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ABSTRACT
With the rise of multimedia-driven content on the internet, mul-
timodal relation extraction has gained significant importance in
various domains, such as intelligent search and multimodal knowl-
edge graph construction. Social media, as a rich source of image-text
data, plays a crucial role in populating knowledge bases. However,
the noisy information present in social media data poses a chal-
lenge in multimodal relation extraction. Current methods focus
on extracting relevant information from images to improve model
performance but often overlook the importance of global image
information. In this paper, we propose a novel multimodal relation
extraction method, named FocalMRE, which leverages image focal
augmentation, focal attention, and gating mechanisms. FocalMRE
enables the model to concentrate on the image’s focal regions while
effectively utilizing the global information in the image. Through
gating mechanisms, FocalMRE optimizes the multimodal fusion
strategy, allowing the model to select the most relevant augmented
regions for overcoming noise interference in relation extraction.
The experimental results on the public MNRE dataset reveal that
our proposed method exhibits robust and significant performance
advantages in the multimodal relation extraction task, especially
in scenarios with high noise, long-tail distributions, and limited
resources.

CCS CONCEPTS
• Computing methodologies → Information extraction; • In-
formation systems→ Information extraction.

KEYWORDS
multimodal relation extraction, focal augmentation, focal attention,
gating mechanism, noisy social media

1 INTRODUCTION
With the rapid advancement of multimedia technologies, inter-
net data has shifted from text-centric to multimedia-driven con-
tent. As such, multimodal relation extraction tasks have become
increasingly significant across various domains, including intelli-
gent search [16, 32], question answering [13, 24, 27], personal rec-
ommendation [21, 22], and knowledge graph construction [17, 25].
Social media, in particular, is a vital information source that harbors
a plethora of image-text data containing rich information crucial
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for populating knowledge bases. Zheng et al. [36] introduced the
first multimodal relation extraction dataset collected from social
media (as illustrated in Figure 1-a), and numerous studies have built
upon this foundation since then, providing valuable insights and
prompting the development of this research task.

RT@ComplexMusic: Drake
previews new collaboration with
Atlanta rapper Lil Baby.

ENewsVideo: Meghan Markle
and Prince Harry announce their
first official royal tour:

Social
Media
Posts

entities: Drake, Lil Baby
relation: /per/per/peer

Gold
Relation

entities: Meghan Markle, Harry
relation: /per/per/couple

…

…

…

…
Cropped

Focal
Regions

Augmented
Focal

Regions

a) Examples of multimodal relation extraction task

b) Different processing methods for the focal region 
of the original image: cropping or augmentation

Figure 1: Two cases illustrating multimodal relation extrac-
tion and focal region processing methods.

However, a salient feature of social media data is the preva-
lence of noisy information, such as irrelevant backgrounds and
objects, which poses a significant challenge in multimodal relation
extraction. Current methods primarily aim to extract information
relevant to the text from images to improve model performance.
For instance, focal regions in images are cropped using object de-
tection and visual grounding techniques and resized to a uniform
size for model input. Nonetheless, these approaches overlook the
importance of global image information crucial for understanding
the relative positions, spatial relationships, and overall context of
objects in the image, which can enhance the accuracy of relation
extraction. As depicted in Figure 1-b, the cropped regions that are
inputted into the model ultimately lose the actual size and relative
position relationships of the objects in the source image. This loss
of information renders it impossible to accurately determine the
primary and secondary relationships between the objects. There-
fore, preserving global image information while focusing on the
image regions most relevant to the text is crucial.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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To address this challenge, this paper proposes a multimodal re-
lation extraction method based on image focal augmentation, focal
attention, and gating mechanisms. The method leverages global im-
age information and enables the model to focus on image regions
closely related to the text for more accurate relation extraction.
Specifically, the original image is augmented with focal regions (as
illustrated in Figure 1-b), and the attention from text to the image
with focal regions is calculated to obtain a multimodal representa-
tion. On this basis, the gating mechanism filters irrelevant image
content to noise, allowing the model to adaptively select informa-
tion useful for relation extraction, reducing the impact of errors
from focal region detection models.

In summary, our contribution can be summarized as three-fold:

• Firstly, we propose FocalMRE, a novel multimodal relation
extraction method designed to address the challenges of
noisy data in social media. FocalMRE utilizes image focal
augmentation, focal attention, and gating mechanisms to
concentrate on the image’s focal regions while incorporat-
ing global image information, which is often overlooked by
existing methods.

• Secondly, we employ focal augmentation and gating mech-
anisms to optimize the multimodal fusion strategy. This al-
lows the model to selectively emphasize the most relevant
augmented regions, thereby mitigating noise interference
and improving the accuracy of relation extraction.

• Finally, we validate the effectiveness of FocalMRE on the
public MNRE dataset through comprehensive experiments,
demonstrating that FocalMRE achieves robust and signifi-
cant performance improvements, particularly in high-noise,
long-tail, and low-resource scenarios. This highlights the
method’s effectiveness in multimodal relation extraction
task, showcasing its potential in practical applications.

