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ABSTRACT
Weakly supervised semantic segmentation (WSSS) using image-
level labels is a challenging task, with relying on Class Activa-
tion Map (CAM) to derive segmentation supervision. Although
many efficient single-stage solutions have been proposed, their
performance is hindered by the inherent ambiguity of CAM. This
paper introduces a new approach, dubbed ECA, to Exploit the self-
supervised Vision Transformer, DINO, inducing the Class-aware
semanticAffinity to overcome this limitation. Specifically, we intro-
duce a Semantic Affinity Exploitation module (SAE). It establishes
the class-agnostic affinity graph through the self-attention of DINO.
Using the highly activated patches on CAMs as “seeds”, we prop-
agate them across the affinity graph and yield the Class-aware
Affinity Region Map (CARM) as supplementary semantic guidance.
Moreover, the selection of reliable “seeds” is crucial to the CARM
generation. Inspired by the observed CAM inconsistency between
the global and local views, we develop a CAM Correspondence En-
hancement module (CCE) to encourage dense local-to-global CAM
correspondences, advancing high-fidelity CAM for seed selection
in SAE. Our experimental results demonstrate that ECA effectively
improves the model’s object pattern understanding. Remarkably,
it outperforms state-of-the-art alternatives on the PASCAL VOC
2012 and MS COCO 2014 datasets, achieving 90.1% upper bound
performance compared to its fully supervised counterpart. 1

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Weakly Supervised, Image Segmentation, Semantic Affinity

1 INTRODUCTION
Semantic segmentation is a fundamental computer vision task that
assigns a class for every pixel in an image. Despite the substantial
progress in deep-learning-based segmentation models, their perfor-
mance heavily relies on large-scale pixel-level annotations. Weakly
supervised semantic segmentation (WSSS) aims to address this
shortcoming by training segmentation models using weak and cost-
effective labels, such as sparse points [4], bounding boxes [10, 21],
and image-level labels [24, 29, 30]. Among these WSSS tasks, the
most rewarding yet challenging one is segmentation using only
image-level labels because of its minimum information capacity.
This paper also falls within the domain of training a segmentation
model using only image-level labels.

Prevalent WSSS with image-level labels commonly follow a
multi-stage pipeline: 1) generating pixel pseudo-labels from Class

1Code will be available after acceptance.

Image AFA (single-stage) ECA (Ours)

Image-label: {bottle, cat}

Pixel label

Image-label: {chair, table, person}

Image-label: {bird} CAM & Pseudo-label CARM & Pseudo-label

CAM & Pseudo-label CARM & Pseudo-label

CAM & Pseudo-label CARM & Pseudo-label

Figure 1: The produced pseudo-labels in single-stage WSSS.
The CAMs are from the prior art, AFA [24]. The proposed
ECA’s Class-aware Affinity Region Maps (CARM) from DINO
can produce more accurate pseudo-labels.

Activation Maps (CAM) [38]; 2) training an affinity refinement net-
work [1, 2] with dense Conditional Random Field (CRF) to refine
the pseudo-labels; 3) training segmentation networks [6, 31] using
the refined pseudo-labels. This pipeline necessitates training multi-
ple models, thus complicating WSSS and diminishing the training
efficiency. To address this issue, some recent works attempted to
devise efficient single-stage solutions based on end-to-end Con-
volutional Neural Network (CNN) [3, 34] and Vision Transformer
(ViT) architectures [24, 25].

However, compared to the pseudo-labels refined by training
a dedicated refinement network in the multi-stage WSSS, those
directly generated by the CAMs in single-stage methods exhibit
inferior quality. This dramatically impairs segmentation supervi-
sion, resulting in subpar segmentation outcomes. One critical
reason is the inevitable ambiguity of CAM that stems from
the gap between the classification and localization tasks. As
illustrated in Figure 1, CAM tends to cover non-target regions (i.e.,
over-activations) or only themost discriminative regions (i.e., under-
activations). Despite some post-processing modules integrated in
recent single-stage works [24, 33], which introduce local RGB and
position information to alleviate this problem, they still struggle to
produce high-quality pseudo-labels. We can clearly observe that the
flaws existing in CAMs still remain in the produced final pseudo-
labels, indicating the inadequacy of leveraging RGB and position
information to calibrate them.

Recently, the self-supervised Vision Transformer (ViT) model
[11], DINO [5, 22], has shown the capability of naturally modeling
pairwise affinity between two image patches without using any
annotations. This property allows for the grouping of patches with
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similar semantic properties. Although these grouped components
are “class-agnostic” and independent of predefined categories (e.g.,
head and body rather than person and car), the coverage of each
component is semantically precise and complete, and the patches
within the same component have strong affinity. This merit can
reveal the regions that CAM is difficult to cover accurately. Con-
versely, CAM cannot produce accurate object coverage, but it can
provide class and localization information. Based on this insight,
our objective is to leverage the CAM’s class and localization
priors to induce the task-required class-aware affinity from
DINO as the semantic guidance to overcome the above issue.

