Supplementary Material: Information bottleneck theory of high-dimensional regression: relevancy, efficiency and optimality

Vudtiwat Ngampruetikorn,* David J. Schwab Initiative for the Theoretical Sciences, The Graduate Center, CUNY *vngampruetikorn@gc.cuny.edu

A Information content of maximally efficient algorithms

Consider an IB problem where we are interested in an information efficient representation of Y that is predictive of W (Fig 1a). When Y and W are Gaussian correlated, the central object in constructing an IB solution is the normalized regression matrix $\Sigma_{Y|W}\Sigma_{Y}^{-1}$; in particular, its eigenvalues $v_i[\Sigma_{Y|W}\Sigma_{Y}^{-1}]$ completely characterize the information content of the IB optimal representation \tilde{T} via (see Ref [1] for a derivation)

$$I(\tilde{T}; W) = \frac{1}{2} \sum_{i=1}^{N} \max\left(0, \ln \frac{1 - \gamma^{-1}}{\nu_i [\Sigma_{Y|W} \Sigma_Y^{-1}]}\right)$$
(1)

$$I(\tilde{T}; Y \mid W) = \frac{1}{2} \sum_{i=1}^{N} \max(0, \ln(\gamma(1 - \nu_i [\Sigma_{Y \mid W} \Sigma_Y^{-1}]))),$$
(2)

where N is the dimension of Y and γ parametrizes the IB trade-off [Eq (1)].

Our work focuses on the following generative model for W and Y (see Sec 1.1)

$$W \sim N(0, \frac{\omega^2}{P}I_P)$$
 and $Y \mid W \sim N(X^{\mathsf{T}}W, \sigma^2 I_N).$ (3)

Marginalizing out W yields

$$Y \sim N(0, \sigma^2 I_N + \frac{1}{P} X^{\mathsf{T}} X). \tag{4}$$

As a result, the normalized regression matrix reads

$$\Sigma_{Y|W}\Sigma_{Y}^{-1} = \sigma^{2}I_{N}\frac{1}{\sigma^{2}I_{N} + \frac{1}{P}X^{\mathsf{T}}X} = \left(I_{N} + \frac{1}{\lambda^{*}}\frac{X^{\mathsf{T}}X}{N}\right)^{-1} \quad \text{where} \quad \lambda^{*} \equiv \frac{P}{N}\frac{\sigma^{2}}{\omega^{2}}.$$
 (5)

Substituting Eq (5) into Eqs (1-2) gives

$$I(\tilde{T};W) = \frac{1}{2} \sum_{i=1}^{N} \max\left(0, \ln\left((1-\gamma^{-1})(1+\phi_i[X^{\mathsf{T}}X/N]/\lambda^*)\right)\right)$$
(6)

$$I(\tilde{T}; Y \mid W) = \frac{1}{2} \sum_{i=1}^{N} \max\left(0, \ln \frac{\gamma \phi_i [X^{\mathsf{T}} X/N]}{\lambda^* + \phi_i [X^{\mathsf{T}} X/N]}\right),\tag{7}$$

where $\phi_i[X^T X/N]$ denote the eigenvalues of $X^T X/N$. Since the eigenvalues of $X^T X/N$ and the sample covariance $\Psi = XX^T/N$ are identical except for the zero modes which do not contribute to information, we can recast the above equations as

$$I(\tilde{T};W) = \frac{1}{2} \sum_{i=1}^{P} \max\left(0, \ln(1-\gamma^{-1})(1+\psi_i/\lambda^*)\right)$$
(8)

$$I(\tilde{T};Y \mid W) = \frac{1}{2} \sum_{i=1}^{P} \max\left(0, \ln \frac{\gamma \psi_i}{\lambda^* + \psi_i}\right),\tag{9}$$

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

where ψ_i are the eigenvalues of Ψ and the summation limits change to P, the number of eigenvalues of Ψ . Introducing the cumulative spectral distribution F^{Ψ} and replacing the summations with integrals results in

$$I(\tilde{T};W) = \frac{P}{2} \int dF^{\Psi}(\psi) \max\left(0, \ln\left((1-\gamma^{-1})(1+\psi/\lambda^*)\right)\right)$$
(10)

$$I(\tilde{T};Y \mid W) = \frac{P}{2} \int dF^{\Psi}(\psi) \max\left(0, \ln \frac{\gamma\psi}{\lambda^* + \psi}\right).$$
(11)

