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Crop size

anchor

Global View Crop Local View

Figure 1: Themodified cropping strategy.We use this strategy
to generate the local views guided by the produced pseudo-
labels.

1 DETAILS OF MIT BACKBONE IN ECA
Following previous single-stage prior arts [24, 33], we adoptMiT-B1,
proposed in SegFormer [31], as the backbone for our ECA frame-
work. Compared to the vanilla ViT [11], SegFormer is specifically
designed for semantic segmentation, making it a more suitable
architecture for WSSS tasks. SegFormer incorporates overlapped
patch merging layers with different strides to compute multi-head
self-attention and generate multi-scale feature maps. The standard
SegFormer with MiT-B1 has a stride of [4, 8, 16, 32]. In our work,
we modify the stride of the last patch merging layer to 16 to in-
crease the resolution of the feature maps. Early experiments shows
that this modification can effectively benefit the CAM performance,
which can produce better CAM pseudo-labels.

2 DETAILS OF CROPPING STRATEGY IN CCE
In the CAM Correspondence Enhancement (CAE) module, we mod-
ify the random cropping technique to generate the local views
guided by the produced pseudo-labels. This is because utilizing a
basic random cropping strategy may result in some local views
lacking target objects, deviating from our intended design objective.
Early experiments also show that performing CCE on the local
views without objects would lead to performance degradation. To
this end, we modify the random cropping strategy to guarantee that
the local views can contain partial objects. Specifically, we identify
pixels corresponding to the objects indicated by the pseudo-labels
as “anchors”. Then, we randomly select an anchor pixel as the cen-
ter and crop the image with crop size 256 (default). This process is
illustrated in Figure 1.

3 MORE EXPERIMENTAL RESULTS
Threshold 𝜸 in the SAE module. In the Semantic Affinity Ex-
ploitation module (SAE), we set 𝛾 to generate the binary adjacency
vector A. Table 1 reports the performance under different settings

𝜸 CAM val (msc)

-0.15 54.6 54.4
0.00 69.2 68.2
0.15 69.1 69.4
0.30 67.5 67.3

Table 1: Impact of the threshold 𝜸 in the SAE module. The
results are evaluated on the VOC 2012 val set. “msc”: the
multi-scale inference test. The segmentation results are not
implemented dense CRF post-processing.

𝝉 Seg Seg (msc)

0.10 66.8 68.7
0.50 66.9 69.0
0.90 67.1 69.4
0.99 67.6 69.4

Table 2: Impact of the momentum 𝝉 on prototype update for
CARM calibration. The results are evaluated on the VOC 2012
val set. “msc”: the multi-scale inference test. The segmenta-
tion results are not implemented dense CRF post-processing.

of 𝛾 . We can observe that the setting of 𝛾 ≥ 0 can produce favorable
CAM performance, while the setting of 𝛾 = 0.15 can produce the
best segmentation results, and we use this setting as default.

Momentum 𝝉 in the CARM Calibration. After the production
of CARM, we utilize momentum prototypes to calibrate them effec-
tively. Higher values of 𝜏 result in more stable prototypes for each
class. To investigate the impact of different momentums, we con-
duct experiments within the range of [0.1, 0.99]. From Table 2, we
can observe that ECA reveals a notable improvement in both single-
scale and multi-scale segmentation performance as the momentum
increases. This observation highlights the significance of maintain-
ing stable prototypes in CARM calibration, ultimately enhancing
the overall segmentation performance. In our ECA framework,
𝜏 = 0.99 is adopted as default.

Weight of Loss Terms.We present the segmentation results on
the VOC 2012 val set with different weight factors of loss terms.
From Table 3, we can observe that 𝜆1 = 0.1, 𝜆2 = 0.2, 𝜆2 = 0.01 is a
preferred choice for our ECA framework.

Semantic Segmentation Results. In Figure 3, we provide more
qualitative results of semantic segmentation predicted by AFA [24]
(with the same MiT-B1 backbone) and the proposed ECA. We can
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Image CAM Background Object Pseudo-label

Figure 2: Visualization of CARM and its generated pseudo-
labels. Some images have multiple object classes, we only
visualize the CAM and CARM of one target class for
clear demonstration. The produced pseudo-labels contain
multiple classes’ annotations.

see ECA can achieve better object coverage and get more closer
predictions to the ground-truths.

4 MORE QUALITATIVE RESULTS
CARM and its pseudo-labels.We present some cases of CARM
pseudo-label generation in Figure 2. Although some CARMs of
target objects are incomplete, we can still obtain satisfactory pseudo-
labels with the help of background CARM. Compared to CAM
pseudo-labels, it can provide complementary semantic guidance to
overcome the over-activation and under-activation issues for the
segment decoder, thus boosting the segmentation performance.

