. We show that, for any ϵk+1 > 0, there is ρk+1(ϵk+1) > 0444

such that for all 0 < ρ < ρk+1(ϵ̄k+1) there is αk+1(ρ, ϵk+1) > 0 such that for all α < αk+1, there445

is a time tk+1 = tk+1(α, ρ, ϵk+1) satisfying446

|Tk+1 − tk+1| < ϵk+1 (19)

∥θα(t)− θk∥ < ϵk+1 for all t ∈ [t̄k, tk+1] (20)

∥ logα(wα(tk+1))− bk+1∥ < ϵk+1 (21)
uα,ik(tk+1) ∈ [ρ, 3ρ] , (22)

sgn(vα,ik(tk+1)) = sk+1
ik

. (23)

For any ρ, α, let ϵ̄k = ρϵk+1/(4p) and choose t̄k = t̄k(α, ϵ̄k). Then define447

tk+1 = tk+1(α, ρ, ϵk+1) (24)
= inf{t ∈ [t̄k,∞) : ∥uα,Sc

k
(t)− uα,Sc

k
(t̄k)∥+ ∥vα,Sc

k
(t)− vα,Sc

k
(t̄k)∥ > 4ρ} .

Now we show that the weights θα(t) cannot move much from time t̄k to tk+1. The argument uses the448

local Lipschitzness of the loss L (from technical Lemma B.7), and the strictness of θk as a stationary449

point (from Assumption 4.3).450

Lemma A.5 (Stability of active variables during part (A) of dynamics). There is ρk+1 small enough451

and αk+1(ρ) small enough depending on ρ,such that for all ρ < ρk+1 and α < αk+1 and all452

t ∈ [t̄k, tk+1),453

∥θα(t)− θk∥ < ρ′ := max(24ρ, 18
√
ρKRk

/ck) . (25)

where ck is the strict-minimum constant from Assumption 4.3 and KRk
is the Lipschitzness constant454

from Lemma B.7 for the ball of radius Rk = ∥θk∥+ 1.455

Proof. Assume by contradiction that (25) is violated at some time t < tk+1. Let us choose the first
such time

t∗ = inf{t ∈ [t̄k, tk+1) : ∥uα(t
∗)− uk∥+ ∥vα(t∗)− sk ⊙ uk∥ ≥ ρ′} .

Define θ̃ = (ũ, ṽ) by456

ũi =

{
uα,i(t

∗), i ∈ Sk

0, i ̸∈ Sk
and ṽi =

{
vα,i(t

∗), i ∈ Sk

0, i ̸∈ Sk
.

By the definition of tk+1, this satisfies457

∥ũ− uα(t
∗)∥ = ∥uα,Sc

k
(t∗)∥ ≤ 4ρ+ ∥uα,Sc

k
(t̄k)∥ ≤ 4ρ+ ϵk < 5ρ ,

∥ṽ − vα(t∗)∥ = ∥vα,Sc
k
(t∗)∥ ≤ 4ρ+ ∥vα,Sc

k
(t̄k)∥ ≤ 4ρ+ ϵk < 5ρ .

Also458

∥ũ− uk∥+ ∥ṽ − sk ⊙ uk∥ = ∥uα,Sk
(t∗)− zkSk

∥+ ∥vα,Sk
(t∗)− skSk

⊙ zkSk
∥ ≥ ρ′ − 10ρ ≥ ρ′/2 .
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Using (a) the strict minimum Assumption 4.3 with constant ck, since ∥θ̃ − θk∥ ≤ ρ′ and we take ρ′459

small enough,460

L(θα(t∗)) ≥ L(θ̃)− 4ρKRk

(a)

≥ L(θk)− 4ρKRk
+
ck(ρ

′)2

16

≥ L(θα(t̄k))− (4ρ+ ϵ̄k)KRk
+
ck(ρ

′)2

16
> L(θα(t̄k)) .

This is a contradiction because L is nondecreasing along the gradient flow.461

Lemma A.6 (Log-scale approximation is correct during part (A)). There are functions ρk+1(ϵk+1) >462

0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1, and for all t ∈ (t̄k, tk+1) we463

have for a constant C depending on k,464

∥ logα(wα(t))− bk + (t− t̄k)g(θk)∥ < ρϵk+1 + Cρ′(t− t̄k) . (26)

Furthermore, for all i ∈ Sc
k and t ∈ (t̄k, tk+1) we have465

sgn(gi(θα(t))) = sgn(gi(θ
k)). (27)

Proof. By Lemma A.5 and Lemma B.7, there is a constant C depending on θk such that for all466

t ∈ (t̄k, tk+1),467

∥g(θα(t))− g(θk)∥ ≤ Cρ′ .