This paper proposes a new framework, ECA, to improve the per-
formance of single-stage WSSS through the exploitation of DINO.
Specifically, we propose a DINO-guided Semantic Affinity Exploita-
tion module (SAE) to generate Class-aware Affinity Region Map
(CARM), offering the complementary semantic guidance of CAM.
For each image, SAE comprises two steps motivated by the vanilla
“Seed and Expansion” pipeline. The first step, “selection of initial
seeds”, involves selecting top 𝑘% activations on the CAM to serve
as the initial seeds. The second step, “generation of class affinity
region map”, entails constructing a class-agnostic affinity graph
by measuring pairwise similarities among the patch keys derived
from DINO [5]. The seeds are then propagated on the affinity graph,
yielding the CARM of each labeled class for supervision. Empirical
evidence shows that the generated CARM effectively mitigates the
detrimental impact of CAM ambiguity on segmentation supervi-
sion, leading to notable performance improvement. Furthermore, to
select better initial seeds, we introduce the CAM Correspondence
Enhancement (CCE). Inspired by the inconsistency of CAM under
different views [29], CCE encourages local-to-global correspon-
dences of CAM, providing high-fidelity CAM for the seed selection.
Overall, our contributions are summarized as follows:

• We propose a Semantic Affinity Exploitation module (SAE)
to fully exploit the potential of semantic affinity existing
in DINO. It produces powerful complementary semantic
guidance, i.e., Class-aware Affinity Region Map (CARM), to
boost the single-stage WSSS performance.

• We propose a CAM Correspondence Enhancement mod-
ule (CCE) to promote the dense local-to-global correspon-
dences of CAM. It is proved that CCE promotes the object
activation completeness and the robustness of CAM, which
benefits the seed selection in SAE module.

• Building upon SAE and CCE, the proposed ECA can sig-
nificantly outperform single-stage WSSS competitors on
the PASCAL VOC 2012 and MS COCO 2014 dataset, and
achieve comparable performance with multi-stage methods.
To the best of our knowledge, ECA is the first work that
derives semantic affinity of DINO for WSSS.

2 RELATEDWORK
2.1 Single-stage WSSS
Compared with the multi-stage WSSS pipeline, single-stage solu-
tions learn a segmentation decoder using the generated pseudo-
labels in an end-to-end manner. Due to the lack of satisfactory
pseudo-labels, the performance of single-stage WSSS models lags

behind multi-stage models. To address this limitation, many studies
focused on optimizing CAM pseudo-labels [3, 24, 33]. For instance,
RRM [35] employed Conditional Random Field (CRF) to produce
the refined label as supervision for segmentation. AFA [24] intro-
duced a Pixel-Adaptive Refinement (PAR) module to refine the
CAM pseudo-labels effectively. Additionally, it explores the use of
Transformer with an affinity learning loss to enforce the model to
learn object-related attention, resulting in better pseudo-labels for
segmentation. TSCD [33] introduced a CAM-based self-distillation
task and proposes a Variation-aware Refine Module to achieve
better segmentation. However, we observe that these strategies
mainly depend on the RGB and position priors of pixels to refine
CAM pseudo-labels, making them difficult to calibrate low-quality
pseudo-labels that are severely impaired by CAM ambiguity. In this
work, we use CAM to induce the class-aware affinity map from the
self-supervised ViT, DINO, as the complementary guidance. This
significantly enhances the performance of single-stage WSSS.

2.2 Self-supervised Foundation Model
Self-supervised learning aims to learn visual representations from
unlabeled images by solving pretext tasks [15]. In this manner, their
pretrained foundation models enable to outperform their super-
vised counterparts when transferring to downstream tasks. DINO
[5], a self-supervised ViT model, has been observed that it auto-
matically emerges underlying class-agnostic semantic properties,
which is not explicitly present in any supervised ViT or CNN [5, 40].
Leveraging the unique property of DINO, several studies proposed
to detect a single salient object from each image using a graph
constructed with DINO’s patch tokens [26, 28]. In contrast, WSSS
aims to segment single or multiple objects with specific semantics
for each image. The proposed ECA integrates the CAM’s class and
position priors to induce each labeled class’s class-aware affinity
region via the constructed class-agnostic affinity graph from DINO.
This perspective has not been studied in previous WSSS works.

3 PROPOSED METHOD
This section begins with a brief review of generating CAM from a
Transformer backbone. Then, Semantic Affinity Exploitation mod-
ule (SAE) is presented to exploit the class-aware affinity region
map (CARM) for each labeled class. Next, CAM Correspondence
Enhancement (CCE) is introduced to align the CAM activations
between the global and local views. Lastly, we present the total
training objective of ECA. The overview of the proposed ECA
framework is illustrated in Figure 2.