Semantic Segmentation Results. In Figure 3, we provide more
qualitative results of semantic segmentation predicted by AFA [24]
(with the same MiT-B1 backbone) and the proposed ECA. We can
see ECA can achieve better object coverage and get more closer
predictions to the ground-truths.

Image & GT AFA ECA (Ours) Image & GT ECA (Ours)

PASCAL VOC 2012 MSCOCO

Figure 3: Visualization of segmentation results on PASCAL
VOC val set and MS COCO val set. We compared the results
of the proposed ECA with AFA [24] (with the same MiT-B1
backbone). Our methods outperforms AFA and are more
closer to the ground-truths.

𝜆1 𝜆2 𝜆3 𝑣𝑎𝑙

Default 0.1 0.1 0.1 69.4

0.05 68.3
0.2 66.9

0.05 68.1
0.2 67.5

0.05 68.8
0.02 67.3

Table 3: Impact of the weights of loss terms. The results are
evaluated on the val set of PASCAL VOC 2012. The segmenta-
tion results are not implemented dense CRF post-processing.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DINO is Also a Semantic Guider: Exploiting Class-aware Affinity for Weakly Supervised Semantic Segmentation

– Supplementary Materials ACM MM’2024, October 28–November 01,

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Jiwoon Ahn, Sunghyun Cho, and Suha Kwak. 2019. Weakly supervised learning

of instance segmentationwith inter-pixel relations. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2209–2218.

[2] Jiwoon Ahn and Suha Kwak. 2018. Learning pixel-level semantic affinity with
image-level supervision for weakly supervised semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 4981–
4990.

[3] Nikita Araslanov and Stefan Roth. 2020. Single-stage semantic segmentation
from image labels. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 4253–4262.

[4] Amy Bearman, Olga Russakovsky, Vittorio Ferrari, and Li Fei-Fei. 2016. What’s
the point: Semantic segmentation with point supervision. In Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14,
2016, Proceedings, Part VII 14. Springer, 549–565.

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on
computer vision. 9650–9660.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2017. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence 40, 4 (2017), 834–848.

[7] Xinlei Chen*, Saining Xie*, and Kaiming He. 2021. An Empirical Study of Training
Self-Supervised Vision Transformers. arXiv preprint arXiv:2104.02057 (2021).

[8] Zhaozheng Chen, Tan Wang, Xiongwei Wu, Xian-Sheng Hua, Hanwang Zhang,
and Qianru Sun. 2022. Class re-activation maps for weakly-supervised semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 969–978.

[9] Zesen Cheng, Pengchong Qiao, Kehan Li, Siheng Li, Pengxu Wei, Xiangyang Ji,
Li Yuan, Chang Liu, and Jie Chen. 2023. Out-of-candidate rectification for weakly
supervised semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 23673–23684.

[10] Jifeng Dai, Kaiming He, and Jian Sun. 2015. Boxsup: Exploiting bounding boxes
to supervise convolutional networks for semantic segmentation. In Proceedings
of the IEEE international conference on computer vision. 1635–1643.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[12] Ye Du, Zehua Fu, Qingjie Liu, and Yunhong Wang. 2022. Weakly supervised
semantic segmentation by pixel-to-prototype contrast. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4320–4329.

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. 2010. The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision 88 (2010), 303–338.

[14] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev, Subhransu Maji, and Jiten-
dra Malik. 2011. Semantic contours from inverse detectors. In 2011 international
conference on computer vision. IEEE, 991–998.

[15] Longlong Jing and Yingli Tian. 2020. Self-supervised visual feature learning
with deep neural networks: A survey. IEEE transactions on pattern analysis and
machine intelligence 43, 11 (2020), 4037–4058.

[16] Hyeokjun Kweon, Sung-Hoon Yoon, and Kuk-Jin Yoon. 2023. Weakly Supervised
Semantic Segmentation via Adversarial Learning of Classifier and Reconstruc-
tor. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 11329–11339.

[17] Jungbeom Lee, Seong Joon Oh, Sangdoo Yun, Junsuk Choe, Eunji Kim, and
Sungroh Yoon. 2022. Weakly supervised semantic segmentation using out-of-
distribution data. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 16897–16906.

[18] Jinlong Li, Zequn Jie, Xu Wang, Xiaolin Wei, and Lin Ma. 2022. Expansion and
Shrinkage of Localization for Weakly-Supervised Semantic Segmentation. arXiv
preprint arXiv:2209.07761 (2022).