For shorthand, write ḡ(θk) = g(θk) + Cρ′1 and g(θk) = g(θk) − Cρ′1. Since wα(t) > 0468

entrywise as we have assumed without loss of generality (see Section A.3), we have the following469

entrywise inequalities470

g(θk)⊙wα(t) < g(θα(t))⊙wα(t) < ḡ(θ
k)⊙wα(t) . (28)

Since the dynamics are given by dwα

dt = log(1/α)g(wα)⊙wα,471

wα(t̄k)e
(t−t̄k) log(1/α)g(θ

k) ≤ wα(t) ≤ wα(t̄k)e
(t−t̄k) log(1/α)ḡ(θ

k) .

Taking the logarithms with base α ∈ (0, 1),472

(t− t̄k)g(uk) ≤ logα(wα(t̄k))− logα(wα(t)) ≤ (t− t̄k)ḡ(uk) .

The bound (26) follows since ∥ logα(wα(t̄k))− bk∥ < ϵ̄k < ρϵk+1.473

Finally, the claim (27) follows from (28) since sgn(ḡ(θk)) = sgn(g(θk)) = sgn(g(θk)) if we take474

ρ small enough.475

First, we show that the weights must move significantly by time roughly Tk+1. This is because of the476

contribution of coordinate ik.477

Lemma A.7 (tk+1 is not much larger than Tk+1). Suppose that Tk+1 < ∞. Then there are478

ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1, the following479

holds.480

tk+1 < Tk+1 + ϵk+1 .

Proof. Assume by contradiction that tk+1 < Tk+1 + ϵk+1. For all times t ∈ [t̄k,min(tk+1, Tk+1 +481

ϵk+1)], by Lemma A.6,482

| logα(wα,ik(t))− btik + (t− t̄k)gik(θk)| < O(
√
ρ) .

Since we know |∆k(ik)− (Tk+1 − t̄k)| < ϵ̄k and bki −∆k(ik)gik(θ
k) ∈ {0, 2}, it follows that483

logα(wα,ik(Tk+1 + ϵk+1)) ̸∈ (−|gik(θk)|(ϵk+1 − ϵ̄k+1), 2 + |gik(θk)|(ϵk+1 − ϵ̄k+1)) +O(
√
ρ).

By taking ρ small enough, we see that |gik(θk)|(ϵk+1 − ϵ̄k+1) + O(
√
ρ) > δ > 0 for some δ > 0484

that is independent of α, so485

logα(wα,ik(Tk+1 + ϵk+1)) ̸∈ (−δ, 2 + δ) .

So |uα,ik(Tk+1 + ϵk+1)| > 1 by Lemma B.2. But by the construction of tk+1 this means that486

tk+1 < Tk+1 + ϵk+1.487
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Next, we show that until time tk+1, none of the coordinates in Sc
k move significantly, with the possible488

exception of coordinate ik.489

Lemma A.8 (No coordinates in Sc
k \ {ik} move significantly during part (A)). Suppose Tk+1 <∞.490

Then there are ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1,491

the following holds. There is a constant c > 0 depending on k such that for all i ∈ Sc
k \ {ik} and492

t ∈ [t̄k, tk+1],493

|uα,i(t)− uα,i(t̄k)|, |vα,i(t)− vα,i(t̄k)| < αc + ϵ̄k .

Proof. The previous lemma combined with the inductive hypothesis gives

tk+1 − t̄k < ∆k(ik) + 2ϵk+1 \ {ik}.

We analyze the movement of each coordinate i ∈ Sc
k \ {ik} by breaking into two cases:494

• Coordinate i ̸= ik such that bki ∈ (0, 2). By Assumption 4.2, there is a unique winning495

coordinate so bki − τgi(θk) ∈ (c, 2− c) for some constant c > 0 for all τ ∈ [0, tk+1− t̄k] ⊆496

[0,∆k(ik) + 2ϵk+1]. By Lemma A.6, logα(wα,i(t)) ∈ (−c/2, 2 − c/2) for all times497

t ∈ [t̄k, tk+1]. So by Lemma B.1, |uα,i(t)|, |vα,i(t)| ≤ αc/4.498

• Coordinate i ̸= ik such that bki = 0. By Lemma B.4, we must be in the corner case where499

i ∈ Sk−1 ∩ Sc
k (i.e., the coordinate was active in the previous stage but was dropped from500

the support in this stage).501

By Lemma B.4, since bki = 0 we have gi(θ
k) < 0. By Lemma A.6, this means502

sgn(gi(θα(t))) = sgn(gi(θ
k)) < 0 for all t ∈ (t̄k, tk+1).503

We break the analysis into two parts. Since bki = 0, the sign is ski = +1. The inductive504

hypothesis ∥θα(t̄k)− θk∥ < ϵ̄k implies that |uα,i(t̄k)− zki | < ϵ̄k and |vα,i(t̄k)− zki | < ϵ̄k.505