3.1 Class Activation Map in Transformers
Initially, CAM is introduced for CNN to localize the discriminative
regions for specific classes [38]. Because of its effectiveness and
simplicity, CAM has been prevalently employed to generate the ini-
tial pseudo-labels for WSSS. For Transformer-based models, CAM
is generated in a similar manner as that on CNN. Given an image,
its patch tokens are treated as a feature map F ∈ RD×HW, where
HW denotes the spatial dimension, i.e., the number of patches N,
and D denotes the channel dimension. Subsequently, it is sent to
a Global Max-Pooling layer with a classification layer to retrieve
the classification score. In the above process, given C classes, the
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Figure 2: The framework overview of ECA. ECA first generates CAMs from a ViT-variant backbone, Mix Transformer (MiT) [31].
In Semantic Affinity Exploitation (SAE), the input image is fed to the frozen DINO model to generate Class-agnostic affinity
graph. Then the seeds from CAMs are used to induce Class-aware Affinity Region Maps (CARM). CARMs are subsequently
calibrated by using momentum prototypes. In CAM Correspondence Enhancement (CCE), we use global CAM pseudo-labels
to construct dense correlation pairs to supervise the correspondence between global and local patch CAMs. For the segment
decoder, it is jointly supervised by CAM and CARM pseudo-labels.

CAM of class 𝑐 , denoted asM𝑐 ∈ RHW, is generated by weighting
and summing the feature map F using the classification weights
W ∈ RD×C:

M𝑐 = ReLU

( D∑︁
𝑖=1

W𝑖,𝑐 · F𝑖

)
, (1)

where ReLU function is used to filter out negative activations. Then,
min-max normalization is applied to rescale M𝑐 to [0, 1]. For the
background (class 0) CAM, denoted as M0, the value of patch at
position 𝑖 is defined as:

M0 (𝑖) = 1 − max
1≤𝑐≤C

M𝑐 (𝑖), (2)

where M𝑐 (𝑖) is the CAM activation value of class 𝑐 at patch 𝑖 . Note
that the background CAM is only adopted in Semantic Affinity
Exploitation (Equation 3). During the pseudo-label generation stage,
a hard background threshold 𝛼 is set to separate the foreground
objects and background.

3.2 Semantic Affinity Exploitation
Selection of Initial CAM Seeds. The CAM can provide the class
and localization priors to induce the class-aware regions from
DINO. Thereinto, the value of CAM can be regarded as confidence
scores to select reliable initial seeds of its labeled class. However,
some regions are often activated in multiple classes and may erro-
neously dominate the high-confident activations in multiple classes,
producing incorrect seeds for subsequent processes. To this end,
for each image’s CAM, i.e., M ∈ R(C+1)×HW, we deploy a mask
I cam = argmax𝑐 (M) to ensure that the position of each image patch
is exclusively activated in one class during seed selection. Then,

the initial CAM seeds of its labeled class 𝑐 are those patches within
the top 𝑘% of nonzero activations:

Q𝑐 = Top
𝑘

(M𝑐 ⊙ I (I cam = 𝑐)) , (3)

where Q𝑐 represents the collection that records the position of
class 𝑐’s initial seeds, and ⊙ denotes the Hadamard product. In the
above selection process, hyperparameter 𝑘 controls the percent of
patches considered, where a smaller 𝑘 indicates higher confidence
for selected initial seeds.
Construction ofClass-agnosticAffinityGraph.DINO [5] demon-
strates that its self-supervised ViT can learn a perceptual grouping
of image patches. Therefore, we leverage this merit to model the
pair-wise affinity between any two image patches, which is notice-
able when using the keys from its self-attention heads [26, 27]. For
each image, given the keys of N patches from the last self-attention
block of the frozen DINO, we construct an undirected class-agnostic
affinity graph Gaff ∈ RN×N. The affinity between patch 𝑖 and patch
𝑗 , denoted as Gaff (𝑖, 𝑗), can be calculated by:

Gaff (𝑖, 𝑗) =
𝒌𝑖 · 𝒌T𝑗

∥𝒌𝑖 ∥2 ×


𝒌 𝑗




2
, {𝒌𝑖 , 𝒌 𝑗 } ∈ R1×D, (4)

where 𝒌𝑖 and 𝒌 𝑗 are the key of the patch at spatial position 𝑖, 𝑗 ∈
[0,N − 1]. A higher Gaff (𝑖, 𝑗) indicates stronger affinity between
patch 𝑖 and patch 𝑗 , implying that these two patches tend to belong
to the same labeled class.

