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A TECHNICAL PROOFS

A.1 REGFTRL IN NFGs

We list the assumptions again here and begin with an explanation of the rationality of the assumption
of the regularized equilibrium.

Assumption 1 (Well Defined). Assume ¢ is 1-strongly convex with respect to ||-|| and m € B =
B! x B? C H?Zl A%, where {m;}+>¢ is generated by RegFTRL.

Assumption 2. For i € {1,2}, assume g' is continuously differentiable and )\-strongly convex
relative to i over A%. This also implies that Vg" is L-smooth over B, i.e., ‘(p) — V' (q)| <

L|p — ¢ for Vp,q € B. Furthermore, we assume g' has an interior minimum point pi* € B, and
re-denote g' as g,, for the sake of clarity. We call this minimum point j as reference strategy.

Assumption 3 (Regularized Equilibrium). Assume m, € B is the interior stationary point of
continuous-time RegFTRL dynamics with ¢(p) = (p,Inp) and g,,.

Proposition 1. Assumption[3|is guaranteed when g, () = Dxr(w, j1) and g, () = Dgg(p, ).

Proof. For any interior reference strategy i, if there exists an action ag such that 7, (ag) = 0, then
Qnr,(a0) = TIVgu(mu)]ay < Qr,(ax) — T[Vgu(my)]a, holds for any a. € {a € A|r,(a) > 0}.
However, for g, () = Dxy(, 1) and g, (7) = Dkr(u, 7), we have:

QTI'“ (ao) - T[v.g/i(ﬂ-,u)]ao

Qr, (a0) — T(In 2589 4 1) = 0o, if g,,(m) = Dxo(m, ),
Qﬂu (flo) +7 IL((CL(;J())) = 00, lfgu(ﬂ-) = DKL(/J/77r)7

which is a contradiction, and thus Assumption E]holds. O

We continue by proving the properties of regularized equilibrium, and the last-iterate convergence
of continuous-time version of RegFTRL in NFGs. For convenience, we denote Q1 (a) = Q. (a) and
Q2 (a) = —Q(a) in the context of NFGs.

Theorem 1. Under Assumption regularized equilibrium 70, € B satisfies: (1) m,, is unique; (2)
7, is an e-Nash equilibrium, where e = £(w,) = T 25:1 (max, (Vo' (7} )]a— (7}, Vgi(ﬂi») > 0.

Proof. Note that Theorem holds for all regularized equilibria. This means that 7, is unique if the
weight parameter 7 and the reference strategy p are fixed. Thus we only need to provide the proofs
of the second statement that 7, is an e-Nash equilibrium.

Since regularized equilibrium is the interior stationary point of continuous-time RegFTRL dynamics
with ¥(p) = (p,lnp). By the method of Lagrange multiplier, it can be found that the dynamics
defined by continuous-time RegFTRL with the entropy regularizer is equivalent to the following
dynamics:

(@) = m(a)(Qr, (a) = T[Vg(m)]a — Vz, +7(mi, Vg, (m))) (1)

From Assumption [3] we have:
r. (@) = TV, (m)]a = Vz, +7(m,, Vg, (m,)) =0 2)
Therefore, we have:
E(my) = ;pnézzxf‘ me;i = 2 [p?éiXA Vp,ﬂ_;i - Vm]
= [max@%, (@) = V2,] <73 [maxl Vbl - {mh V()]
i=1 i=1

Thus, the proof is completed. O
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Lemma 1. & can be bounded as follows:
E(my) < E(mu) + \/ Dir (1, 7).

Proof. From the definition of £, we have:

2

E(m) = max V' _;
i b,
) P [SVAW e
=1
2
= g ( max V' _;+ max V' _, — max V* ,)
i prEA 4 y2um prEA 4 P,y PIEA 4 y2um
i—
2
=E(m,) + E ( max V' i — max V' _;)
pieAA P,y pi€AA PyTu

i=1

2
<E(mu) + Z max (Vi =V ,)
i=1

piEA,A P,y DTy

" - . 2
Holder’s inequality i i i
< E(m) +;(Hm il max Q%
2
E(my) + Z 2Dk (7%, )

i=1

~)

Pinsker inequality

Cauchy inequality

2
< E(mu) + V24| 2) ) D)
=1

=E&(mu) + 24/ Dxo(mp, 7).

Theorem 2. Let Assumption hold. Then,
(continuous-time) 7, generated by continuous-time version of RegFTRL dynamics satisfies:

Dy(mu,m) < Dy (7, mo) exp(—n7A - t).

(discrete-time) 7, generated by discrete-time version of RegFTRL dynamics satisfies:
Dy (1) < Dy (0, m0) (14 n7A) 7%, and E(my) < E(m,) + 24/ Dy (0, m0) (1 + nTA) "2,
if(p) = (p,Inp) and 0 < n < E—é‘ where L = max{7L,1}.