2 RELATEDWORKS
In the realm of artificial intelligence, there is an increasing focus
on multimodal relation extraction research. The objective of this
task is to identify relationships between entities using multimodal
data comprising both text and images. Zheng et al. [36] were the
pioneers in proposing this task and highlighted that conventional
text-based relation extraction models underperform in scenarios,
such as social media, where text content is limited and short. To
tackle this challenge, they developed the first social media-based
multimodal relation extraction dataset, MNRE, and proposed multi-
ple multimodal baselines. By leveraging multimodal information,
these baselines enhance the accuracy of relation extraction while
providing valuable data support for future research.

Subsequent research has primarily concentrated on effectively
integrating textual and visual information. MEGA [35] introduced
graph structural alignment and semantic alignment, achieving pre-
cise alignment of entity relations in text and images by compar-
ing the structural and semantic similarities between visual scene
graphs and textual syntactic dependency graphs. Li et al. [14] con-
ducted experiments by shuffling the image-text pairs in the dataset
and demonstrated that fine-grained alignment mechanisms effec-
tively use visual information to enhance the accuracy of relation
extraction. Xu et al. [28] used reinforcement learning to reorganize

segmented datasets intelligently and discovered that different data
types are suitable for different processing models, with some being
more appropriate for multimodal models and others for pure textual
models. These studies reveal the impact of fine-grained structural
and semantic alignment mechanisms.

Moreover, researchers have explored the incorporation of exter-
nal knowledge. MoRe [26] designed text and image-based retrieval
modules to retrieve external knowledge and integrated them into
textual and visual task models for predictions. For the final decision,
predictions are combined using a Mixture of Experts (MoE) module,
thereby augmenting the model’s input information and improv-
ing the accuracy of entity relation prediction. Hu et al. [12] pro-
posed a novel pre-training method using unlabeled image-caption
pairs that aligns entity-object and relation-image. They generated
soft pseudo-labels for these alignments, employed them as self-
supervised signals for pre-training, thereby enhancing the model’s
ability to extract entities and relations. TMR [34] employed gen-
erative back-translation using diffusion models to create pseudo-
parallel data and trained a high-resource estimator to generate fine-
grained alignment scores, effectively modeling the misalignment
between text and images, outperforming previous state-of-the-art
methods. He et al. [11] explored ways of encoding textual attributes,
visual depth, and object positions that could tackle the problems of
semantic inconsistencies and multi-object ambiguity, and finally
enhance the performance of multimodal relation extraction.

Lastly, researchers have addressed the impact of image modality
noise. UMGF [33] represented input sentences and images as a uni-
fied multi-modal graph, capturing semantic relationships between
multi-modal semantic units. MKGformer [6] combined object detec-
tion and visual grounding models to extract image regions related
to text, reducing noise interference from irrelevant images effec-
tively. They proposed a multi-level fusion method that tightly inte-
grates visual and textual representations through coarse-grained
and fine-grained interaction and fusion, significantly enhancing
performance.

With the rapid advancement of large language models, there has
been a rise in multimodal relation extraction methods that depend
on these models. Chen et al. [5] introduced a method that employs
chain-of-thought prompt distillation. This technique utilizes chain-
of-thought to demonstrate the reasoning process explicitly and
facilitates the transfer of knowledge from large-scale pre-trained
models to target task models through distillation. Additionally,
Cai et al. [4] put forth a novel few-shot multimodal named entity
recognition (FewMNER) task. They have accomplished accurate
multimodal named entity recognition in few-shot conditions by
creating effective demonstrations that merge task instructions and
entity category definitions.

3 METHODOLOGY
3.1 Problem Formulation
In multimodal relation extraction, the objective is to predict re-
lations between entities based on both textual and visual inputs.
This task can be modeled using a function 𝐹 = (𝑒1, 𝑒2, 𝑆,𝑉 ) → R,
where 𝑒1 and 𝑒2 represent the pre-extracted textual entities. Given
a sentence 𝑆 with marked entities 𝑒1 and 𝑒2 and the visual content
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𝑉 , the goal is to classify the corresponding relation tag R between
𝑒1 and 𝑒2.

3.2 Overall Architecture
In this paper, we introduce a novel multimodal relation extraction
model named FocalMRE. The framework of this model is shown
in Figure 2. It is based on the results of object detection and vi-
sual grounding to enhance the focus of images by highlighting
focal regions. The focal augmented images and text content are
then encoded separately by unimodal encoders to form their re-
spective representations. To achieve a deep integration of visual
and textual features, we introduce a multimodal fusion layer that
incorporates focal attention and gating mechanisms, resulting in a
multimodal representation. Finally, the model extracts the entity
features required and accurately predicts the relations through a
classifier.