Moreover, since the class token interacts with patches to rep-
resent the image, the attention between class token and patches

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM’2024, October 28–November 01, Anon. Submission Id: 853

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

can reveal valuable foreground object cues that facilitate the filter-
ing of background patches. Thus, similarly to the construction of
Gaff, we establish the foreground-cue map for each image, denoted
as Ifg ∈ R1×N, by measuring the similarity between the query of
the class token and the keys of N patches. For the patch at spatial
position 𝑖 ∈ [0,N − 1], its value of Ifg (𝑖) can be calculated as:

Ifg (𝑖) =
𝒒 · 𝒌T𝑖

∥𝒒∥2 × ∥𝒌𝑖 ∥2
, {𝒒, 𝒌𝑖 } ∈ R1×D, (5)

where 𝒒 denotes the query of the class token, while 𝒌𝑖 represents
the key of the patch 𝑖 . A higher value of Ifg (𝑖) indicates a stronger
affinity between the class token and patch 𝑖 , suggesting that patch
𝑖 is more likely to be part of the foreground.

Note that the DINO model used in the above process is always
kept frozen, serving only for inference purposes. This ensures that
the DINO model does not affect too much training efficiency. We
exclude the Multi-head Self-attention mechanism in the above con-
struction of Gaff and Ifg (Equation 4 and 5) for brevity. In actual
implementation, the query and keys from each self-attention head
are concatenated together to derive Gaff and Ifg.

Generation of Class-aware Affinity Region Map. For each
image, its initial CAM seeds are used to induce Gaff to generate
its corresponding Class-aware Affinity Region Map (CARM). As-
suming that the image is labeled as 𝑐 , the seeds from its Q𝑐 first
propagate along the rows of Gaff, constructing the binary adjacency
vectors A based on a threshold 𝛾 . Formally, for the seed at position
𝑖 ∈ Q𝑐 , the above process can be formulated as:

A(𝑖) = (Gaff (𝑖, :) > 𝛾) , where A(𝑖) ∈ R1×N . (6)

Subsequently, the binary adjacency vectors A ∈ R | Q𝑐 |×N are ag-
gregated with the foreground-cue map Ifg to construct the original
CARM of class 𝑐 , denoted asM𝑐 :

M𝑐 =

{∑
𝑖∈Q𝑐 A(𝑖) ⊙ Ifg , if 𝑐 ∈ [1,C − 1]∑
𝑖∈Q0 A(𝑖) , if 𝑐 = 0

, (7)

where the value ofM𝑐 ∈ R1×N intuitively represents the degree of
each patch from a graph perspective. A patch with a higher degree
inM𝑐 suggests that it is more likely to belong to class 𝑐 . Finally, we
reshapeM𝑐 to the size ofH×W and applied min-max normalization
to rescale its values.

Calibration of Class-aware Affinity Region Map. After gener-
ating CARMM for each image, it can be utilized as the semantic
guidance for WSSS, following a similar manner as CAM. However,
our early experiment indicates that CARM is susceptible to erro-
neous initial CAM seed selection owing to the over-activation issue,
i.e., identifying the background patch as that of target objects. This
situation will lead to imprecise propagation on the class-agnostic
affinity graph and produce noisy CARM, which in turn degrades
the final segmentation performance.

To tackle this issue, we introduce the momentum prototype for
each class to calibrate CARM. The motivation is that the momen-
tum prototypes, updated by the tokens across the entire datasets,
can serve as more robust class-representative tokens compared to
the tokens from image instances. Consequently, we compute the
similarity between image tokens and the prototypes to suppress

unreliable CARM regions. Specifically, the momentum prototypes
P are updated by the tokens corresponding to the seeds from Q.
For each class 𝑐 , its prototype P𝑐 can be updated as:

P𝑐 ← 𝜏 · P𝑐 + (1 − 𝜏) ·
1
|Q𝑐 |

∑︁
𝑖∈Q𝑐

t𝑖 , (8)

where t𝑖 denotes the patch token of the selected seed at position 𝑖 ,
𝜏 is momentum for the prototype update, and | · | represents the
collection cardinality. Then, given an image labeled as class 𝑐 with
its feature map F ∈ RD×HW and prototype P𝑐 ∈ R1×D, we calculate
the similarity map S𝑐 ∈ RHW, where the value of the patch at
position 𝑖 , denoted as S𝑐 (𝑖), can be calculated as :

S𝑐 (𝑖) = max
[

P𝑐 · F(:, 𝑖)
∥P𝑐 ∥2 × ∥F(:, 𝑖)∥2

, 0
]
. (9)

Finally, the similarity map S𝑐 is reshape to H ×W and the image’s
calibrated CARM of class 𝑐 will be:

M𝑐 = min-max(M𝑐 ⊙ S2𝑐 ). (10)

After calibration process, the CARM pseudo-label is produced as
the complementary supervision of the segment decoder and the
guidance of the semantic affinity relations in self-attention through
affinity learning [24].