Proof. Theorem [2]is the summary of lemma [T} Theorem [3] and Theorem [] and thus we omit the
proofs here. 0

A.1.1 CoNTINUOUS-TIME REGFTRL

Theorem 3. Let Assumption[IrB]hold. Then, 7, generated by continuous-time version of RegFTRL
dynamics satisfies:

Dy (7, ) < Dy(mp,m0) - exp(—nTA - t).
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Proof. By lemma C.1 in|Abe et al.|(2022b), we have:

d d
L onrm) = 3 (k)

—WZ< " —TV92<wi),7rZ—WL>
SN

=ni{vz,m (Vg (ni), i — i)}
=ni{wt, SRR A AY

SR ACAREE A

=772{V71“ (Vg (ml), mh) + 7(Vgh(mh), mh) — (Vg (r), mi — mi) |
= *777'2{ Vo (m,) = Vg, (mi),m, — 7&>

7

< =AY {(Ve(n}) - Vo), i, — i)
= 7T’TA |:D1/)(7r/u 7Tt) + Dw(wfm 7rﬂ):|
< —nTADy (1, ). (3)

The sixth equality follows from Eq.(2). Therefore, we have:
Dy(mp,m) < Dy(my, mo) - exp(—nTA - t).

Thus, the proof is completed. O

A.1.2 DISCRETE-TIME REGFTRL

Theorem 4. Let Assumption hold. Then, m; generated by discrete-time version of RegFTRL
dynamics satisfies:

Dy(myu, m) < Dy (7, m0) - (1 + 777')\)_t>

if(p) = (p,Inp) and 0 < n < T)‘ , where L = max{rL,1}.

Proof. Let us define f. := Q. — 7Vg/, (7). With ¢(p) = (p,Inp) and the method of Lagrange
multiplier, 7, generated by RegFTRL satisfies:

mi1(a) o< mi(a) exp {n[Q%, (a) — 7V g (nD]a] |

iy = e {nlp, £1) — Dol 7))

PEAA
(nfr, = V(i) + V(r)), 7' — ) <0, Va' € Ay
<77fjrt7 ‘- 7Ti+1> <v¢(77i+1) - Vi/)(ﬂ'z)aﬂi - 7Ti+1>7 vt € Ay
(frym =) < D', mp) — D', i) — Du(miyq,m), V' € Ay

rre

The third “<=" follows from the equivalent first order optimality conditions. Therefore, we have:

Dxu(},, 7y 1) < Doy, 1) — Doy, ) — 0 fa s T — T )- (4)
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On the other hand, we have:

2 2

nz< 7Z;'t’ :’«_ﬂ.t> _nz ﬂ'u’ Il_ﬂ-t>+nz< ;—t— im’”f’«_ﬂ-;>

i=1 i=1

+777’Z Vo (m) = Va(m), m), — i)

=1

>nTA Y (Vi(n),) — Vip(a)), m, — )

i=1

=nTA [DKL(ﬂ'/“ ) + Dip (e, wﬂ)]. (5)
The inequality follows from the fact that
(Frpmie = i) = (Va, 1 = v, Vg (m)) L, m, —mi) =0,
and
2
> (@ — QL — ) = Z Vi VAV ) =0,
i=1

By combining Eq.(@) and Eq.(3), we have:

Dy, mig1) <Dk (g, ) — Diu(mig, i) TIZ o T = Tig1)

<DKL(7T#77Tt) = Dxv (i1, m) — UTADKL(M»WH) = NTADkL(Te41, 7))

7 7 7
+n E m+1 f‘n’t?,]r,u _7Tt+1>

SDKL(TI‘H, ) — Dy (g1, m) — NTADKL(T 0, Teg1) — NTADKL (g1, Tp)
+nmax{l, TL}|m11 — mell1 - [T — mulla
L=max{1,rL} 2ab<pa’+
< Dy (7, ) — Dru(meq1, me) — nTADKL(7p, Teg1) — nTADKL(Te41, T0)

1 2 772 2 2
+§H7Tt+1—7TtH1+ 5 |mep1 — mpull?

Pinsker inequality
< Dy (my, ) — Dru(mega, m) — nTADky (T, Te1) — 0T ADRL (g1, 74)
+ Dxr(meg1, ) +n? L Dyo (41, 7,)
n<I3

< Dxi(my, ) — nTADko (7, Mg ). 6)

The third inequality follows from the fact that 7(a', a?) € [0, 1] and Vg is L-smooth. Therefore, we
have:

1
Dxi(my, m41) <

= 1+777_)\DKL(7T,U,77Tt)' (N

Thus, the proof is completed. O

A.1.3 CONVERGENCE TO AN EXACT NASH EQUILIBRIUM

We begin with following useful lemmas.

Lemma 2. [f 7, # p, we have Dy (7, m,) < Dg(my, ), Vs € IL,.
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Proof. From the definition of the regularized equilibrium, we have

E

Dip(s ) = Do ) = = Dol t) = S (Vo(i) = Vo(u'),mt — mh)

i=1

1 i i
= D¢(7ruhu) - ; Z< 7\'M’ﬂ-* - 7r,u>
i=1
< - D¢(7r#,,u) < 0.
The inequality follows from the fact that
2 2

- Z( ;“,ﬂ'i - WL) = Z[V;Lm;i - VT:*] <0.

i=1 i=1
Thus, the proof is completed. O

Lemma 3. If 7, = p, then p is a Nash equilibrium of the original game.