Multimodal
Fusion

ENewsVideo:Meghan Markle
and Prince Harry announce their
first official royal tour:

Textual Encoder

Input text:

Input image:

Visual Encoder

Visual
G

rounding
O

bject
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…

…

Image Focal
Augmentation
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Figure 2: The framework of FocalMRE.

Textual Encoder. The textual encoder in our model is based on
the BERT model [8]. It is responsible for extracting deep textual
representations from the input token sequence, which consists of
text units such as words, phrases, or symbols. First, an embedding
layer transforms the token sequence into embedding vectors in a
high-dimensional vector space, with positional embeddings added
to capture the positional information within the sequence. The text
encoder adopts a multi-layer structure, with each layer composed
of a multi-head self-attention mechanism (MHA) and a feedforward
neural network (FFN). MHA allows the model to dynamically attend
to the dependencies between different tokens, capturing contextual

information in the text. FFN performs non-linear transformations
on the MHA outputs to further extract textual features. The use of
residual connections and layer normalization techniques effectively
mitigates the vanishing gradient problem in deep neural networks
and stabilizes the model training process. Through layer-by-layer
computation, the text encoder outputs the hidden states of each
token, which contain rich contextual information and features of
the text, laying a solid foundation for subsequent multimodal fusion.

ℎ𝑡𝑒𝑥𝑡 = TextualEncoder(𝑥𝑡𝑒𝑥𝑡 ) (1)
Visual Encoder. The visual encoder adopts the Vision Trans-

former (ViT) model [9]. The process begins by resizing each fo-
cal augmented image to ensure input consistency. The image is
then split into several patches, each of which is embedded into a
high-dimensional space through linear projection to form patch
embeddings. Positional embeddings are added to distinguish infor-
mation from different locations. These patch embeddings are then
sent to ViT for further processing. In ViT, the visual embeddings
are encoded through a multi-head self-attention mechanism and
feedforward neural networks, with multiple Transformer layers
stacked to progressively update the initial embeddings, thereby
extracting high-level feature representations of the image. The out-
put of the visual encoder is the feature representation of the focal
augmented image, which not only reinforces visual information
from the focal regions but also retains global information, such as
spatial relationships within the image, providing strong support
for subsequent multimodal fusion.

ℎ𝑖𝑚𝑎𝑔𝑒 = VisualEncoder(𝑥𝑖𝑚𝑎𝑔𝑒 ) (2)

3.3 Image Focal Augmentation
In this paper, we propose a simple method to augment image focus
by constructing focal frames. This approach directly augments the
original image, reducing reliance on external knowledge, enhancing
interpretability, and enabling the model to learn the markings of
potential focal regions during training. This lays the foundation
for future fine-grained learning and analysis of focus types. We
consider two types of image focus in our approach. The first type
is objects within the image, such as people or buildings, which we
extract using an object detection model [1], named OD regions.
The second type is visual areas in the image that are related to the
text, which we locate using a visual grounding model [29], named
VG regions. Specifically, we first identify nouns in the text using
a noun detection tool 1 and form a sequence of keywords with
the given entities in the text. Subsequently, for each keyword in
the sequence, we use it as a search guide to obtain the relevant
visual areas from the image using the visual grounding model. By
augmenting these two types of image focus, we preserve not only
the global information in the image but also emphasize focal regions
related to the text.

3.4 Multimodal Fusion
After obtaining the unimodal representations of text and images
separately, multimodal integration is required to combine visual

1https://github.com/explosion/spaCy

https://github.com/explosion/spaCy
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information with the textual features to obtain task-relevant multi-
modal representations. The focal attention, gating, and focal fusion
modules are key components of the multimodal fusion layer utilized
for this purpose.

Focal Attention Module. The focal attention module is de-
signed to dynamically adjust the model’s attention to different
regions of the image by computing the similarity between textual
features and visual features. To accomplish this, a cross-modality
attention network is utilized to associate words in the text with
patches in the image. Specifically, the textual features are treated
as queries 𝑄 (ℎ𝑡𝑒𝑥𝑡𝑊𝑞), and the visual features are used as keys
𝐾 (ℎ𝑖𝑚𝑎𝑔𝑒𝑊𝑘 ) and values 𝑉 (ℎ𝑖𝑚𝑎𝑔𝑒𝑊𝑣 ). The module then calcu-
lates the similarity between the queries and each key to obtain
weights that reflect the significance of each key. Finally, the atten-
tion weights are multiplied with the visual features 𝑉 to obtain the
integrated visual information ℎ̂𝑖𝑚𝑎𝑔𝑒 .

ℎ̂𝑖𝑚𝑎𝑔𝑒 = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉 (3)

where 𝑑𝑘 is the same as the dimension of ℎ𝑡𝑒𝑥𝑡 because a single
head is used.

This design is advantageous since it enables the model to focus
on both local information within the focal regions and global infor-
mation across the entire image. As compared to directly inputting
the entire image or focusing solely on relevant regions, this method
provides a more comprehensive approach for capturing associa-
tions between text and images, resulting in improved accuracy in
relation extraction.