3.3 CAM Correspondence Enhancement
In the SAE module, due to the CAM ambiguity, the selected seeds
sometimes fail to cover all components of target objects or be as-
signed to incorrect collections of Q. This phenomenon is exacer-
bated when the images have incomplete or local views, as noted
by Wang et al. [29]. To alleviate the CAM inconsistency under the
global and local views, CAM Correspondence Enhancement (CCE)
is introduced to enhance the object activation completeness and
the robustness of CAM for better seed selection. The objective
of CCE is to align the CAM activations between the global
view and multiple local views through establishing dense
correspondences. Intuitively, if a pair of patches in the global
view exhibits highly similar activations, the corresponding pairs
of activations within the local views will be encouraged stronger
similarity. Otherwise, the pair of activations in the local view will
be encouraged to exhibit weaker similarity. The local views are
generated by segmenting objects from the global view and apply-
ing re-augmentation to accentuate the discrepancy from the global
view. To reduce the computational load, we utilize the CAM pseudo-
label of the global view to establish the hard pairwise correlations
(i.e., the activation similarity between two patches assigned with
the same pseudo-label is considered as 1, otherwise it is 0).

Following previous studies [24, 25], we begin by filtering uncer-
tain regions of CAMs to produce CAM pseudo-labels. Next, the
patches that share the same pixel pseudo-label in the global view
are identified as positive pairs, whereas those with different labels
are designated as negative pairs. As illustrated in Figure 3, the
objective of CCE is two-fold: maximizing the similarity between
patch activations belonging to positive pairs, and meanwhile, min-
imizing the similarity for those in negative pairs. This proposed
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Figure 3: Illustration of the CAM Correspondence Enhance-
ment (CCE) module. Only one local view is presented for
clear visualization.

correspondence loss is formulated as follows:

Lcorr =
𝑁∑︁
𝑛=1

[ 1
|R+𝑛 |

∑︁
{𝑖, 𝑗 }∈ R+𝑛

(
1 − D (M𝑛 (: , 1 : 𝑖) ,M𝑛 (: , 1 : 𝑗))

)
+ 1
|R−𝑛 |

∑︁
{𝑖, 𝑗 }∈ R−𝑛

D (M𝑛 (: , 1 : 𝑖) ,M𝑛 (: , 1 : 𝑗))
]
,

(11)
where M𝑛 (: , 1 : 𝑖) ∈ RC denotes the non-background CAM acti-
vation of patch 𝑖 at the local view 𝑙 , and (R+

𝑙
,R−

𝑙
) represent the

collections of positive and negative pairs within each local view
𝑙 , determined by the corresponding global CAM pseudo-label, re-
spectively. Across all local views, from 𝑙 = 1 to 𝑁 , Jensen-Shannon
divergence D is employed to measure the discrepancy between
the activations of two patches as the training loss to promote the
CAM’s correspondence.

3.4 Network Training of ECA
As shown in Figure 2, except the classification loss Lcls and the
joint segmentation loss of CAM and CARM pseudo-labels Lseg and
L̃seg, the proposed ECA also employ the auxiliary affinity learn-
ing loss Laff [24] to transfer the knowledge from CARM to the
semantic affinity relations in multi-head self-attention. Following
the common practice, these CAM and CARM pseudo-labels are
refined by the online post-processing module, i.e., PAR [24]. The
Multi-label Soft Margin Loss is adopted for Lcls, and the Cross En-
tropy is adopted for bothLseg and L̃seg. The optimization objective
of ECA is the weighted sum of these loss terms:

LECA = Lcls + 𝜆1 (Lseg + L̃seg) + 𝜆2 Lcorr + 𝜆3 Laff, (12)

where 𝜆𝑖 , 𝑖 ∈ {1, 2, 3} are the weights used to rescale the losses of
different learning objectives.

4 EXPERIMENTS
4.1 Setup
Datasets and evaluation metric.We conduct our experiments on
PASCAL VOC 2012 [13] and MS COCO 2014 datasets [19]. PASCAL
VOC 2012 dataset comprises training, validation, and test sets with
a total of 21 classes. Following the WSSS convention, we adopt

VOC COCO
Methods BB.

val test val

Multi-stage WSSS methods
RCA† [39] CVPR ’22 R101 72.2 72.8 36.8
PPC† [12] CVPR ’22 R101 72.6 73.6 -
ReCAM† [8] CVPR ’22 R101 68.4 68.2 45.0
MCTFormer [32] CVPR ’22 WR38 71.9 71.6 42.0
W-OoD [17] CVPR ’22 WR38 70.7 70.1 -
ESOL [18] CVPR ’22 R101 69.9 69.3 42.6
OCR [9] CVPR ’23 WR38 72.7 72.0 42.5
ACR [16] CVPR ’23 R101 71.9 71.9 45.3

Single-stage WSSS methods
RRM [35] AAAI ’20 WR38 62.6 62.9 -
1Stage [3] CVPR ’20 WR38 62.7 64.3 -
AA&LR [36] ACM MM ’21 WR38 63.9 64.8 -
SLRNet [23] IJCV ’22 WR38 67.2 67.6 35.0
AFA [24] CVPR ’22 MiT-B1 66.0 66.3 38.9
TSCD [33] AAAI ’23 MiT-B1 67.3 67.5 40.1
ToCo [25] CVPR ’23 ViT-B 69.8 70.5 41.3

ECA (Ours) MiT-B1 70.9 71.4 42.9

Table 1: Semantic segmentation results (mIoU%). † denotes
the methods use the saliency map as the auxiliary supervi-
sion. “BB.”: Backbone. The backbone in multi-stage methods
is that in the final segmentation model.

its augmented training set (SBD) [14] that consists of 10582 im-
ages to train our ECA framework. MS COCO 2014 dataset contains
training and validation sets with 81 classes, including 82,081 and
40,137 images respectively. Mean Intersection-Over-Union (mIoU)
is reported as the evaluation metric for both CAM and final seg-
mentation performance.