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer, 740–
755.

[20] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[21] Youngmin Oh, Beomjun Kim, and Bumsub Ham. 2021. Background-aware pool-
ing and noise-aware loss for weakly-supervised semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
6913–6922.

[22] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision.

arXiv preprint arXiv:2304.07193 (2023).
[23] Junwen Pan, Pengfei Zhu, Kaihua Zhang, Bing Cao, Yu Wang, Dingwen Zhang,

Junwei Han, and Qinghua Hu. 2022. Learning self-supervised low-rank network
for single-stage weakly and semi-supervised semantic segmentation. Interna-
tional Journal of Computer Vision 130, 5 (2022), 1181–1195.

[24] Lixiang Ru, Yibing Zhan, Baosheng Yu, and Bo Du. 2022. Learning affinity from
attention: end-to-end weakly-supervised semantic segmentation with transform-
ers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 16846–16855.

[25] Lixiang Ru, Heliang Zheng, Yibing Zhan, and Bo Du. 2023. Token Contrast
for Weakly-Supervised Semantic Segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 3093–3102.

[26] Oriane Siméoni, Gilles Puy, Huy V Vo, Simon Roburin, Spyros Gidaris, Andrei
Bursuc, Patrick Pérez, Renaud Marlet, and Jean Ponce. 2021. Localizing Objects
with Self-Supervised Transformers and no Labels. In BMVC-British Machine
Vision Conference.

[27] Xudong Wang, Rohit Girdhar, Stella X Yu, and Ishan Misra. 2023. Cut and learn
for unsupervised object detection and instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3124–3134.

[28] YangtaoWang, Xi Shen, Yuan Yuan, Yuming Du,Maomao Li, Shell XuHu, James L
Crowley, and Dominique Vaufreydaz. 2022. Tokencut: Segmenting objects in
images and videos with self-supervised transformer and normalized cut. arXiv
preprint arXiv:2209.00383 (2022).

[29] Yude Wang, Jie Zhang, Meina Kan, Shiguang Shan, and Xilin Chen. 2020. Self-
supervised equivariant attention mechanism for weakly supervised semantic
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 12275–12284.

[30] Yuanchen Wu, Xiaoqiang Li, Songmin Dai, Jide Li, Tong Liu, and Shaorong
Xie. 2023. Hierarchical Semantic Contrast for Weakly Supervised Semantic
Segmentation. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI-23. 1542–1550.

[31] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and
Ping Luo. 2021. SegFormer: Simple and efficient design for semantic segmentation
with transformers. Advances in Neural Information Processing Systems 34 (2021),
12077–12090.

[32] Lian Xu, Wanli Ouyang, Mohammed Bennamoun, Farid Boussaid, and Dan Xu.
2022. Multi-class token transformer for weakly supervised semantic segmenta-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 4310–4319.

[33] Rongtao Xu, Changwei Wang, Jiaxi Sun, Shibiao Xu, Weiliang Meng, and Xi-
aopeng Zhang. 2023. Self Correspondence Distillation for End-to-End Weakly-
Supervised Semantic Segmentation. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 37. 3045–3053.

[34] Bingfeng Zhang, Jimin Xiao, Jianbo Jiao, Yunchao Wei, and Yao Zhao. 2021.
Affinity attention graph neural network for weakly supervised semantic seg-
mentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 11
(2021), 8082–8096.

[35] Bingfeng Zhang, Jimin Xiao, YunchaoWei, Mingjie Sun, and Kaizhu Huang. 2020.
Reliability does matter: An end-to-end weakly supervised semantic segmentation
approach. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
12765–12772.

[36] Xiangrong Zhang, Zelin Peng, Peng Zhu, Tianyang Zhang, Chen Li, Huiyu
Zhou, and Licheng Jiao. 2021. Adaptive affinity loss and erroneous pseudo-label
refinement for weakly supervised semantic segmentation. In Proceedings of the
29th ACM International Conference on Multimedia. 5463–5472.

[37] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao
Wang, Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. 2021. Re-
thinking semantic segmentation from a sequence-to-sequence perspective with
transformers. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 6881–6890.

[38] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 2921–2929.

[39] Tianfei Zhou, Meijie Zhang, Fang Zhao, and Jianwu Li. 2022. Regional semantic
contrast and aggregation for weakly supervised semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4299–4309.

[40] Adrian Ziegler and Yuki M Asano. 2022. Self-supervised learning of object
parts for semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 14502–14511.

3


	1 Details of MiT Backbone in ECA
	2 Details of Cropping Strategy in CCE
	3 More Experimental Results
	4 More Qualitative Results
	References