Gating Module. In practical applications, the relation extrac-
tion task may be negatively impacted by the limitations of visual
grounding and object detection technologies, which may result in
the integration of irrelevant information that can introduce noise
and reduce accuracy. To address this issue, a gating mechanism is
proposed to filter out irrelevant image focal regions, enabling the
model to adaptively select relevant focal regions that are useful for
the task. This effectively reduces the interference of errors from
visual grounding and object detection models on the final results.
The gating variable 𝜆 is defined to control how much visual in-
formation is retained, with a value range of [0,1]. 𝜆 is optimized
through backpropagation algorithms, making it trainable. Based on
the 𝜆, textual and visual information are fused to generate the final
output representation ℎ𝑜𝑢𝑡 :

𝜆 = sigmoid(𝑈 × ℎ𝑡𝑒𝑥𝑡 +𝑉 × ℎ̂𝑖𝑚𝑎𝑔𝑒 )

ℎ𝑜𝑢𝑡 = (1 − 𝜆) × ℎ𝑡𝑒𝑥𝑡 + 𝜆 × ℎ̂𝑖𝑚𝑎𝑔𝑒

(4)

where 𝑈 and 𝑉 are trainable variables. 𝜆 controls how much visual
information is kept. When 𝜆 approaches 0, the fused output is closer
to the text representation, indicating that the model relies more on
textual information. Conversely, when 𝜆 approaches 1, the fused
output is more biased towards image features.

Focal Fusion. The focal fusion module integrates text features
augmented with various types of focal region information through
the focal attention and the gating modules. For each VG region
augmented image, we obtain the output representation ℎ𝑉𝐺

𝑜𝑢𝑡 from
the gating module and integrate all ℎ𝑉𝐺

𝑜𝑢𝑡 to form a tensor 𝐻𝑉𝐺
𝑜𝑢𝑡 .

To account for different degrees of importance among the focal
regions, we introduce a weight coefficient 𝑤𝑣𝑔 with a length of
𝑉𝐺𝑛 . During training, we initialize𝑤𝑣𝑔 and dynamically adjust it
via backpropagation. This allows us to perform a weighted average
of 𝐻𝑉𝐺

𝑜𝑢𝑡 and obtain the weighted representation 𝐻𝑉𝐺
𝑜𝑢𝑡 as follows:

𝐻
𝑉𝐺
𝑜𝑢𝑡 = 𝑤𝑣𝑔 × 𝐻𝑉𝐺

𝑜𝑢𝑡
(5)

We apply the same procedure to acquire 𝐻𝑂𝐷
𝑜𝑢𝑡 for images aug-

mented using OD regions.
For relation prediction, the classifier leverages the vectors cor-

responding to the head and tail entities in 𝐻𝑉𝐺
𝑜𝑢𝑡 and 𝐻𝑂𝐷

𝑜𝑢𝑡 . We
concatenate these vectors into a single vector, 𝑧:

𝑧 = concat[𝐻𝑉𝐺
𝑜𝑢𝑡 [ℎ𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 ] , 𝐻

𝑉𝐺
𝑜𝑢𝑡 [𝑡𝑎𝑖𝑙𝑠𝑡𝑎𝑟𝑡 ] ,

𝐻
𝑂𝐷
𝑜𝑢𝑡 [ℎ𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 ] , 𝐻

𝑂𝐷
𝑜𝑢𝑡 [𝑡𝑎𝑖𝑙𝑠𝑡𝑎𝑟𝑡 ] ]

(6)

here, ℎ𝑒𝑎𝑑𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑎𝑖𝑙𝑠𝑡𝑎𝑟𝑡 denote the start position markers for
the head and tail entities, respectively.

The vector 𝑧 is then fed into a multi-layer perceptron (MLP) to
predict the relation 𝑟 :

𝑟 = argmax(𝑀𝐿𝑃 (𝑧)) (7)

4 EXPERIMENTS
4.1 Dataset
A detailed experimental evaluation was conducted on the MNRE
dataset [36], an artificially annotated multimodal relation extrac-
tion dataset. The text and images in MNRE were harvested from
Twitter and cover multiple thematic domains, including music and
sports. This dataset comprises a total of 15,484 samples and 9,201
images, encompassing 23 relation categories. To conduct the exper-
iments, the dataset was divided into training, validation, and test
sets, containing 12,247, 1,624, and 1,614 samples, respectively.