For small enough ϵ̄k this means that sgn(uα,i(t̄k)) = sgn(vα,i(t̄k)) = +1. Now let506

t∗ = min(tk+1, inf{t > t̄k : vα,i(t) = 0}). Since uα,i(t) > vα,i(t) without loss of507

generality (see Section A.3), we have sgn(uα,i(t)) = sgn(vα,i(t)) = +1 for all t ∈ [t̄k, t
∗].508

So duα,i(t)
dt ,

dvα,i(t)
dt < 0 for all t ∈ [t̄k, t

∗]. So, for any t ∈ [t̄k, t
∗],509

|uα,i(t)− uα,i(t̄k)|, |vα,i(t)− vα,i(t̄k)| < ϵ̄k

Also, since logα(wα,i(t
∗)) ≈ 1, by Lemma A.6 we have t∗ > c > 0 for some constant c510

independent of α. So for all t ∈ [t∗, tk+1] we have bki − τgi(θk) ∈ (c, 2 − c) for some511

constant c > 0. So |uα,i(t)|, |vα,i(t)| ≤ αc/4 for all t ∈ [t∗, tk+1]. The conclusion follows512

by triangle inequality.513

• Coordinate i ̸= ik such that bki = 2. The analysis is analogous to the case bki = 0, except514

that we have ski = −1 instead and gi(θk) > 0 by Lemma B.4.515

516

Finally, we use this conclude that tk+1 ≈ Tk+1 and that the weights at coordinate ik are the only517

weights that change significantly, and by an amount approximately ρ.518

Lemma A.9 (Coordinate ik wins the part (A) race at time tk+1 ≈ Tk+1). Suppose that Tk+1 <∞.519

Then there are ρk+1(ϵk+1) > 0 and αk+1(ρ, ϵk+1) > 0 such that for all ρ < ρk+1 and α < αk+1,520

the following holds.521

|tk+1 − Tk+1| < ϵk+1 ,

uα,ik(tk+1) ∈ [ρ, 3ρ] ,

sgn(vα,ik(tk+1)) = sk+1
ik

.
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Proof. Let us analyze the case that bkik ∈ (0, 2). Notice that bk+1
ik

= bkik −∆k(ik)gik(θ
k) ∈ {0, 2}522

and that if bk+1
i = 0 then gik(θ

k) > 0 and if it is 2 then bk+1
ik

= gik(θ
k) < 0. So by Lemma A.6,523

for all times t ∈ [t̄k,min(tk+1, Tk+1 − ϵk+1)], we have wα,ik(t) ∈ (c, 2− c) for some c > 0. So for524

small enough α by Lemma B.1, |uα,ik(t)|, |vα,ik(t)| ≤ αc/2. Combining this with Lemma A.8, we525

see that for t ∈ [t̄k,min(tk+1, Tk+1 − ϵk+1)] we have526

∥uα(t)− uα(t̄k)∥+ ∥vα(t)− vα(t̄k)∥ < 2(αc + ϵ̄k)p < ρ ,

for small enough α. So by definition of tk+1 we must have tk+1 > Tk+1 − ϵk+1. Combined527

with Lemma A.7, we conclude that |Tk+1 − tk+1| < ϵk+1, which is the first claim of the lemma.528

Furthermore, by Lemma A.8,529 ∑
i∈Sc

k\{ik}

|uα,i(tk+1)− uα,i(t̄k)|+ |vα,i(tk+1)− vα,i(t̄k)| ≤ 2p(αc + ϵ̄k)) < ρ/2,

so by definition of tk+1 and triangle inequality we have |uα,ik(tk+1)|+ |vα,ik(tk+1)| ≥ 4ρ− ρ/2 =530

7ρ/2. Also, since u2α,ik(tk+1) − v2α,ik(tk+1) = Θ(α2) we have uα,ik(tk+1) ∈ [ρ, 3ρ]. Finally, if531

bk+1
ik

= 2, then sk+1
ik

= −1 and logα(wα,ik(tk+1)) > 1.5 so sgn(vα,ik(t)) < 0 by Lemma B.3;532

analogously, if bk+1
ik

= 0, we have sk+1
ik

= 1 and logα(wα,ik(tk+1) < 0.5 so sgn(vα,ik(tk+1) > 0.533

The case bkik ∈ {0, 2} can be proved similarly to the analysis in Lemma A.8, where one shows that534

during the first period of time the magnitudes of |uik(t)| and |vik(t)| decrease, until the sign of vik535

flips and they once again increase.536

537

We have shown the claims (19), (20), (21) (22), and (23) for the time tk+1. In fact, if we let538

t′k+1 ∈ [t̄k,∞) be the first time t such that uα,ik(t) = ρ we still have (19), (20), (21) and (23) by the539

same analysis as above, and (22) can be replaced with the slightly more convenient540

uα,ik(t
′
k+1) = ρ .