Network Configuration. In our work, we use Mix Transformer
(MiT-B1) proposed in SegFormer [31] as our Transformer backbone,
which shows the high training efficiency compared to the vanilla
ViT model [37]. The segmentation head utilizes a MLP decoder that
combines multi-level feature maps for prediction through simple
MLP layers. The backbone is pretrained on ImageNet-1k, while
other parameters are randomly initialized. For the DINO [5] model
in the SAE module, we use its DeiT-S version with patch size = 8
to produce CARM by default.

Implement Details. During the training stage, we train ECA with
an AdamW optimizer [20]. The initial learning rate is set as 6×10−5
with a polynomial decay scheduler. The weight decay factor is set
as 0.01. For the input images, they are cropped to 512 × 512, and
applied augmentation strategies including random scaling with a
range of [0.5, 2.0] and random horizontal flipping. The batch size
is set as 8. The background threshold 𝛼 is set to 0.5 by default.
The other hyperparameter settings of PAR and auxiliary affinity
learning loss (Section 3.4) are followed by [24].
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Method BB. val (F ) val (I) ratio (%)

1Stage [3] 80.8 62.7 77.6
SLRNet [23]

WR38
80.8 67.2 83.2

ToCo [25] ViT-B 80.5 69.8 86.7

AFA [24] 78.7 66.0 83.9
TSCD [33] 78.7 67.3 85.5
ECA (Ours)

MiT-B1
78.7 70.9 90.1

Table 2: The segmentation performance of fully supervised
counterparts. The results are evaluated on the VOC 2012 val
set. The pixel-level ground-truths are directly used to super-
vise the segment decoder. F : fully-supervised supervision.
I: image-level supervision (WSSS). ratio: val (I) / val (F ).

For the experiments on PASCAL VOC 2012, we train the network
for 18k iterations with 2k iterations warmed up for the classifiers.
These images of the local view for the CCE module are cropped to
256 × 256. They are re-augmented by random color distortion and
horizontal flipping. By default, the loss weights of (𝜆1, 𝜆2, 𝜆3) are
all set as 0.1, 𝑘 in Equation 3 is set as 0.3, and the affinity threshold
𝛾 in Equation 6 is set as 0.15. For the experiments on MS COCO
2014, we train the network for 80k iterations. The loss weights
of (𝜆1, 𝜆2, 𝜆3) are set as (0.1, 0.05, 0.1) and 𝑘 is set as 0.15, while
other settings remain the same. In the inference stage, following
the common practice in WSSS, we adopt multi-scale inference and
CRF post-processing [6] to obtain the final segmentation results.

4.2 Experimental Results
Comparison to State-of-the-art. We report the segmentation
performance of ECA on PASCAL VOC 2012 and MS COCO 2014
in Table 1. ECA achieves 70.9% (+1.1%), 71.4% (+0.9%), and 42.9%
(+1.6%) mIoU on PASCAL VOC 2012 val, test and COCO val set,
respectively, outperforming previous single-stage methods. More-
over, ECA demonstrates competitive performance compared to
multi-stage methods, while significantly reducing the training cost.
Notably, on the more challenging MS COCO 2014 dataset, our
single-stage ECA even outperforms many recent multi-stage WSSS
methods, demonstrating its robustness in more complex scenarios.

Fully-Supervised Counterparts. The single-stage competitors
presented in Table 1 adopt various backbones. For a fair comparison,
we examine the performance of their fully-supervised counterparts
on the VOC 2012 val set. The results in Table 2 demonstrate that
ECA significantly boosts the utilization of image-level annotations
for semantic segmentation. ECA improves by +4.6% compared to
methods using the same MiT-B1 backbone and by +3.4% compared
to recent state-of-the-art work, i.e.., ToCo [25].

Per-category segmentation performance. The per-category
segmentation results on PASCAL VOC val set is tabulated in Table
3. We can see the proposed ECA achieves remarkable performance
improvement in most semantic classes (16 of 21). We can see the
proposed ECA outperforms prior-arts over 5% in many classes.
Especially, in the class of aeroplane, bicycle, cat, train, which
are susceptible to the over-activation issue, ECA improve their
performance by +7.3%, +7.2%, +6.6%, +8.4%, respectively.