Challenge Set. To comprehensively evaluate the performance of
the model under various types and severities of noise, two challenge
sets were constructed: Align-Noise and Aug-Noise. The Align-
Noise challenge set simulates potential misalignment of image-text
pairs in practical applications by randomly shuffling them. This
tests the model’s performance under alignment noisy data. The
dataset pairs images with segments of text that do not match from
the dataset according to different shuffling ratios, such as 5%, 10%,
20%, and so forth. The Aug-Noise challenge set simulates errors
that may occur from visual grounding and object detection models
to test the robustness of relation extraction models based on focal
augmented images. We randomly selected a specific proportion
of all focal regions and for each one, a random operation from
the following was performed: 1) Modifying focal regions: the focal
regions were replaced with irrelevant image regions that were
randomly selected to simulate false positives of visual grounding
and object detection models. 2) Deleting focal regions: the focal
regions identified by visual grounding and object detection models
were ignored to simulate false negatives of the models. We tested
various proportions, such as 10%, 30%, 50%, etc.
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4.2 Baselines
In this study, we compare the performance of multiple types of
baseline models on the MNRE dataset.

Textual relation extraction models. PCNN [31] combines
piecewise maximum pooling and multi-instance learning for text
relation extraction.MTB [20] uses distant-supervision and places
more emphasis on learning relationship features by establishing a
pre-training task to compare various relationship vectors.

Large Language Models. Llama2-13B [23] is a large-scale lan-
guage model released by Meta, designed to handle complex natural
language processing tasks with high efficiency and understanding.
Baichuan-13B-Chat 2 is an open-source, commercially available
large-scale language model developed by Baichuan Intelligent Tech-
nology. ChatGLM3-6B [10] is a generation of pre-trained dialogue
models jointly released by Zhipu AI and Tsinghua KEG, with many
excellent features such as smooth dialogue and low deployment
threshold. Qwen-14B-Chat [2] is optimized for delivering high-
quality, engaging conversations with a deep understanding of lan-
guage and context, proposed by Alibaba Cloud.Qwen-VL-Chat [3]
is a specialized variant of the Qwen model that incorporates visual
language understanding, enabling it to not only engage in text-
based conversations but also comprehend and generate responses
based on visual inputs.

Multimodal relation extraction models. BERT+SG+Att [36]
utilizes the attention mechanism to consider the semantic similarity
between the visual graph (i.e., scene graph) and textual contents.
MEGA [35] designs an efficient graph alignment that considers
both structural similarity and semantic consistency between the vi-
sual scene graph and text dependency graph structures. UMT [30]
leverages regional image features to represent objects to exploit
fine-grained semantic correspondences based on transformer and
visual backbones. UMGF [33] represents text and image as a uni-
fied multimodal graph, capturing semantic relationships between
multimodal semantic units. ViL-BERT [19] is a multimodal two-
stream model, allowing it to process both visual and textual inputs
in separate streams based on the symmetric attention mechanism.
VisualBERT [15] uses the self-attention mechanism to implicitly
align text elements and image areas, showing powerful multimodal
semantic understanding capabilities. HVPNeT [7] achieves the
fusion of hierarchical multi-scale visual features by utilizing image
features as pluggable visual prefixes to guide text representation,
and implements a dynamic gating aggregation strategy to enhance
the model’s robustness to irrelevant image noise. MKGformer [6]
proposes a multi-level fusion method to guide interaction through
coarse-grained prefixes and fine-grained correlation-aware fusion
modules integrate visual and textual representations.

4.3 Experimental Setup
In the experimental settings, we configured the model to use four
visual grounding regions and three object detection regions. To
ensure consistency, all focal augmented images were uniformly
scaled to a size of 224x224 pixels. We utilized the AdamW optimizer
[18] with a learning rate of 1e-5 and a weight decay of 0.08 ap-
plied to all non-bias parameters to standardize the model and avoid
overfitting. BERT-base-uncased from the Hugging Face library was
2https://github.com/baichuan-inc/Baichuan-13B

used to process text input, while ViT-B/32 processed visual input.
The sentence max length was set to 128, and the number of image
patches was set to 49. The focal attention module included one head
per module with a 0.1 dropout ratio applied to the attention calcula-
tion results to improve model robustness and avoid overfitting. For
LLM-related experiments, a random recall approach was utilized
as the instance for context learning, and a total of 2 to 5 instances
were used. Additionally, we evaluated our model’s performance
using precision, recall, and F1-score to maintain consistency with
existing multimodal relation extraction works.

5 RESULT AND ANALYSIS
5.1 Main Results

Table 1: The overall performance of FocalMRE and other
state-of-the-art methods on MNRE3.

Model Precision Recall F1-Score

PCNN 62.85 49.69 55.49
MTB 66.00 61.56 63.70

Llama2-13B 5.44 5.01 5.21
baichuan-13B-Chat 2.93 6.79 4.09

ChatGLM3-6B 8.82 9.21 9.01
Qwen-14B-Chat 11.68 11.15 11.40
Qwen-VL-Chat 11.42 13.09 12.20