A.6.2 Analysis in case where Tk+1 =∞541

In this case that Tk+1, we just have to show that the weights remain close to θk. We show that for542

any ϵk+1 > 0, there is αk+1(ϵk+1) > 0 such that for all α < αk+1 and times t ∈ [Tk + ϵk+1, T
∗],543

∥θα(t)− θk∥ < ϵk+1.

We can use Lemmas A.5 and A.6, which were developed for the case of Tk+1 <∞, but still hold for544

Tk+1 =∞. Lemma A.5 guarantees that the weights do not move much until time tk+1, and so we545

only need to show that tk+1 ≥ T ∗ when we take ρ small enough. For this, observe that gi(θk) = 0546

for all i ̸∈ Sk, because otherwise Tk+1 < ∞. Therefore Lemma A.6 guarantees that until time547

min(T∗, tk+1) all weights are close to the original on the logarithmic scale. Namely,548

∥ logα(wα(t))− bk∥ < ρϵk+1 + Cρ′(T ∗ − t̄k)

Furthermore, by the non-degeneracy Assumption 4.2 we know that bki ∈ (0, 2) for all i ̸∈ Sk by549

Lemma B.4. So if we take ρ small enough and αk+1 small enough, we must have that tk+1 ≥ T ∗.550

A.7 Dynamics from time tk to time t̄k (Nonlinear evolution for O(1) unrescaled time)551

Suppose that we know for some k ≤ K that for any ϵk > 0, there is ρk(ϵk) > 0 such that for all552

ρ < ρk there is αk(ρ, ϵk) > 0 such that for all α < αk, there is a time tk = tk(α, ρ, ϵk) satisfying553

|Tk − tk| < ϵk (29)

∥θα(tk)− θk−1∥ < ϵk (30)

∥ logα(wα(tk))− bk∥ < ϵk (31)
uα,ik−1

(tk) = ρ , (32)

sgn(vα,ik−1
(tk)) = skik−1

. (33)
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Now we will show that for any ϵ̄k > 0, there is ᾱk = ᾱk(ϵ̄k) > 0 such that for all 0 < α < ᾱk, there554

is a time t̄k = t̄k(α, ϵ̄k) satisfying555

|Tk − t̄k| < ϵ̄k (34)

∥θα(t̄k)− θk∥ < ϵ̄k (35)

∥ logα(wα(t̄k))− bk∥ < ϵ̄k (36)

We give the construction for t̄k. For any desired accuracy ϵ̄k > 0 in this stage, we will construct an556

accuracy ϵk = ϵk(ϵ̄k) = ϵ̄k/3 > 0. We will also construct a ρ = ρ(ϵk) > 0 which is sufficiently small,557

and we will construct an cutoff for α equal to ᾱk = ᾱk+1(ϵ̄k) > 0 which satisfies ᾱk < αk(ρ, ϵk).558

The values for these parameters ϵk and ρ and ᾱk will be chosen in the following lemma, and will559

depend only on ϵ̄k.560

Lemma A.10 (New local minimum reached in time O(1/ log(1/α))). For any ϵ̄k > 0, we can561

choose ᾱk = ᾱk(ϵ̄k) > 0 small enough so that, for any 0 < α < ᾱk, there is t̄k = t̄k(α, ϵ̄k) for562

which conditions (34) to (36) hold.563

Furthermore, there is a constant C ′′ independent of α such that |θα(t)|/|θα(tk)| ∈ [1/C ′′, C ′′]2p at564

all times t ∈ [tk, t̄k].565

Proof. Let tk = tk(α, ρ, ϵk) be given by the induction. Let us compare the dynamics starting at566

θα(tk) with the dynamics starting at θ̃(tk) = (ũ(tk), ṽ(tk)) which is given by567

ũi(tk) =

{
uα,i(tk), i ∈ Sk−1 ∪ {ik−1}
0, otherwise

and ṽi(tk) =

{
vα,i(tk), i ∈ Sk−1 ∪ {ik−1}
0, otherwise

and run with568

dθ̃

dt
= − log(1/α)∇wL(θ̃) .

By Assumption 4.4 we know there exists a unique solution θ̃ : [tk,∞)→ Rp as long as we take ϵk569

small enough because supp(θ̃(tk)) = Sk−1 ∪ {ik−1} and ∥θ̃i(tk)− θk−1∥ < ϵk. Furthermore, by570

Assumption 4.4 if we take ϵk small enough there must be a time τ := τ(ϵ̄k, ρ) <∞ such that571

∥θ̃(t)− θk∥ < ϵ̄k/2 for t ≥ tk + τ/ log(1/α) (37)

Define572

t̄k = tk + τ/ log(1/α).