Proof. By the definition of the regularized equilibrium, when 7, = p, we have:
m,.(a) [Qr, () = 7[Vg,(m)]la = Vi, +7(m,, Vg, (m,))] =0
Q. (a) — 7[Vgi(xi)]a — Vi, + i, Vi (xi)) = 0
Qr,(a) =V, =0

™ T

m(a)>0

Tu=H

Therefore, V;'H = MaXgA 4 wa (a) for i = 1,2, which means that each player’s strategy is a best
response to the strategy of the other player. Thus, y is a Nash equilibrium of the original game. [

Lemma 4. For any k > 0, if pup € H?:l AS\IL,, then ming crr, Dg(m, piy1) <
ming, err, Dg (7, pi). Otherwise, if pu, € IL,, then pigr1 = py € I,

Proof. From lemma if p € H?Zl A%\IL,, then we have m, # p. Denote m, =
argmin, ;. Dy (7, it). Then from lemma if ;1 # m,, we have:

min Dy (s, 1) = Dg(ms, ) > Dy(my, m,) > min Dy(my, 7).
€11, i €11,

Therefore, we prove the first statement of the lemma. Then we assume that 4 € IL, implies 7, # p.
From lemma 2} we have Dy (., p1) > Dy(my,7,,) for any , € II,, and thus 0 > Dy (s, 7, ) due to
r € II,. It is a contradiction.

Thus, the proof is completed. O

Lemma 5. Let F(u) = 7, be a map that maps the reference strategy [ to its corresponding regu-
larized equilibrium 7,,. Then, I is continuous.

Proof. For any given reference strategies ji, i € [[, A%, we denote their associated stationary
points as 7, 7, respectively. Suppose that 7; is the updated strategy of continues-time FTRL dy-
namics with reference strategy p and ¥ (p) = (p, In p), then

%Wﬁ(a) = m(a)[Q7, (@) = 7[Vgp(m)]a — Vy, + 771, Vg, (m1))]-
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Therefore, we have

=D _{m = Qr, — 7IVe(r) = Vo))

Then,

2

2
(1) =3 Vgt = 7D (h = 4 V() — V(i)
=1

i=1

=D (m. Q) —TZ L Vo) — Vo))

2
= (T Vi) +TZ (ri) =V —TZ L V() — V(i)
=1

—TZ —m, Vé(mh) — V(i)

= 7TD¢(71},7T[L) — 7Dy(mp, ).

On the other hand, we have (2) < 27L||i — p|. By setting 7, = m,, we have m, = 7, for any
t > 0, and thus we have Dy (7, 7;) < 2L/t — p||, which means that F is continuous.

Thus, the proof is completed. O

Theorem 5. If g, (1) = Dg(m, 1) and g, (7) = Dgi(p, ™), then for any interior point p, the
sequence of reference strategies { iy, } >0 converges to a Nash equilibrium of the original game.

Proof. In the case that g, (m) = Dxi(u, 7), RegFTRL is equivalent with M2WU, and thus the
convergence result can be guaranteed by Theorem 6.1 in (Abe et al.l [2022a). We next provide the
proof of the case that g, (7) = Dg(m, ). Denote b = limy_, oo ming, crr, Dy (7, pir;) > 0. We
next prove that b = 0 and thus p, converges to II,.

By contradiction, we suppose that b > 0 and define B = min,, e, Dg(7+, tto). From lemmal
mlnmen D (7, 1) monotonically decreases, and thus each y, falls into the set 0 g = {p €
Hi:l 2 b < ming, e, Dy(ms, ) < B}. From lemma mlnmen* Dy (s, ) is continuous
on H?Zl Ail(l)’ and thus €2 p is a compact set due to the boundedness of H?Zl AS.

From lemma [5| AV (p) := ming, e, Dg(ms, F(u)) ming, e, Dg(m., 1) is also continuous.
Thus AV (u) has a max1mum over a compact set, i.e., M = max,cq, , AV () exists. From
Lemmal] M < 0, and thus we have:

E
[

Jmin Dy (my, px) = min D¢(7r*7uo)+l (ﬂglelg* Do(me; 1) — min D¢(7u»uz))

I
o

< B+ kM.
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This implies that min, cm, Dg(ms, ) < 0 for & > which is a contradiction since

: 57
My, e11, D¢(7T*7Mk) > 0.

Thus, the proof is completed. O
A.2 REGFTRL IN EFGs

We start with following lemmas, with the notations in Tablem

Table 1: Notations in EFGs

NOTATION DESCRIPTION
A the cardinality of action space |.A|
c c:= A x ming 1 p(all) € (0,1]

weight of regularization 0 < 7 < (T2 (AT}

R Ly-norm: ||z, = (3, |25[7)!/7 for p > 1 and [|z]|o = max; |x;]

Lemma 6. With0<7'<mforanyt20andhe[H], we have:
(h—H)yrlnd <QP (I,a) <(H—-h+1)+1pzg-(H—h—1)rIn4
(h— H—l)Tlnzgth()_(H—h+1)+(H—h)Tln%.