BERT+SG+Att 62.95 62.65 62.80
MEGA 64.51 68.44 66.41
UMT 62.93 63.88 63.46
UMGF 64.38 66.23 65.29

ViL-BERT 65.78 61.88 63.77
VisualBERT 64.63 61.09 62.81
HVPNeT 86.95 83.28 85.08

MKGformer 86.26 84.38 85.31

FocalMRE 88.85 87.19 88.01

We conduct experiments on the MNRE dataset, and Table 1 il-
lustrates the overall results. The following observations are made:
1) LLM models without fine-tuning are not effective in performing
multimodal relation extraction tasks. 2) Multimodal relation ex-
traction models outperform textual relation extraction models. By
leveraging both textual and visual information, multimodal mod-
els achieve superior extraction performance. This underscores the
significance of exploiting multimodal information in relation extrac-
tion tasks. 3) Although models such as BERT+SG+Att, MEGA, UMT,
UMGF, ViL-BERT, and VisualBERT exhibit adequate performance
in multimodal relation extraction tasks, their overall performance is
not particularly remarkable. In contrast, models like HVPNeT and
MKGformer demonstrate significant performance improvements
by introducing visual grounding or object detection techniques
to filter image noise. This finding reveals the potential negative
impact of image noise on multimodal relation extraction tasks and
3The experiment is based on all regions provided by the dataset, including up to 4 VG
regions and up to 3 OD regions, and the baseline performance results are re-evaluated
under this setting.

https://github.com/baichuan-inc/Baichuan-13B
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emphasizes the essential role of image denoising mechanisms in
enhancing model performance. 4) The proposed FocalMRE model
displays outstanding performance, surpassing all of the baseline
models. This result can be attributed to FocalMRE’s comprehensive
incorporation of local focal information and global image infor-
mation, coupled with efficient denoising capabilities. Particularly
for datasets with high levels of noise, such as social media, the
FocalMRE model offers exceptional performance.

To further validate the effectiveness of the FocalMRE model in
handling noisy data, we conduct an in-depth comparative analysis
with the best-performing baseline model, MKGFormer. The analysis
focuses on the challenge set, and the experimental results are pre-
sented in Table 2. They reveal the performance of the two models
under different noise conditions. Specifically, on the Align-Noise
challenge set, both models exhibit decreasing performance as the
noise ratio increases. However, the FocalMRE model outperforms
MKGFormer, demonstrating its robustness in handling image-text
alignment noise. On the Aug-Noise challenge set, the FocalMRE
model also displays superior performance over MKGFormer, in-
dicating that even when visual grounding and object detection
models produce errors, FocalMRE’s denoising mechanism can ac-
curately identify and eliminate these errors, leading to enhanced
robustness and stability. These findings provide comprehensive
evidence supporting the superiority of the FocalMRE model in mul-
timodal relation extraction tasks, particularly in the presence of
noise interference.

Table 2: Performance comparison between FocalMRE and
MKGformer on challenge sets.

Dataset Ratio MKGformer FocalMRE
P R F1 P R F1

Align-
Noise

5% 71.34 74.69 72.98 77.10 73.12 75.06
10% 74.41 69.53 71.89 76.34 71.09 73.62
20% 70.97 72.19 71.57 71.80 72.81 72.30
50% 65.21 65.31 65.26 63.74 68.13 65.86
100% 62.95 62.66 62.80 66.21 60.31 63.12

Aug-
Noise

10% 83.49 82.19 82.83 86.71 83.59 85.12
30% 79.02 75.94 77.45 83.67 78.44 80.97
50% 76.90 71.25 73.97 77.42 75.00 76.19
100% 70.45 64.06 67.10 65.15 69.53 67.27

5.2 Ablation Study
To further investigate the precise impact of the focal attention mod-
ule and gating mechanism on model performance, we conducted
an ablation experiment based on the FocalMRE model. The results
of this experiment, presented in Table 3, highlight the crucial roles
played by the focal attention module and gating mechanism in the
multimodal relation extraction task. The experimental data clearly
demonstrates that removing either the focal attention module or
the gating mechanism results in a significant decrease in model
performance. Additionally, when both modules are removed simul-
taneously, the performance drop becomes even more pronounced.
These findings strongly support the synergy between these two

modules in the FocalMRE model: they enhance each other’s perfor-
mance and cooperatively improve the overall performance of the
model.

Table 3: Ablation results.

Module Precision Recall F1-Score

FocalMRE 88.85 87.19 88.01

w/o Focal Attention 86.03 84.96 85.35 (-2.66)
w/o Gating 85.80 85.94 85.87 (-2.14)
w/o Either 84.91 82.66 83.77 (-4.24)

5.3 Detailed Analysis
This section aims to present a detailed analysis of the performance
of the model from multiple perspectives:

5.3.1 Effect of the focus type and quantity. In the experiment illus-
trated in Figure 3, we conduct a detailed analysis of the impact of
two types of focal regions on model performance: VG regions de-
tected through visual grounding and OD regions detected through
object detection models. The experimental results demonstrate that
when the number of OD regions is kept fixed, increasing the number
of VG regions can improve the model performance to some extent.
More specifically, when the number of VG regions exceeds 2, the
performance improvement is even more pronounced. In contrast,
when the number of VG regions is fixed, increasing the number of
OD regions has a relatively smaller impact on the model perfor-
mance. These findings indicate that VG regions are more effective
in feature extraction and provide richer information to the model.
Hence, they are more beneficial in improving model performance.
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Figure 3: The impact of the number of different types of focal
regions on model performance.