So for α small enough, |Tk − t̄k| < 2ϵk < ϵ̄k, proving (34).573

We now compare θα(t̄k) with θ̃(t̄k), and show that if we take α small enough, then the dynamics of θ̃574

closely match the dynamics of θα(t) for times tk +O(1/ log(1/α)). The argument uses Gronwall’s575

inequality. Let t∗ = inf{t > tk : ∥θ̃(t∗)− θα(t)∥ > 1/3}. For times t ∈ [tk, t
∗) by Lemma B.7 we576

have577

∥ d
dt
θ̃(t)− d

dt
θα(t)∥ = log(1/α)∥∇θL(θ̃(t))−∇θL(θα(t))∥ ≤ Kθ̃(t) log(1/α)∥θ̃(t)− θα(t)∥,

where Kθ̃(t) is the smoothness constant from Lemma B.7. Note that since ∥θ̃(t)∥ < ∞ for large578

enough t by (37), the trajectory of θ̃ must lie in a compact set. Therefore, there must be a finite579

set of times s1, . . . , sm ∈ [tk, t
∗) such that ∪t∈[tk,t

∗)B(θ̃(t), 1/2) ⊆ ∪mi=1B(θ̃(si), 3/4). So letting580

C = maxmi=1Kθ̃(si) <∞ for all times t ∈ [tk, t
∗) we have581

d

dt
∥θ̃(t)− θα(t)∥ ≤ C log(1/α)∥θ̃(t)− θα(t)∥ .

By Gronwall’s inequality, for all times t ∈ [tk, t
∗),582

∥θ̃(t)− θα(t)∥ ≤ ∥θ̃(tk)− θα(tk)∥ exp(C log(1/α)(t− tk)) .
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We know from Lemma A.8 that there is a constant c > 0 such that for any small enough 0 < α < αk,583

such that584

∥θ̃(tk)− θα(tk)∥ < αc

If we take α small enough that αc exp(Cτ) < ϵ̄k/2 < 1/3, we must have t∗ > tk + τ/ log(1/α)585

and so we prove (35)586

∥θk − θα(t̄k)∥ ≤ ϵ̄k/2 + ∥θ̃(t̄k)− θα(t̄k)∥ < ϵ̄k .

It remains to show that (36) is satisfied. Since ∥θ̃(t)− θα(t)∥ < 1/3 for all t ∈ [tk, t̄k], it holds that587

the trajectory of θα(t) lies in a compact set. So by Lemma B.7 we have ∥g(θα(t))∥ < C ′ for some588

constant C ′ at all times t ∈ [tk, t̄k]. Since 1
log(1/α) |

dwα,i

dt | = |wα,i(t)||gi(wα(t))| < C ′|wα,i(t)|,589

we must have |wα,i(t)|/|wα,i(tk)| ∈ [1/C ′′, C ′′] for some constant C ′′ independent of α and all590

t ∈ [tk, t̄k]. Therefore, (36) follows from (31). A similar argument shows that |θα(t)/θα(tk)| ∈591

[1/C ′′, C ′′]2p.592

593

A.8 Concluding the proof of Theorem A.4594

We have shown that Theorem 4.5 is true for solutions θα : [0, T ∗] → R2p to the gradient flow,595

where T∗ ∈ (TK , TK+1). To establish Theorem A.4 it remains only to show that for any T∗ ∈596

(TK , TK+1) and small enough α such a solution to the gradient flow exists and is unique. To597

see this, note that in the inductive proof of the invariants we construct a sequence of times 0 =598

t̄0 ≤ t1 ≤ t̄1 ≤ · · · ≤ t̄K ≤ tK+1 > T∗, where we guarantee that any gradient flow solution599

θα : [0, tk+1]→ Rp satisfies θα ∈ ∪k∈{0,...,K}B(θk, 1) for all t ∈ ∪k∈{0,...,K}[t̄k, tk+1]. And also600

for t ∈ ∪k∈{0,...,K−1}[tk, t̄k+1], we have θα(t) ∈ B(0, C ′′
kθ

k) for some constant C ′′
k independent601

of α by Lemma A.10. So θα(t) ∈ B(0, CK) for some constant CK at all times t ∈ [0, T ∗]. By602

Lemma B.7, the loss gradient ∇θL(θ) = (v ⊙ g(θ),u ⊙ g(θ)) is Lipschitz-continuous on the603

compact set B(0, CK). So θα : [0, T ∗]→ Rp exists and is unique by the Cauchy-Lipschitz theorem.604

605

B Technical lemmas606

B.1 Relating the sum of the weights to the original weights using the conservation law607

Lemma B.1. If for some constant 0 < c < 1 we have logα(wα,i(t)) ∈ (c, 2 − c), then for small608

enough α609

max(|uα,i(t)|, |vα,i(t)|) ≤ αc/2 .