RRM 1Stage AA&LR AFA ECA (Ours)

bkg 87.9 88.7 88.4 89.9 92.2
aero 75.9 70.4 76.3 79.5 86.8
bicycle 31.7 35.1 33.8 31.2 42.3
bird 78.3 75.7 79.9 80.7 72.8
boat 54.6 51.9 34.2 67.2 73.4
bottle 62.2 65.8 68.2 61.9 72.7
bus 80.5 71.9 75.8 81.4 78.6
car 73.7 64.2 74.8 65.4 71.9
cat 71.2 81.1 82.0 82.3 88.9
chair 30.5 30.8 31.8 28.7 31.9
cow 67.4 73.3 68.7 83.4 83.8
table 40.9 28.1 47.4 41.6 41.1
dog 71.8 81.6 79.1 82.2 82.6
horse 66.2 69.1 68.5 75.9 81.5
motor 70.3 62.6 71.4 70.2 74.4
person 72.6 74.8 80.0 69.4 76.8
plant 49.0 48.6 50.3 53.0 58.3
sheep 70.7 71.0 76.5 85.9 86.6
sofa 38.4 40.1 43.0 44.1 47.5
train 62.7 68.5 55.5 64.2 76.9
tv 58.4 64.3 58.5 50.9 55.8

mIOU (%) 62.6 62.7 63.9 66.0 70.4

Table 3: Evaluation of per-category semantic segmentation
results in mIoU on the val set of PASCAL VOC 2012. We
compare the single-stage WSSS prior arts, including RRM
[35], 1Stage [3], AA&LR [36], and AFA baseline [24]. The
improvement over 5% are marked in color .

Qualitative Results. In Figure 5, we visualize the segmentation re-
sults of our ECA on the VOC 2012 val and MS COCO 2014 val sets,
and compare them with the recent state-of-the-art methods, i.e.,
AFA [24] and ToCo [25]. We can clearly observe that the proposed
ECA demonstrates a significant improvement over AFA and ToCo.
ECA effectively produces segmentation results that align more pre-
cisely with object boundaries, which are close to the ground-truths.
Particularly, we can find that both AFA and ToCo produce many
false-positive predictions caused by the pseudo-labels suffering
from the semantic ambiguity problem of CAM. With the DINO
as the semantic guider for segmentation, ECA can overcome this
problem well. Also, we present the CAM visualization in Figure 5.
We can observe that ToCo activates more non-target background
regions and fails to activate some less discriminative regions. In
contrast, the proposed ECA can achieve better object activations
and provide high-quality CAM for seed selection and pseudo-label
generation.

4.3 Ablation Studies and Analysis
Ablation. We investigate the impact of each component in our
proposed ECA. The results of the ablation studies are reported in
Table 4. It shows that our baseline setting achieves 62.2% and 63.5%
mIoU of CAM and segmentation results on the PASCAL VOC val
set. When introducing CARM to Affinity Learning (AL) [24], it
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Figure 4: Qualitative segmentation results comparison. From left to right, the results are predicted by AFA [24], ToCo [25] and
the proposed ECA. Prediction results from AFA and ToCo produce some false positive/negative results. With CARM as the
complementary guidance, ECA can solve this shortcomings well.

Method AL Lseg L̃seg CCE CAM Seg (msc)

Baseline ✓† ✓ 62.2 63.5
✓ ✓ 63.2 65.0
✓ ✓ 66.6 67.1
✓ ✓ ✓ 66.8 68.4

ECA ✓ ✓ ✓ ✓ 69.1 69.4

Table 4: Ablation studies of ECA on the VOC 2012 val. †

denotes Affinity Learning (AL) is supervised by CAM pseudo-
labels. “CAM” is the CAM performance and “Seg (msc)” is
segmentation performance with multi-scale inference. CRF
processing is not implemented in the ablation study.

improves the CAM and segmentation performance to 63.2% and
65.0%, respectively. Next, we validate the effectiveness of joint su-
pervision (i.e., Lseg and L̃seg) for the segmentation decoder. By
replacing CAM with CARM to generate pseudo-labels as guidance,
we observe improvements of 3.4% and 2.1% in CAM and segmenta-
tion performance, respectively. When we jointly use the CAM and
CARM pseudo-labels, they can further improve the segmentation
performance to 68.4%. We speculate that CAM and CARM serve
complementary roles, where erroneous gradient updates caused by
one pseudo-label are calibrated by the other, thereby enhancing the
robustness and accuracy of the segmentation model. Furthermore,
the CCE module significantly enhances the CAM performance with
an increase of 2.3%, demonstrating that the local-to-global CAM
correspondence benefits the robustness of CAM performance. With
better CAM, which generates better pseudo-labels and seeds in SAE
module, the segmentation performance further promotes to 69.4%,
leading to the state-of-the-art.