5.3.2 Performance comparison on each relation type. To assess the
generalizability of the proposed method across different types and
sample sizes of relations, we examined the model’s performance
on each non-none relation type. Given the potential differences in
data distribution, it is crucial to verify whether the model shows
consistent performance improvement across different types of re-
lations. As indicated in the Table 4, the model’s performance has
significantly improved on the majority of relations, particularly for
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long-tail relations. The baseline model, on the other hand, offers al-
most no accurate predictions for such relations, whereas FocalMRE
has demonstrated remarkable improvement. Despite these signifi-
cant improvements, there is still substantial room for enhancing
the model’s performance on long-tail relations.

Table 4: Performance comparison on each relation type. F1-
score is used as the metric.

Relation (size) MKGformer FocalMRE

/per/per/peer (156) 88.82 93.54 (+4.72)
/per/org/member_of (110) 88.70 94.12 (+5.42)
/loc/loc/contain (99) 97.98 98.00 (+0.02)
/per/misc/present_in (74) 96.05 99.33 (+3.28)
/org/loc/locate_at (46) 86.05 83.72 (-2.33)
/per/loc/place_of_residence (29) 78.12 66.67 (-11.45)
/per/per/alternate_names (21) 54.55 72.73 (+18.18)
/per/per/couple (19) 50.00 77.42 (+27.42)
/misc/loc/held_on (18) 100.00 100.00 (0.00)
/org/org/subsidiary (16) 62.86 58.06 (-4.80)
/misc/misc/part_of (14) 0.00 25.00 (+25.00)
/per/misc/nationality (10) 95.24 95.24 (0.00)
/org/org/alternate_names (8) 0.00 31.58 (+31.58)
/per/loc/place_of_birth (7) 0.00 15.38 (+15.38)
/per/per/parent (4) 0.00 0.00 (0.00)
/per/misc/awarded (4) 0.00 85.71 (+85.71)
/per/per/neighbor (2) 0.00 0.00 (0.00)
/per/per/siblings (1) 0.00 0.00 (0.00)
/per/per/charges (1) 0.00 0.00 (0.00)
/per/misc/religion (1) 0.00 0.00 (0.00)

5.3.3 The impact of global image information. To investigate the ef-
fect of global image information on multimodal relation extraction
based on the proposed FocalMREmodel, we conducted experiments
using three different image input methods: original images, cropped
image focal regions, and the proposed image focal augmentation
method. The experimental results, as presented in Table 5, demon-
strate that when using the original image without pre-processing
as the input, the model’s performance is significantly lower. How-
ever, when the focal region of the image is cropped, the model’s
performance significantly improves, suggesting that removing irrel-
evant noise information from the image can effectively enhance the
model’s performance. Furthermore, using the focal augmentation
method, which not only highlights the focal region information
but also balances the preservation of global image information and
removal of irrelevant noise information through gated mechanisms,
leads to further improvements in model performance. This outcome
confirms the critical role of global image information in multimodal
relation extraction and validates the effectiveness of the image focal
augmentation method and gating mechanism in optimizing model
inputs.

5.3.4 The impact of focal augmentation on visual attention. We
conducted a visualization analysis to examine the model’s ability
to concentrate on the focal areas and their global information dur-
ing image processing. Figure 4 displays the visualization analysis

Table 5: Comparison of model performance using differ-
ent image input methods. The original image contains both
global information and substantial noise. Cropping the focal
regions from the image eliminates noise and global informa-
tion. The focal region augmentation approach enhances the
focal information while preserving the global information.

Input Precision Recall F1-Score

Original image 64.52 61.09 62.76
Focal regions cropped 87.60 86.09 86.84

Focal augmented 88.85 87.19 88.01

results for three examples, each comprising three attention visual-
ization images. One image represents the attention visualization on
the original image, while the other two depict the attention visual-
ization on the focal augmented images. In particular, one image is
designated as the focal augmented image that is strongly correlated
with the image-text (upper row), while the other image is weakly
correlated (lower row).

Original images

Attention visualization on original images

Attention visualization on focal augmented images

a) b) c)

Figure 4: The attention visualization result. (red indicates
high attention weight, blue indicates low attention weight)

In the example a), the model’s attention is distributed across
all individuals in the original image. However, when the strongly
correlated area with the image-text is augmented (i.e., the central
visual area of the image), the model’s attention is focused on the
vital information within the focal area. This information, such as
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the action of holding hands in the image, is beneficial for predicting
the relationship type (e.g., /per/per/couple). Remarkably, when
the weakly correlated area (i.e., Prince Harry’s tie) is augmented,
the model does not blindly focus its attention on the tie. Instead,
the model’s attention is more focused on other people in the sur-
rounding area outside the focus. This contrasting phenomenon is
attributed to our approach of combining image focal augmentation
with gating mechanisms, which allows the model to selectively fo-
cus on the image within the focal area without ignoring the global
information in the image. This effectively achieves a balance be-
tween important local information and global information in the
image. Examples b) and c) also demonstrate similar results, further
emphasizing the effectiveness of our method.