Proof. Let w̃α(t) = uα(t) − vα(t). By the conservation law (5), wα,i(t)w̃α,i(t) =610

wα,i(0)w̃α,i(0) = uα,i(0)
2 − vα,i(0)2. By the non-degeneracy of initialization (Assumption 4.2),611

the right-hand-side is Θ(α2). So if logα(wα,i(t)) ∈ (c, 2 − c) then for small enough α, we612

have logα(|w̃α,i(t)|) ∈ (3c/4, 2 − 3c/4). So |uα,i(t)| ≤ |wα,i(t) + w̃α,i(t)| ≤ αc/2 and613

|vα,i(t)| ≤ |wα,i(t)− w̃α,i(t)| ≤ αc/2.614

Lemma B.2. If for some constant 0 < c we have logα(wα,i(t)) ̸∈ (−c, 2+ c), then for small enough615

α,616

|uα,i(t)| > 1 .

Proof. Define w̃α = uα − vα as in the proof of Lemma B.1. If logα(wα,i(t)) < −c then617

logα(|w̃α,i(t)|) > 2 − c/2 for small enough α, so ui(t) > α−c − α2−c/2 > 1. Similarly, if618

logα(wα,i(t)) > 2 + c then logα(|w̃α,i(t)|) < −c/2 so |ui(α)| > α−c/2 − α2+c > 1.619

Lemma B.3. If for some constant c > 0, there is small enough α such that if we have logα(wα,i(t)) >620

1 + c then sgn(vα,i(t)) < 0. Otherwise, if logα(wα,i(t)) < 1− c then sgn(vα,i(t)) > 0.621
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Proof. Follows from vα = 1
2 (wα − w̃α). Recall that wα(t) > 0 and notice that w̃α(t) > 0.622

In the first case, wα,i(t) < α1+c and w̃α,i(t) > α1−c/2. In the latter case wα,i(t) > α1−c and623

w̃α,i(t) < α1+c/2.624

B.2 Sign of gradients on coordinates that leave support625

Lemma B.4. For any k ≥ 1 and i ∈ Sc
k, if bki ∈ {0, 2} then we must have i ∈ supp(uk−1) \626

supp(uk), and we must have gi(uk) < 0 if bki = 0 and gi(θk) > 0 if bki = 2. In particular,627

∆k(ik) > 0 for all k.628

Proof. This is by induction on k and using the non-degeneracy Assumption 4.2.629

B.3 Local lipschitzness and smoothness630

We provide several technical lemmas on the local Lipschitzness and smoothness of ℓ, h, and g.631

Lemma B.5. The function ℓ(y, ·) is locally Lipschitz and smooth in its second argument: for any632

R > 0, there exists KR such that for any ζ, ζ′ ∈ B(0, R)633

|ℓ(y, ζ)− ℓ(y, ζ′)| ≤ KR∥ζ − ζ′∥
∥Dℓ(y, ζ)−Dℓ(y, ζ′)∥ ≤ KR∥ζ − ζ′∥,

almost surely over y. Here Dℓ(y, ·)⊤ ∈ Rdout is the derivative in the second argument.634

Proof. Since ℓ is continuously twice-differentiable, for each y ∈ Rdy , ζ ∈ Rdout there is Ky,ζ <∞635

such that for all y ∈ B(y, 1/Ky,ζ) and ζ′ ∈ B(ζ, 1/Ky,ζ) we have636

∥Dℓ(y′, ζ′)∥ ≤ Ky,ζ and ∥D2ℓ(y′, ζ′)∥ ≤ Ky,ζ ,
where Dℓ and D2ℓ denote the first and second derivative in the second argument. So for all such637

y′ ∈ B(y, 1/Ky,ζ) and ζ′, ζ′′ ∈ B(ζ, 1/Ky,ζ) we have638

|ℓ(y′, ζ′)− ℓ(y′, ζ′′)| ≤ Ky,ζ∥ζ′ − ζ′′∥ and |Dℓ(y′, ζ′)−Dℓ(y′, ζ′′)| ≤ Ky,ζ∥ζ′ − ζ′′∥ .
Cover the set {(y, ζ) : ∥y∥ ≤ C, ∥ζ∥ ≤ R} with the balls ∪yB(y, 1/Ky,ζ). By compactness,639

there is a finite subcover (y1, ζ1), . . . , (yr, ζr), so we can take KR = maxi∈[r]Kyi,ζi <∞ and the640

lemma holds since ∥y∥ ≤ C almost surely by Assumption 2.1.641

Lemma B.6. The function h(x; ·) is locally bounded, Lipschitz and smooth in its second argument:642

for any R > 0 there exists KR such that for any ψ,ψ′ ∈ B(0, R),643

∥h(x;ψ)∥ ≤ KR

∥h(x;ψ)− h(x;ψ′)∥ ≤ KR∥ψ −ψ′∥
∥Dh(x;ψ)−Dh(x;ψ′)∥ ≤ KR∥ψ −ψ′∥ ,

almost surely over x. Here Dh(x, ·) ∈ Rdout ×Rp is the derivative in the second argument.644

