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A APPENDIX: PER DATASET STUDY - VISUALIZATION OF FUTURE
TRAJECTORIES, HYPER-PARAMETER STUDY, AND FURTHER DETAILS

A.1 BASELINES, EVALUATION, HYPERPARAMETERS ON PUBLICLY AVAILABLE DATASETS

Background on Normalizing Flows: Normalizing Flows (Rezende & Mohamed, 2015; Dinh
et al., 2014; 2016; Papamakarios et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019; Pa-
pamakarios et al., 2019) define a smooth, invertible transformation f: X +— Z, of a simple base
distribution p(z) (e.g. an isotropic Gaussian) on the space Z = R into a more complex distri-
bution p(x) on the space X = R by a sequence of invertible and differentiable mappings. Its
reverse operation X = f~1(z) synthesizes realistic samples from the prior, is easy to evaluate and
computing the Jacobian determinant takes O (D) time. Via the change of variables formula p(x) can

det (8)(;—2‘)) ’ .

Real-valued non-volume preserving (RealNVP) models introduce a coupling layer, which is the
building block/bijection leaves part of its inputs unchanged c'*® = x!¢ and transforms the other
part via functions of the untransformed variables c¢t1:P = x4+ 1D @ exp(s(x1'?)) +t(x4). Here,
© is an element wise product, s() is a scaling and ¢() a translation function from R% — RP~9, given
by neural networks. To model a nonlinear density map f(x), a number of coupling layers which
map X — C; — ... +— Cx_1 — Z are composed together all the while alternating the dimensions

which are unchanged and transformed. Via the change of variables formula the probability density
function given a data point can be written as log p(x) = log p(z) +log | det(9z/0x)| = logpz(z)+

S log | det(de;/de;1)].

be expressed as p(x) = p(z)

Baselines: The baselines considered for our experiments include: 1: KVAE, combines a varia-
tional autoencoder with a linear state space model which describes the dynamics. 2: Vec-LSTM-ind-
scaling, models the dynamics via an RNN and outputs the parameters of an independent Gaussian
distribution with mean-scaling. 3: Vec-LSTM-lowrank-Copula, instead parametrizes a low-rank
plus diagonal covariance via Copula process. 4: GP-scaling, unrolls an LSTM with scaling on each
individual time-series before reconstructing the joint distribution via a low-rank Gaussian. 5: GP-
Copula, unrolls an LSTM on each individual time-series and then the joint emission distribution is
given by a low-rank plus diagonal covariance Gaussian copula. 6: TCNF, uses LSTM to model the
temporal conditioning and Masked Autoregressive Flow (Papamakarios et al., 2017) or Real-NVP
for the distribution emission model. We also consider 7: DeepVAR estimator, which is a multivariate
variant of DeepAR (Salinas et al., 2019b).

Evaluation: To evaluate the quality of our forecasts, we compute CRPS and Normalized-MSE of
the predictions. CRPS is a well-known metric for assessing the quality of probabilistic forecasts in
the univariate case — it measures the the fit of the predictive distribution to the true one. CRPS is
empirically evaluated using a samples generated from the predictive distribution, since we do not

have a closed-form for the predictive distribution and CDF. Employing the empirical CDF of F/, i.e.

E (z) = Ni Zf\;l I{Y; < z} with N, samples Y; ~ F as a natural approximation of the predictive
CDF, CRPS can be directly computed from simulated samples of the conditional distribution at each
time point: CRPS(F,y) = [p(F(2) — I{y < z})*dz where I{y < z} is the indicator function

which is one if y < z and zero otherwise.

Marginal CRPS is not applicable in the multivariate setting as it does not capture correlations across
time-series. CRPS-Sum is an extension of CRPS to the multivariate case that can capture joint
effects. CRPS-sum is the CRPS computed on the sum (across series) of the observed target values,

yielding an estimate ﬁ'sum(t) for each time point. Then CRPS-Sum is computed as CRPSg,, =
E; {CRPS (Fsum (t),>; ynt)] . The MSE is the mean squared error over all time-series, i.e., i =

1,... N, and over the whole prediction range, i.e.,t =T + 1,...,T = 7 with respect to the test
data: MSE = 5= 37, (yir — 9it)?.