Proof. We prove this lemma by induction. For ¢ = 0 and any h € [H], the statement holds trivially
by the definition of (g, V5. When the statement holds for some ¢, we have

A
Qi (Ia) <1+ max V() <14 (H—=h)+ (H—h—1)7ln =

A
<H-h+1)+(H—-h—-1)7ln=, h=1,--- ,H—1,
C
Qi (I,a) <1, h=H.
A
Qi (I,a) > 0 + min VYT > (h— H)rln =,
! &

This complete the proof of Q?’T. The proof of Vth’T can be shown with a similar proof and is
therefore omitted. O

Lemma 7. With0 < 7 < y.forany I € T and h € [H], we have:

max{1, 21n (A/c)
2H
max{|[In (1) oo, [0 7y (1) o} < =,

It (A1) = =ECID < nH.

Proof. The updated strategy of RegFTRL satisfies:
wl1(alD) o< exp { (1 = ) Wt (al1) + 07 [QF7 (1, ) + 7 In i (al1)] /7 |

Let us denote w7 (I,a) = (1 — n7)0.w} (I,a) + nr[Q1"(I,a) + TInp"(alI)], and thus

7h(a|l) oc exp{w!""(I,a)/7}. The bounds of w!""(I,a) can be obtained by a induction and
lemma [6F

A A
(h—H—-1)7rIn= <w}"(I,a) < (H—h+1)+1ppp - (H—h— 17 in =, ¥h,t,1,a.
c
Therefore, for any aq, as € A(Z), we have

(a1 |1) exp (w?’T(Lal) - wi"T(I,a2)>

ol (as|I) N T

((H—h+1)+(2H—

2h—|—1)7‘1n%>
-

< exp
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Then,

1
: h
min 7, (all) > A oxp ((H7h+1)+(2H72h+1)7'1n%) Xb:ﬂ (B1D)

1
et — T IIA ’
A-exp ((H h+1)+(2H—2h+1)7In 2 )

which gives

[ (D) e < In A+ (H-—h+1)+(2H —2h+1)rln2

-
(H-—h+1)+2(H—-h+1)7In2
- T
H—-h+1 A H-h+1 _H
=7+ (1—1—27‘111—)§27Jr <2—
T C T T

The bound of ||[In 7:(|I)||o can be proven similarly and is therefore omitted.
Next, we prove the second statement. We invoke the following lemma first.

Lemma 8 (Lemma 24, [Mei et al|(2020)). Let w,7" € A 4 such that w(a) < exp((a)), 7’ (a) x
exp(0'(a)) for some 0,0" € R4, It holds that

I = 7lls < 116 = 6" o

With this lemma, for any ¢ > 0, we have

7 foa I = 7 (1D
Smi£||lnwf+1(-|l) 1n7r (1) —c 1|
ce

<nllQE (L, loe + 7w (11 lloo + 0l p" (1) o
A A A
<n((H—-h+1)+ (H - h)Tln;) +n(H—-h+ 1)(1+271n;)+777’1n;

§77(H7h+1)(2+371né) <-nH-h+1)<
c

N~
[NCRREN

nH.

Thus, the proof is completed. O
Lemma 9. For0 <t < ty,h € [H|,I €I, we have

DKL(WZaT‘—tQ)"_nTDKL(ng Z) (1- WT)tz_tl(DII(L(WZaWZ)"‘WTDII(L(WZ»WZ))
to—1

+20 ) (L=nm)2 QUL ) = QT (T, |oo-

=ty

Proof. From the update rule of RegFTRL, we have

Inl, — (1—nr)n7f =n(Q)" +nyt),I €T ®
7l —(L=nr)Inal =n( = Q" +nlnp"), I €T

h
nTinm,
nTIn 7rh

Here z = y denotes 1: =y + ¢ - 1 for some constant ¢ € R. Subtracting from (EI) and taking
inner product with 7rt b1~ 7r gives

= 1=

n(QET +nlnph), I €Ty

9
n( = QuT +nlnp"), I €I, ®

|IH 1=

<ln7rt+1 (1—777)1n7rt—777'1n77 Wélﬂ—w =nd(1){Q; ot _ ZLT,W;L+1—7TZ>

< 2m(|Q}" —
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On the other hand, the LHS of the above inequality can be re-written as

(LHS) = DII<L(7TZa 77?+1) - (1- WT)DéL(Wﬁvﬂf) +(1- UT)DII(L(ﬁ?-&-laﬂth) + 777'D11<L(7T?+177TZ)-

Therefore, we have
h,T
DKL(ﬂ-ZvTrt-i-l) + 07 Dy (mf'y 1, u) (1- UT)DKL(W )+ 20)|QFT — QY oo

which gives:

DII(L(WZJTZ) + UTDéL(WZ,WZ) <(L—pr)teh (DII(L(”TZ’ ngl) + 777'D11<L(7T?177TZ))
a1