Proof. Analogous to proof of Lemma B.5, using continuous twice-differentiability of h and bounded-645

ness of ∥x∥.646

Lemma B.7 (Local Lipschitzness of loss and loss derivative). When θ = (u,v) ∈ R2p and647

fNN(x;θ) = h(x;u⊙ u) the following holds for g(θ) defined in (4). For any R > 0, there exists648

KR <∞ such that for any θ,θ′ ∈ B(0,KR),649

∥g(θ)− g(θ′)∥ ≤ KR∥θ − θ′∥
∥∇θL(θ)−∇RL(θ′)∥ ≤ Kθ∥θ − θ′∥

|L(θ)− L(θ′)| ≤ KR∥θ − θ′∥ .

Proof. Let θ = (u,v),θ′ = (u′,v′). This follows immediately from the local Lipschitzness and650

smoothness of h and ℓ in Lemmas B.5 and B.6, as well as651

∥g(θ)− g(θ′)∥ = ∥Ex,y[Dh(x;u⊙ v)⊤Dℓ(y, h(x;u⊙ v))⊤ −Dh(x;u′ ⊙ v′)⊤Dℓ(y, h(x;u′ ⊙ v′))⊤]∥ .
652
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Figure 6: Evolution of loss versus rescaled time initializing at various scalings α in the toy task of
learning an attention head with diagonal weights. The loss curves converge as α→ 0 to a curve with
loss plateaus and sharp decreases, as predicted by the theory.

C Experimental validation of the assumptions in Theorem 4.5653

In Figures 6, 7, and 8, we plot the evolution of the losses, of the entries of WKW
⊤
Q =654

diag(wK)diag(wQ), and of the entries of WVW
⊤
O = diag(wV )diag(wO) in the toy task of655

training an attention head (1) with diagonal weights. The model is trained with SGD on the mean-656

squared error loss on 1000 random samples (X,y). Each random sample hasX ∈ R10×50, which a657

sequence of 10 tokens, each of dimension 50, which is distributed as isotropic Gaussians. The label658

y is given by a randomly-generated teacher model that is also an attention head (1) with diagonal659

weights. In Figures 6, 7, and 8, for α ∈ {0.1, 0.01, 0.0001, 10−8, 10−16, 10−32} we plot the evolu-660

tion of the loss and of the weights when initialized at θ(0) = αθ0, for some random Gaussian θ0.661

Qualitatively, as α→ 0 we observe that the loss curve and the trajectories of the weights appear to662

converge to a limiting stagewise dynamics, where there are plateaus followed by movement on short663

time-scales, as predicted by the theory.664

Validation of Assumption 4.2 (non-degeneracy of dynamics) As α→ 0, notice that the stages665

appear to separate and happen at distinct times. Furthermore, at no stage do any of the nonnegligible666

coordinates leave the support of θ, so the extra technical condition on coordinates i ∈ supp(θk) \667

supp(θk−1) in Assumption 4.2 is automatically satisfied since supp(θk) \ supp(θk−1) is empty.668

Validation of Assumption 4.3 (stationary points are strict local minima) In Figure 9 we consider669

the α = 10−32 trajectory, since this is closest to the dynamics in the α→ 0 limit. We randomly select670

several epochs. Since the transitions between stages are a vanishing fraction of the total training time,671

each of these randomly-selected epochs is likely during a plateau, as we see in the figure. For each672

epoch perform the following experiment. For each nonnegligible coordinate of the weights (those673

where the weight is of magnitude greater than the threshold τ = 10−5), we perturb the weights by674

adding noise of standard deviation 0.05. We then run the training dynamics starting at this perturbed675

initialization for 1000 epochs. We observe that the training dynamics quickly converge to the original676

unperturbed initialization, indicating that the weights were close to a strict local minimum of the loss.677