ViT Architecture in SAE. The motivation of the SAE module
is using the powerful class-agnostic affinity from DINO to yield

To
Co

EC
A

Im
ag
e

Figure 5: Visualization of CAM. We compare the state-of-the-
art one-stage approach, ToCo, with our proposed ECA. With
DINO as the guidance, ECA can effectively suppresses the
over-activation issue of CAM.

complementary semantic guidance for WSSS, i.e.., CARM, through
the CAM class and location priors. Different DINO variants in-
fluence the modeling of class-agnostic affinity, thus affecting the
effectiveness of CARM. Here, we study the performance of ECA
under different ViT models in Table 5. We can observe that the ViT
fully supervised on ImageNet-1k cannot generate effective CARMs
for semantic guidance, leading to catastrophic segmentation perfor-
mance. Compared with other self-supervised ViT models [7, 22], we
can find that DINO is the best choice for SAE. Further, we test the
patch size of DINO and its ViT architecture. The results show that
a small patch size of 8 is suitable for producing CARM, archiving
the best segmentation performance, while a larger architecture (i.e.,
ViT-B) would not benefit our proposed ECA.

Analysis of CARM. In Figure 6a, we visualize the effect of CARM
calibration in SAE. We show some challenging cases where the
initial seeds involve erroneous localizations, subsequently leading
to inferior pseudo-labels. After CARM calibration, we can find that
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Figure 6: Visualization of CARM. The brighter region in Figure 6b indicates a larger value. In the last two columns of Figure 6b,
we show failure cases due to incorrect seed selection. “Back.”: Background; “Fore.”: Foreground.

Model
Sup. DINO DINO v2 MoCo v3
V-S/16 V-S/16 V-S/8 V-B/8 V-S/14 V-S/16

CAM 43.7 68.4 69.1 69.3 69.5 66.4
Seg 36.7 67.2 69.4 69.3 68.6 65.7

Table 5: The performance comparison of different DINO ver-
sions and other self-supervised foundationmodels. “V-S” and
“V-B” correspond to ViT-S and ViT-B backbones, while the
value following ViT backbone indicates different patch size;
“Sup.”: ViT model fully supervised on ImageNet-1k. We also
test the performance using DINO v2 [22] and MoCo v3 [7].

top 𝒌% Seg Seg (msc)

5 67.0 69.4
10 67.1 69.5
30 67.6 69.4
50 66.8 68.7

(a) Top 𝒌% in seed selection.

Size CAM Seg (msc)

96 66.4 67.5
128 67.6 68.8
256 69.1 69.4
384 69.2 69.5

(b) Crop size of local views.

Table 6: Impact of hyper-parameters. The performance is
evaluated on PASCAL VOC 2012 val set.

numerous noise labels are successfully calibrated, thus improving
the quality of these pseudo-labels. In Figure 6b, we demonstrate
that CARM (after calibration) adeptly captures the foreground and
background object information, enabling clear identification of
the foreground objects. Notably, it’s intriguing to observe that the
background CARM exhibits strong cues of foreground objects. In
single-class cases, the background CARM alone is competent in
providing high-quality pseudo-labels for the segmentation decoder.

Initial Seed Selection. We utilize top 𝑘 activations of CAM as
the initial seeds to exploit the class-aware affinity region for each
labeled class. SAE with a smaller 𝑘 select fewer but more reliable

seeds. Conversely, SAE with a larger 𝑘 select more seeds that cover
broader object regions, thus benefiting the completeness of CARM.
Table 6a shows 𝑘 = 0.3 is the best choice but other values smaller
than 0.3 can also yield favorable performance.

Size of Local View. The CCE module aligns CAM activations
between global and local views to enhance the performance and
reliability of CAM for better seed selection and CAM pseudo-labels.
In Table 6b, we report the impact of local view size in CCE. It
shows that the crop size of 256 and 384 both achieve favorable
performance. Considering the computational load of establishing
dense correlation pairs in CCE, we choose the crop size of 256 in
our experiments by default.

5 CONCLUSION
This paper explores the distinct property of DINO to extract seman-
tic guidance for single-stage WSSS, aiming to overcome the limi-
tation of using CAM pseudo-labels. Specifically, highly-activated
patches are selected as the initial seeds to induce Class-aware Affin-
ity Region Map for each labeled class through the class-agnostic
affinity map established by DINO. The CARM captures precise class-
specific region affinities, thus offering high-fidelity pseudo-labels
for both the segmentation decoder and affinity learning processes,
enhancing the final segmentation outcomes. Moreover, motivated
by the inconsistency between the global and local views, we propose
CAM Correspondence Enhancement to align the CAM of global
and local views through the dense correspondences, improving the
performance of CAM for seed selection and the CAM pseudo-label
generation. On PASCALVOC 2012 andMS COCO 2014 datasets, our
method achieves new state-of-the-art performance in single-stage
WSSS and even outperforms numerous multi-stage WSSS method-
ologies on MS COCO 2014. From a broader view, the proposed
method provides a novel perspective that leverages the powerful
affinity modeling capability of DINO to excavate semantic guidance
to overcome the CAM limitations.
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