5.3.5 The performance in low-resource scenarios. To provide a more
comprehensive evaluation of the proposed model’s performance
in low-resource scenarios, we have conducted two types of experi-
ments: 1) Low-resource training set: we sampled the training data
in different proportions, namely 5%, 10%, 20%, 30%, 40%, and 50%
to investigate the effect of different training data sizes on model
performance. 2) Low-resource relation samples: this experiment
involved retaining 𝐾 samples for each relation type to form the
training set. By controlling the value of 𝐾 , we aimed to examine
how the model’s performance varies with limited samples.

Table 6: Performance comparison in the low-resource train-
ing set scenario. The proportions indicate the amount of the
training set that is retained.

Model 5% 10%
P R F1 P R F1

ViL-BERT 33.40 49.06 39.75 61.26 50.16 55.15
HVPNeT 63.68 60.00 61.79 80.74 78.59 79.65

MKGformer 58.80 56.73 57.75 64.54 63.12 63.82
FocalMRE 72.50 71.25 71.87 82.91 81.09 81.99

Model 20% 30%
P R F1 P R F1

ViL-BERT 61.14 55.31 58.08 65.36 54.84 59.64
HVPNeT 84.83 81.25 83.00 84.43 82.19 83.29

MKGformer 83.07 81.25 82.15 84.50 82.66 83.57
FocalMRE 86.12 84.38 85.24 85.51 84.84 85.18

Model 40% 50%
P R F1 P R F1

ViL-BERT 61.34 62.97 62.14 65.77 60.94 63.26
HVPNeT 85.83 83.28 84.54 85.76 83.75 84.74

MKGformer 84.52 83.59 84.05 85.58 84.38 84.97
FocalMRE 87.36 86.41 86.88 87.68 86.72 87.20

From the results in Table 6 and Table 7, we can observe: 1) The
impact of noisy information on model performance is more pro-
nounced in low-resource scenarios. The results demonstrate that
models designed to handle image noise, such as HVPNeT and MKG-
former, showed significant performance improvements in com-
parison to the pre-trained ViL-BERT model. This indicates that
mitigating noise issues is essential for models to tackle various

low-resource scenarios effectively. 2) Moreover, the proposed Fo-
calMRE model consistently outperforms the baseline models across
almost all metrics and under various low-resource scenarios. This
demonstrates the clear advantages of FocalMRE in handling data
scarcity. In contrast to models like MKGformer, FocalMRE mainly
aims to achieve a balance between utilizing global information and
avoiding noise interference. FocalMRE employs focal augmentation,
focal attention, and a gating mechanism to fully utilize both the
local focal information and the global information in images with-
out interference from noisy information. This advantage is even
more pronounced in low-resource scenarios where information
is very limited, posing a significant challenge for models to learn
useful information. The effective use of global image information
undoubtedly provides the model with a richer set of usable infor-
mation. It is worth noting that this does not require any external
knowledge but rather makes full use of the available data. Experi-
ments have proven that this approach is simple yet highly effective
in addressing the problem of information scarcity in low-resource
scenarios.

Table 7: Performance comparison in the low-resource rela-
tion samples scenario. 𝐾 means the number of examples for
each relation type in the training set.

Model 𝐾 = 1 𝐾 = 2
P R F1 P R F1

ViL-BERT 04.16 08.91 05.67 07.93 19.53 11.28
HVPNeT 09.37 21.25 13.00 10.39 25.62 14.79

MKGformer 08.80 22.19 12.60 10.35 21.25 13.92
FocalMRE 13.60 22.66 17.00 13.01 31.09 18.34

Model 𝐾 = 5 𝐾 = 10
P R F1 P R F1

ViL-BERT 11.03 27.50 15.75 15.93 38.28 22.50
HVPNeT 16.46 40.31 23.38 22.47 50.62 31.12

MKGformer 21.29 41.25 28.09 38.18 53.75 44.65
FocalMRE 29.54 40.94 34.32 46.57 45.62 46.09

6 CONCLUSION
The challenge of noise interference in multimodal relation extrac-
tion in social media requires a higher level of accuracy and efficiency.
Existing methods that filter image information tend to overlook the
crucial global image information. To remedy this issue, we propose
a novel focus-and-gating method named FocalMRE, which lever-
ages focal augmentation, focal attention, and a gating mechanism
to fully utilize both focal and global information in images without
interference from noisy information. Experimental verifications on
MNRE, which include various settings such as high noise, long-tail,
and low-resource scenarios, demonstrate the superior performance
of our method, thereby indicating new and promising ideas for
multimodal relation extraction, especially in domains characterized
by high levels of noise, such as social media.
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