Validation of Assumption 4.4 (noise-robustness of dynamics) In Figure 10 we perform the same678

experiment as in Figure 9, except that the epochs we select to perturb the weights are those where679

there is a newly-nonnegligible coordinate (less than 10−5 in magnitude in the previous epoch, and680

more than 10−5 in magnitude in this epoch). We find that the nonlinear dynamics are robust and tend681

to the limiting endpoint even under a random Gaussian perturbation of standard deviation 10−2 on682

each of the nonnegligible coordinates, supporting Assumption 4.4.683
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Figure 7: Evolution of diag(wQ)diag(wK) entries over rescaled time initializing at various scalings
α. Notice that as α→ 0, the training trajectories tend to a limiting trajectory. Each line corresponds
to a diagonal entry of diag(wQ)diag(wK).
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Figure 8: Evolution of diag(wV )diag(wO) entries in the toy task of learning an attention head with
diagonal weights. Each line corresponds to the evolution of an entry of diag(wV )diag(wO) over
rescaled time. Each plot corresponds to a different initialization magnitude α. Notice that as α→ 0,
the training trajectories tend to a limiting trajectory.
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Figure 9: Evolution of weights of toy attention model under perturbation, validating Assumption 4.3.
At 5 different random times during training, we perturb the nonnegligible weight coordinates and
continue to train with SGD. The evolution of each of the weights under the initial perturbation (solid
line) is compared to the original evolution without perturbation (dashed line). Observe that the
training dynamics quickly brings each weight back to the unperturbed weight trajectory, indicating
that the weights are originally close to a strict local minimum.
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Figure 10: Validating Assumption 4.4 with the same experiment as in Figure 9, except that the epochs
for the perturbation chosen are those where there is a newly nonnegligible coordinate. Perturbed
dynamics (solid lines) are again robust to perturbation and track the original dynamics (dashed lines).
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D Vision Transformers684

The practice of training transformer models often deviate substantially from the assumptions made685

in our theoretical analysis, and it is unclear to what extent gradual rank increase behaviour, and686

a low rank bias are manifested in setups more common in practical applications. To gauge the687

relevancy of our findings we conduct experiments on popular vision benchmarks, using algorithms688

and hyperparameters common in the literature. We use the stable rank given by ∥s∥2
F

∥s∥2
2

, where s is689

the spectrum, as a smooth approximation of rank. We track the value of the stable rank for the690

different attention matrices throughout training. Although we do not expect our theoretical results to691

to hold precisely in practice, we find evidence of gradual increase in stable rank, leading to a low692

rank bias Figures 12, 14 and 16. In these experiments we use off the shelf vision transformers (ViT)693

Dosovitskiy et al. (2020) trained on popular vision benchmarks. For the Cifar-10/100 datasets we694

use a VIT with 6 layers, patchsize of 4, 8 heads per self attention layer, an embedding and MLP695

dimension of 512, and a head dimension of 128. We train the model using the Adam optimizer for 500696

epochs with a base learning rate of 1e-4, a cyclic learning rate decay with a linear warmup schedule697

for 15 epochs and a batchsize of 512. For Imagenet, we use the VIT-Base/16 from Dosovitskiy et al.698

(2020) trained with Adam for 360 epochs with a base learning rate of 3e-3, a cyclic learning rate699

decay with a linear warmup schedule for 15 epochs and a batchsize of 4096. We use no weight700

decay or dropout in our experiments. All models were initialized using the default initialization scale.701

Our results are summarized in Figures 11 and 12 for Cifar-10, Figures 13 and 14 for Cifar-100 and702

Figures 15 and 16 for imagenet.703
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D.1 Cifar 10704

(a) (b) (c)

(d) (e) (f)

Figure 11: cifar-10: normalized spectrum at different stages of training. (a) - (c) Normalized spectrum
ofWKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for different attention heads at different

layers. (d) - (e) equivalent figures forWVW
⊤
O .

(a) (b) (c)

(d) (e) (f)

Figure 12: cifar-10: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O (red) throughout training.

Mean and standard deviation (shaded area) are computed across 8 heads per attention layer.
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D.2 Cifar 100705

(a) (b) (c)

(d) (e) (f)

Figure 13: cifar-100: normalized spectrum at different stages of training. (a) - (c) Normalized
spectrum ofWKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for different attention heads at

different layers. (d) - (e) equivalent figures forWVW
⊤
O .

(a) (b) (c)

(d) (e) (f)

Figure 14: cifar-100: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O (red) throughout training.

Mean and standard deviation (shaded area) are computed across 8 heads per attention layer.
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D.3 Imagenet706

(a) (b) (c)

(d) (e) (f)

Figure 15: Imagenet: normalized spectrum at different stages of training. (a) - (c) Normalized
spectrum ofWKW

⊤
Q at initialization and ∆WKW

⊤
Q during training for different attention heads at

different layers. (d) - (e) equivalent figures forWVW
⊤
O .

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 16: Imagenet: Stable rank of ∆WKW
⊤
Q (blue) and ∆WVW

⊤
O (red) throughout training.

Mean and standard deviation (shaded area) are computed across 12 heads per attention layer.
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