Training: Our algorithms are implemented in MXNet Gluon (Chen et al., 2015). To train the
model, we use the Adam optimizer with the learning rate set to 0.0001. The network architecture
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Figure 6: Example LatTe-Flows forecasts on Solar — We show the first 4 dimensions.
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Figure 7: Example LatTe-Flows forecasts on Electricity — We show the first 4 dimensions.

of the encoder uses feed forward network (FNN) layers with ReLU activations. Details are set as
follows:

The encoder architecture considered for training LarTe-Flows on Selar is (N, 128) — (128,64) —
(64,32) — (32,D), with D = 16. The hyperparameter that balances the two losses is set to
A = 0.01 (see sample forecasts on Figure@. For Electricity the encoder architecture is (V, 256) —
(256,128) — (128,64) — (64, D), with D = 32. Here, A is set to A = 0.001 (see sample forecasts
on Figure[7). We also provide the training loss components (and the overall loss) versus epochs on
the traffic data. The scale of the orange curve displaying the loss of the probabilistic model is read
from the right while other two is from the left. For Traffic the encoder architecture is (N, 256) —
(256,192) — (192,128) — (128,64), with D = 64. Here, A is set to A = 0.0001. For Wiki the
encoder architecture is (N, 256) — (256, 128) — (128,64) — (64, D) — (64, D), D = 32. Here,
Aids setto A = 0.01. For Taxi is (IV, 256) — (256,192) — (192,128) — (128,64) — (64, D),
with D = 32. Here, A is setto A = 0.01.

15



Under review as a conference paper at ICLR 2022

50 4 —— AE training loss Flow training loss | 6
—r Overall training loss

L5
45 1
L4

.40 4 r3

F2
35 1 W“‘\ L1
30 1 \'\'\/\»—M\MAJ\/ o

T T T T T T T T T

0 10 20 30 40 50 60 70 80

Figure 8: The training errors vs epochs for Electricity.
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Figure 9: The training errors vs epochs for AH&MS.

A.2 AH&MS DETAILS AND FURTHER EXPERIMENTS

The encoder architecture considered for training LatTe-Flows on AH&MS is (N,6) — (6,6) —
(6,6) — (6, D) with D = 4, with ReLU. The hyperparameter that balances the two losses is set
to A = 0.01. The two componenets of the loss function as well as the overall error during training
are shown in Figure[9} Signals in AH&MS are can have missing values. We impute each signal
with the mean value of the variable across past observations. The histogram per signal is provided
in Figure In our forecasting visualizations we provide denote the true values of sensors as well
as the imputed signal.

Next, we provide additional forecasts produced by our method (see Figures [T} [12] [13] [I4) over
four randomly chosen individuals. We present qualitative predictions for the 20 day forecast window
produced by LatTe-Flows for AH&MS signal observations (HRV, RHR, SC, BBT, DBP, SBP) of an
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Figure 10: Histogram per signal.
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Figure 11: Predicted signals and test set ground-truth for a randomly selected subject (1st) in the
study.
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Figure 12: Predicted signals and test set ground-truth for a randomly selected subject (2nd) in the
study.

individual. We estimate 10 trajectories for a latent dimension of D = 4 and plot the estimates. Note
that the forecast is displayed in terms of a probability distribution: the shaded areas represent the
50% and 90% prediction intervals, respectively, centered around the median (dark green line).

The ground truth is overlaid in blue with stars denoting true observations and linear interpolation
between the points. We also we provide forecasts (for the same testing window of length 7) produced
by our method (Figure [I5)) compared with existing baselines (Figure [16).
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Figure 13: Predicted signals and test set ground-truth for a randomly selected subject (3rd) in the
study.
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Figure 14: Predicted signals and test set ground-truth for a randomly selected subject (4th) in the
study.
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Figure 15: Qualitative predictions for the 20 day forecast window produced by LatTe-Flows for
AH&MS signal observations (HRV, RHR, SC, BBT, DBP, SBP) of an individual. We estimate 10
trajectories for a latent dimension of D = 4 and plot the estimates.
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Figure 16: Signal modeling predictive performance for an individual in the test set. Baselines:
Deep-VAR, GP-Copula, LSTM-MAF TCNE. 18



	Appendix: Per dataset study - Visualization of future trajectories, hyper-parameter study, and further details
	Baselines, Evaluation, Hyperparameters on publicly available datasets 
	AH&MS details and further experiments