+20 > (=)= QML) — QET(IL ) s

l:tl
for 0 <ty < to.
Thus, the proof is completed. O
Lemma 10. With0 < n1 < % and oy = 7, forany 0 < t; <ts, 2 < h < H, I € 7, we have
|Qh b T( ) - Q};:LT(Iva)‘ S (1 - ,’77_)t2—t1 [QH + 27—IEI/:I(ha),hEI [DII(L(T(/MWM*I)”

to—1

+ 1997 Z —nr)2 T I(ha), heI[HQl )—Qﬁf([',')Hoo]-
1=t -1

Proof. Forts > t1 > 0, we have
Q' (1,a) = Qp (1)
=Er—1(hayner [Vir L (I') = VI (T)]
=Er—inayner |(1 = 7)™ (VAT (1) = VAT (1))

to—1
o Y (=)= Qe m) = Q)]
=ty
to—1
<O =) T 2H + B gy | Y (L= 0) T (Qum) = £5(Qny )|
=ty

where f7(Q, ) = (n(:[1), Q"7 (I, ")) — 6(I)T Digy (. ).
Denote 7, (-|I) := 1p(py=17¢(:|I) + 1p(py=2m,u(:|I). Then,
F1Qu ) = f1 Q) = Q17 (1,) = QT (1), & (1) < Q17 (1) = QT (1) oo
1 Qo 70) = 1 Qi ) <0,
Therefore, we have
Qe ) = f1(Qr, )
<FHQeme) — F1(Qe o) + QU7 (I, ) — Z;T(I: Moo-
We here introduce a useful lemma first.
Lemma 11 (Lemma 16, |Cen et al|(2023)). Let x € A 4 be defined as
2(a) x y(a)' =" exp(=mu(a))
for some w € R4 and y € A 4. It holds for all z € A 4 that

n
1—nr

[(z — z,w) — TH(z) + TH(2)] = Dxi(z,y) —

1
1— nTDKL(Z,l‘) — DKL(Q,‘, y)

10
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With this lemma, for I € 75, we have
1(Qem) = f1(Qe 71)
=(m () = mu (1), Q¢ (1,-) = Tl (1)) — TH () + 7H! ()
=(m(:|I) — 7w (1), le(I —7Inp(|I)) — H (7)) + 7H (7))
+<7rt( 1) = mu (1), Q47 (1,-) = Qi (L))

1— 1 1—n1
<— DKLm,m)—;DIﬁLm,m— 1

+2(|QF (1) = QT ) oo,
and f(Qq, ) — f1(Q¢, 7r) = 0 on I € Z;. Therefore, we have
Qe m) = f1(Qn, )
<IQIT(, ) = QBT (L, loe + Lrez, - (201Q17(,) = QAT )

DII(L(Trtv 7Tt*1)

1
Dl (s mi1) = D () =~ D i, 1)) (10)

By a similar argument,
f;l(Q‘rr,l,a’/T,u) - f}L(Qta’/Tt)
h,T T h,T h,T
<IQITL ) = QAT (T Yo + Lrez, - (21Q17 (1) = Q15 (1 ) e

1—nr1 1 1—nr
+ —T Dl (1) — DR () = — "

Combining + l| gives
1
*(f;l(QtﬂTQ - f}L(Qﬂwﬂu))

Di (mi,mi-1)) an

*IIQ’”( ) = QT )l +21Q1 (1) = QL)oo
n 1—nr

Gt—l(I) - 7G?(I)7

where GI'(I) := 1jez, - Diy (7, ™) + Liez, - 5Dy (7, 7). Therefore, we have

Q?z_lﬂ—(l’ Cl) - QZ;LT(I7 CL)
to—1

<1 —=n7)2""2H + n7Ep—1(ha) hel [ Z (1 =) f1(Qum) — fIh’(Qﬂ'uaﬂ-u))}
=t
to—1

<= )2 7B gy ner | 30 (1= )= (BIQPT(E, ) — QBT

1=ty

QT (I, ) = QT (1) oo )| +27(1 = 17)* " Err—g(nay net [Gh 1 ()]

tz—l
<= nm) 2 H 0t B gnayner | D (1= nm)2 T TNQPT( ) = QLTI ) e
=ty
FAQITI, ) = QBT (I Ve )| + 27(1 = 97)* "By e [Gl -1 ()]
nr<2/3 271 -
< (L—npr)=7h2H + 19777EI’:I(ha),heI[ Z (L —nr)=2 QT (1) - br(r, ')||<x>}
I=t; —1
to—t1 I’
+27(1 —n7) Ep—rhay,her [Die (T, T —1)] -
The other side can be shown with a similar proof and is therefore omitted. [
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Lemma 12. It holds for all h € [H], I € T and 7,7 that
max (f7(Qn,,, (71,7%)) = (@, (7', 7%))) < 7D (7, 7).

