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Figure 1: The modified cropping strategy. We use this strategy
to generate the local views guided by the produced pseudo-
labels.

1 DETAILS OF MIT BACKBONE IN ECA

Following previous single-stage prior arts [24, 33], we adopt MiT-B1,
proposed in SegFormer [31], as the backbone for our ECA frame-
work. Compared to the vanilla ViT [11], SegFormer is specifically
designed for semantic segmentation, making it a more suitable
architecture for WSSS tasks. SegFormer incorporates overlapped
patch merging layers with different strides to compute multi-head
self-attention and generate multi-scale feature maps. The standard
SegFormer with MiT-B1 has a stride of [4, 8, 16,32]. In our work,
we modify the stride of the last patch merging layer to 16 to in-
crease the resolution of the feature maps. Early experiments shows
that this modification can effectively benefit the CAM performance,
which can produce better CAM pseudo-labels.

2 DETAILS OF CROPPING STRATEGY IN CCE

In the CAM Correspondence Enhancement (CAE) module, we mod-
ify the random cropping technique to generate the local views
guided by the produced pseudo-labels. This is because utilizing a
basic random cropping strategy may result in some local views
lacking target objects, deviating from our intended design objective.
Early experiments also show that performing CCE on the local
views without objects would lead to performance degradation. To
this end, we modify the random cropping strategy to guarantee that
the local views can contain partial objects. Specifically, we identify
pixels corresponding to the objects indicated by the pseudo-labels
as “anchors”. Then, we randomly select an anchor pixel as the cen-
ter and crop the image with crop size 256 (default). This process is
illustrated in Figure 1.

3 MORE EXPERIMENTAL RESULTS

Threshold y in the SAE module. In the Semantic Affinity Ex-
ploitation module (SAE), we set y to generate the binary adjacency
vector A. Table 1 reports the performance under different settings

y CAM val (msc)
-0.15 54.6 54.4
0.00 69.2 68.2
0.15 69.1 69.4
0.30 67.5 67.3

Table 1: Impact of the threshold y in the SAE module. The
results are evaluated on the VOC 2012 val set. “msc”: the
multi-scale inference test. The segmentation results are not
implemented dense CRF post-processing.

T Seg Seg (msc)
0.10 66.8 68.7
0.50 66.9 69.0
0.90 67.1 69.4
0.99 67.6 69.4

Table 2: Impact of the momentum 7 on prototype update for
CARM calibration. The results are evaluated on the VOC 2012
val set. “msc”: the multi-scale inference test. The segmenta-
tion results are not implemented dense CRF post-processing.

of y. We can observe that the setting of y > 0 can produce favorable
CAM performance, while the setting of y = 0.15 can produce the
best segmentation results, and we use this setting as default.

Momentum 7 in the CARM Calibration. After the production
of CARM, we utilize momentum prototypes to calibrate them effec-
tively. Higher values of 7 result in more stable prototypes for each
class. To investigate the impact of different momentums, we con-
duct experiments within the range of [0.1,0.99]. From Table 2, we
can observe that ECA reveals a notable improvement in both single-
scale and multi-scale segmentation performance as the momentum
increases. This observation highlights the significance of maintain-
ing stable prototypes in CARM calibration, ultimately enhancing
the overall segmentation performance. In our ECA framework,
7 = 0.99 is adopted as default.

Weight of Loss Terms. We present the segmentation results on
the VOC 2012 val set with different weight factors of loss terms.
From Table 3, we can observe that A; = 0.1,A2 = 0.2,43, = 0.0l is a
preferred choice for our ECA framework.

Semantic Segmentation Results. In Figure 3, we provide more
qualitative results of semantic segmentation predicted by AFA [24]
(with the same MiT-B1 backbone) and the proposed ECA. We can
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Figure 2: Visualization of CARM and its generated pseudo-
labels. Some images have multiple object classes, we only
visualize the CAM and CARM of one target class for
clear demonstration. The produced pseudo-labels contain
multiple classes’ annotations.

see ECA can achieve better object coverage and get more closer
predictions to the ground-truths.

4 MORE QUALITATIVE RESULTS

CARM and its pseudo-labels. We present some cases of CARM
pseudo-label generation in Figure 2. Although some CARMs of
target objects are incomplete, we can still obtain satisfactory pseudo-
labels with the help of background CARM. Compared to CAM
pseudo-labels, it can provide complementary semantic guidance to
overcome the over-activation and under-activation issues for the
segment decoder, thus boosting the segmentation performance.

Semantic Segmentation Results. In Figure 3, we provide more
qualitative results of semantic segmentation predicted by AFA [24]
(with the same MiT-B1 backbone) and the proposed ECA. We can
see ECA can achieve better object coverage and get more closer
predictions to the ground-truths.
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Figure 3: Visualization of segmentation results on PASCAL
VOC val set and MS COCO val set. We compared the results
of the proposed ECA with AFA [24] (with the same MiT-B1
backbone). Our methods outperforms AFA and are more
closer to the ground-truths.

‘ M A2 A3 ‘ val

Default | 0.1 0.1 01 | 694
0.05 68.3

0.2 66.9

0.05 68.1

0.2 67.5

0.05 68.8

0.02 67.3

Table 3: Impact of the weights of loss terms. The results are
evaluated on the val set of PASCAL VOC 2012. The segmenta-
tion results are not implemented dense CRF post-processing.
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