Proof. First, we have
f1(Qr,, (7Y, 7%) = 1@, (x4, 72))
= Ih(QTr,u( ) 2)) - f}L(Q'rr,,,a (ﬁl,ﬁi))
- f?(Qwuv(’fr 77T )) +f;L(Q7r#7(7Tl1u7}2))
— [1(@Qn,, (7, 7)) + [1(Qn,, (R, 70)).
Observe that for I € 7,
F1(Qrs (3, 7)) = f1(Qry (7, 772)) = (7 = 7, Q) — TDiy (7, 1) + 7D (7, 1)
=7(m, — 7, In ?> - TDKL(TrMa ) + TDKL(WaM) = TDII(L(ﬁ-7 )

Similarly, for I € Ty, f}'(Qx,, (7}, 7%)) — f1(Qx,., (', 72)) = T7D§y (#,7,). On the other hand,
we can observe that for I € Z,

I Qs (7, 7%) = [1(Qn,., (7, 73))
~ 7 (@Qns (7' 7)) + f1 Q. (7, 72))
Therefore, we have
f?(Qﬂ',n(ﬁl m )) fI (Q'n’,n( ! A2))
—fI (QTFH’ ( ;u )) - f] (Q‘ﬂ'wﬂ-u) - f}z(Qﬂ',u (7‘-1777;2;)) + f}l(Qﬂ'w T‘-H) - TDII(L(ﬁ-vﬂ'IL)

:TDKL(7T77T;L) - TD{(L(”»”M) < TD{(L(WW#)'

fIh(Qmu (7T;1n7r2)) - f;l(Q‘frwﬂ—u)»
— 11 Qo (71, 70)) + J7 (@ 7).

O

Thus, the proof is completed.

Theorem 6. Let g/, (7) = Diq (7, 1) := Dx(n (1), u(-|1)), o = 757, ¢ € (0,1]. With0 <7 < 3,
0<1< m, and oy = n, Algorithm 1 satisfies:

max |QT = Q7| < (1= nr) T, (12)
Er(me) < 8(1 =)t~ h (gH +3t17), (13)
wheret > Ty, := (H — h)T,, T, = (n% In2(9H + 19)].

Proof. We prove Theorem |§| by induction. By definition, we have ||Qf,f _ Qéfﬁ”m =
HQHTHOO < 1, and ||QHT QP oo = |Ir —rH||o = 0 fort > 0. So holds forh = H

When ) holds for some h, we can invoke lemma[T0|with ¢t; = T}, + 1 and 5 = t > T)_1, which
yields

1QE (1) = Q17 (1, Yoo < (1= 7)™ [2H 4+ 27—y s [ D (7 71, )]

+19nTZ =) E sy ner [1Q)T(T ) = QT )loo

=Ty
t—1
<(1- nT)t_Th_l [QH + 4H} + 1997 Z (1- nT)t_Th_llH_h
I=T),

<(L =)~ (L =gyt [GH + 19nrtH*h+1]

12
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The second inequality follows from the fact that

TDgy (7w, ) < Tl (1) — Iy (+[1)]|oo < 7 max{[Inm,(-[1)|os, [0 e (1) |0 }
<2H bylemma[]]

Therefore, with Ty = [ In2(9H + 19)], we have
1QU T = Qoo < (1= r)! Tt HmhHL
This completes the proof of (12).

Next, we prove the second statement. Let us denote 7, (-|1) = 1rez, - w(-|I) + Llrez, - m(-|I) and
Te(-|I) = 1rez, - m(:|I) + 11z, - w(-|I). Then,

VAThT(I) = Vet ()
< (1), Q71 )> O(1) Dy (1, 1) = (mu(1), Q7 (1)) + 0(1)7 Do (e, 1)
T Q) = SN Q) + (WD), QT () = QT
“NQms ) — [ (Qry Liez, -+ Liex, - m)JrHlaX [VAhT( ") — Vﬁf([')]
Smﬁx( 7 (vaﬁt)_ I (waﬁt))‘FmaX (V2T = V(1)
By lemma|[I2]and lemma[9 with t; = t,¢; = T}, we have
max (/1 (Qn,» ) = f1(Qn,,, 7)) < 7Diey (e, )

1
=y [ Dit. (70, ) + 07 Dig (70, 7) |
1 ~
S; [(1 - 777->t T (DII(L(TFIM 7TTh) + UTDII(L(TFTM 77#))
t—1
+20 > A=) QYT ) — QET(IL ) loo]
=T

t—1

2H
<= [(1 — nT)t_Th (? +2nH + 27 Z (1- nT)_llH_h)]
=T

10
<(1 —nT)thh(gH—FGtH*hH). (14)

S| =

Therefore, we have
VAhfl,T (I) _ V;L_LT(I)

Tt

10
S(l _ nT)t—Th—l (?H 4 6tH—h+2) + rIlIZ?,X [Vﬁlt,f (I/) _ V;:T (I/)] (15)
We next prove that the following results by induction.
10
maxx (V2T (1) = Vi (D) < 21— nr)' =" (0 H + 64770, (16)

SmceVHT( I) = fi'(r" 7)) = ff (Qr,,, Tt) andVHT( I) = fi'(rf,m) =
claim holds for h = H by 1nv0k1ng (T4). When the claim holds for some <h

[[3] we have

f (QW“ s ﬁt) the
< H, by invoking

max (V}i LTy — V,f“ Lr(r )

1
<1 — 7)o (G + 6 e [V (1) = V()]

10 10
<L =) T (G H 4 660 4+ 2(1 )T (8

3 H + 67—+

10
§2(1 _ ,,,’T)t—Th—l (?H + 6tH_h+2).

13
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Therefore the claim holds for any h € [H]. We can prove the following claim by following a similar
argument:

10
maxx (VT (1) = Va7 (D) < 21— nr)' =T (5 H + 64770, (a7

By combing (I6) and (I7), we have
max (Vo™ (1) = Vi, (1)) = max (Vo™ (1) = VET(D) + VT (1) = Ve, "(1)

5
<8(1—nr)" " (GH + 3tH It (18)
Note that is a stronger claim for (I3), and thus can be obtained by taking h = H:

£.(m) < 8(1 — nr)t=T (gH e

Thus, the proof is completed. O

B PRACTICAL IMPLEMENTATION

B.1 IMPLEMENTATION OF FOLLOWMU

In this section, we introduce the implementation of FollowMu. We employ the actor-critic frame-
work to develop FollowMu due to its scalability (Sutton & Barto, 2018)). Let A(Z, a; 6;) be the actor
network parameterized by 6;, and V' (I;w;) be the critic network parameterized by w;. At the time
step ¢, the critic network V' (I;w,) is trained to approximate the value function Vz, (I) of the real-
time strategy, and the actor network A(I, a; 6;) is trained to fit the cumulative advantage function of
past iterations plus the Q-function of the current-iterate strategy (with the regularized term):

t—1

. N 2 1o wk(a\I)
A(I,a, Qt) —kgo |:Q7rk (Iv ) V”k‘ (I) I & M(CLU)

~[A(I,a;0;—1) — V([;wi—1)] + G — T log

mi(all)
p(all)

+ Qnr,(I,a) —Tlog

mi(all)
plall)’
where G is the empirical estimator of Q, (I, a). Then, if we take ¢ to be the entropy regularizer,
the next-iterate strategy can be computed by:

7rt+1(a|1) X exp(zt(I, a’))a Zt(Iaa’) = A(I7a;0t) - V(I7 wt)' (20)

Here we employ the advantage function Q, (I,a) — Vi, (I), as a substitution for the Q-function
Qr,(I,a), a choice made for the sake of enhancing numerical stability and robustness. Despite this
alteration, the strategy update formulation in the manner of Eq.(20) remains equivalent to the up-
dated strategy employed in RegFTRL, attributed to the shift-invariant nature inherent in the softmax
function. Meanwhile, the reference strategy will be updated p <— 7, every IV iterations.

19)

We summarize our implementation of FollowMu in Algorithm[I} where the return G is estimated by
Monte Carlo method, and the loss of actor and critic network are computed by MSE loss. Note that
we use the clipped cumulative advantage function in practice:

m(all)
p(all)’

where the clipping operator is employed to ensure the stability of the training process, and ¢ > 0
controls the strength of clipping. The clipping operator min{¢, z} serves to effectively limit the
magnitude of the cumulative advantage function, thereby preventing it from becoming excessively
large and leading to performance collapse. Conversely, when dealing with cumulative values that are
too small, we employ the positive clipping operator max{0, z} instead of max{—¢, z} to truncate
these values. This choice is based on empirical observations, as the positive clipping operator has
faster convergence rate. In fact, this clipping operation is identical to the one used in CFR+ (Tam-
melin, [2014), which is a simple yet highly effective technique for improving performance (Bowling
et al.,2017). Additionally, when collecting the buffer, the current policy will be perturbed by a small
€ probability.

A(I,a;0;) = min {K,max {O,A(I7 a;0,_1) —V(I; wt_l)}} + G —T1log

14
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Algorithm 1 FollowMu

Initialize 7y as uniform, 6y, wy as arbitrary
fortin0,1,--- do

if t mod N = 0 then
| = T

end

Collect replay buffer: B; ~

for kin0,1,--- do

Fetch a mini-batch of samples D from the replay buffer 5;
for (I,a) € Ddo

G < Return(1, a, D)

if t = 0 then
| Amp <0
end
else
| Aump < min{¢,max {0, A(1,a;6;—1) — V([;wi—1)}}
end
Atargel — Almp + G-—1 log %
6; < UpdateActor(/, a, Aarget)
end
for I € Ddo

G + Return(1, D)
wy  UpdateCritic(I, G)

end

end
mee1(all) o exp(A(T,a;6,) = V(L))

end

B.2 EXPERIMENTAL SETTINGS

B.2.1 FULL-INFORMATION FEEDBACK SETTING

The payoff matrices of M-NE from [Wei et al.|(2021) is as follows:

Yr Y2 Y Ya Y5
z; O 1 -1 0 0
zo —1 0 1 0 0

23 1 -1 0 0 0
e, 1 -1 0 -2 1
25 1 -1 0 1 -2

M-NE has the following set of Nash equilibria: TI! = {(1/3,1/3,1/3,0,0)},112 = {y € AS|y; =
Y2 = Y3;95/2 < ya < 2y5}. For the random utility game, the 50 x 50 payoff matrix is drawn
from a standard Gaussian distribution in an i.i.d. manner. The benchmarks of Kuhn/Leduc Poker
is from OpenSpiel. The hyper-parameters for RegFTRL in NFGs are listed in Table [2] and the
hyper-parameters in EFGs are listed in Table 3]

Table 2: Hyper-Parameter Settings of RegFTRL in M-NE/Random Game.

learning rate . regularization parameter 7  update period N
RegFTRL-A 1+%8><7—7 1+%8><7— 1017t/5()0’ 101715/3()0 070
15 6 15 6
RegFTRL-D TTIE%T TT6r oy 10,100
M-RegFTRL-A 10, 10 101—t/500 101-t/300 0,0
M-RegFTRL-D 10,6 08 10,100
2-RegFTRL-A 10, 20 101 —t/500 11-t/300 0,0
2-RegFTRL-D 10,6.5 ¢ 10, 100

15
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Table 3: Hyper-Parameter Settings of RegFTRL in Kuhn/Leduc Poker.

learning rate 7 regularization parameter 7  update period N
11 1 5
RegFTRL-A i NN 0,0
RegFTRL-D 0.3,0.11 0.1,1 30, 30
11 0.5 3
M-RegFTRL-A T 2 0,0
M-RegFTRL-D 0.1,0.11 0.1,1 30, 30
11 220
Z-RCgFTRL-A %’ W %’ W 07 0
2-RegFTRL-D 0.1,0.11 0.5,7 30, 30

B.2.2 NEURAL-BASED SAMPLE SETTING

The benchmarks of Kuhn/Leduc Poker and the implementation of NFSP are all from OpenSpiel, and
all the experiments are run on A30. The hyper-parameters for FollowMu are listed in Table[d] while
those for NFSP are listed in Table which are referenced from the report (Walton & Lisy, [2021)).

Table 4: Hyper-Parameter Settings of FollowMu in Kuhn/Leduc Poker.

Parameter

Value

hidden_layers_sizes
batch_size

mini_batch_size
logit_learning_rate
critic_learning_rate
max_global_gradient_norm
optimizer_str

eta

refer_policy _update_every
clip_strength

128, 128]

1024

128/256
0.001,/0.0005

0.005
10.0
sgd
0.2

200/500

100

Table 5: Hyper-Parameter Settings of NFSP in Kuhn/Leduc Poker.

Parameter

Value

hidden_layers_sizes
replay _buffer_capacity
reservoir_buffer_capacity
min_buffer_size_to_learn
anticipatory _param
batch_size

learn_every
rl_learning_rate
sl_learning_rate
optimizer_str
update_target_network_every
discount_factor
epsilon_decay_duration
epsilon_start

epsilon_end

[128, 128]
200000
2000000
1000
1
128
128
0.01
0.01
sgd
19200
1.0
10000000
0.06
0.001
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C ADDITIONAL PRELIMINARIES

C.1 GAME DECOMPOSITION

Several recent works have shown that an arbitrary game (normal-form type or differential-form
type) can be uniquely decomposed into a sum of Hamiltonian and potential components through the
generalized Helmholtz decomposition theorem (Balduzzi et al., 2018 |[Letcher et al., 2019). There
are thus two “pure” games: Hamiltonian games (only the Hamiltonian component is present) and
potential games (only the potential component). Hamiltonian games, such as Rock-Paper-Scissors,
are actually divergence-free vector fields where the cyclic behaviors arise (Balduzzi et al.| [2018).
Hence, FTRL will get stuck in cycles around equilibrium if the Hamiltonian component of the
underlying game is dominant. On the other hand, a game is a potential game if there is a single
potential function g such that V1 2 — Va1 2 = —g(7!, 72) + g(7', 7?) forall m*, 7!, 72. Potential
games are well-studied because they can be solved by following the gradient dynamics (Monderer
& Shapley, |1996; |Balduzzi et al.| [2018]).

C.2 FOLLOW-THE-REGULARIZED-LEADER

FTRL is an intuitive algorithm: at each time step it maximizes the sum of the past returns with a
regularization. For conciseness, we only present the definition of FTRL in NFGs here. Formally,
FTRL dynamics is defined as follows:

i = argmax[n(p, yi) — i (p)], 1)
PEA A

t
yi(a) = / 5 Qm (a)dk, & =21, —1,
0

where (-,-) means inner product, > 0 is the learning rate, and the regularization function 1) :
A4 — R is strictly convex and continuously differentiable on A 4. Note that fot Qr, (a)dk =
ZZ;B @, (@) under discrete-time settings.

Two prototypical examples of FTRL can be yielded by choosing different regularizers: 1) Replicator
Dynamics (RD) induced by the entropy regularizer 1;(p) = > p(a) Inp(a); and 2) Projection Dy-
namics (PD) induced by the (square) Euclidean regularizer ¢;(p) = 1 3", |p(a)|? (Mertikopoulos

et al.l[2018)).

RD is an important learning dynamics studied in evolution game theory (Hofbauer & Sigmund,
1998} Zeeman, |2006), where the central focus is to mimic the population’s evolution process. The
dynamics of RD can be given by the following differential equation:

%Wf(a) = 7r§(a)(5i(Q7Tt (a) = Vg,). (22)

PD is introduced as a geometric model of the evolution of play in population games (Friedman,
1991). Denoting the support set of policy as supp(w;) = {a € A : 7}(a) > 0}, the dynamics of PD
can be defined as follows:

d ) ) i\ |— )
—mi(a) = 8'Qr,(a) — supp(m)| 1 Y 6'Qn,(a), (23)
a’ Esupp(n})

if a € supp(n}), and 277 (a) = 0 otherwise.
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