We see that the contributions to the integrals come from the logarithms but only when they are positive. This condition can be recast into integration limits (note that $\gamma > 0$ and $\lambda^* > 0$)

$$\ln\left((1-\gamma^{-1})(1+\psi/\lambda^*)\right) > 0 \implies \psi > \lambda^*/(\gamma-1)$$
(12)

$$\ln \frac{\gamma \psi}{\lambda^* + \psi} > 0 \implies \psi > \lambda^* / (\gamma - 1).$$
(13)

Finally we define the lower cutoff $\psi_c \equiv \lambda^*/(\gamma - 1)$ and use the above limits to rewrite the expressions for relevant and residual informations,

$$I(\tilde{T};W) = \frac{P}{2} \int_{\psi > \psi_c} dF^{\Psi}(\psi) \ln \frac{\psi + \lambda^*}{\psi_c + \lambda^*} = \frac{P}{2} \int_{\psi > \psi_c} dF^{\Psi}(\psi) \ln \left(1 + \frac{\psi - \psi_c}{\psi_c + \lambda^*}\right)$$
(14)

$$I(\tilde{T};Y\mid W) = \frac{P}{2} \int_{\psi>\psi_c} dF^{\Psi}(\psi) \ln \frac{\psi}{\psi_c} \frac{\psi_c + \lambda^*}{\psi + \lambda^*} = \frac{P}{2} \int_{\psi>\psi_c} dF^{\Psi}(\psi) \ln \frac{\psi}{\psi_c} - I(\tilde{T};W).$$
(15)

These equations are identical to Eqs (8-9) in the main text.

B Information content of Gibbs-posterior regression

To compute the information content of Gibbs regression [Eq (14)], we first recall that the mutual information between two Gaussian correlated variables, *A* and *B*, is given by

$$I(A;B) = \frac{1}{2} \ln \det \Sigma_A \Sigma_{A|B}^{-1},$$
(16)

where Σ_A is the covariance of A, and $\Sigma_{A|B}$ of A | B.

We now write down the relevant information, using the covariances $\Sigma_{T|W}$ and Σ_T from Eqs (17-18),

$$I(T;W) = \frac{1}{2} \ln \det \left(\Sigma_T \Sigma_{T|W}^{-1} \right)$$
(17)

$$= \frac{1}{2} \ln \det \frac{\frac{1}{2\beta} \frac{1}{\Psi + \lambda I_P} + \frac{\sigma^2}{N} \frac{\Psi}{(\Psi + \lambda I_P)^2} + \frac{\omega^2}{P} \frac{\Psi^2}{(\Psi + \lambda I_P)^2}}{\frac{1}{2\beta} \frac{1}{\Psi + \lambda I_P} + \frac{\sigma^2}{N} \frac{\Psi}{(\Psi + \lambda I_P)^2}}$$
(18)

$$= \frac{1}{2} \ln \det \left(I_P + \frac{\Psi^2 / \lambda^*}{\Psi + \frac{N}{2\beta \sigma^2} (\Psi + \lambda I_P)} \right)$$
(19)

$$= \frac{1}{2} \operatorname{tr} \ln \left(I_P + \frac{\Psi^2 / \lambda^*}{\Psi + \frac{N}{2\beta \sigma^2} (\Psi + \lambda I_P)} \right)$$
(20)

$$= \frac{1}{2} \sum_{i=1}^{P} \ln \left(1 + \frac{\psi_i^2 / \lambda^*}{\psi_i + \frac{N}{2\beta\sigma^2} (\psi_i + \lambda)} \right)$$
(21)

$$= \frac{P}{2} \int_{\psi>0} dF^{\Psi}(\psi) \ln\left(1 + \frac{\psi^2/\lambda^*}{\psi + \frac{N}{2\beta\sigma^2}(\psi+\lambda)}\right),\tag{22}$$

where $\lambda^* = P\sigma^2/N\omega^2$. In the above, we use the identity $\ln \det H = \operatorname{tr} \ln H$ which holds for any positive-definite Hermitian matrix H, let ψ_i denote the eigenvalues of the sample covariance Ψ and introduce F^{Ψ} , the cumulative distribution of eigenvalues. We also assume that λ and β are finite

and positive. Note that the integral is limited to positive real numbers because the eigenvalues of a covariance matrix is non-negative and the integrand vanishes for $\psi = 0$.

Following the same logical steps as above and noting that the Markov constraint $W \leftrightarrow Y \leftrightarrow T$ implies $\Sigma_{T|Y,W} = \Sigma_{T|Y}$, we write down the residual information,

$$I(T;Y \mid W) = \frac{1}{2} \ln \det \left(\Sigma_{T \mid W} \Sigma_{T \mid Y,W}^{-1} \right)$$
(23)

$$= \frac{1}{2} \ln \det \left(\Sigma_{T|W} \Sigma_{T|Y}^{-1} \right)$$
(24)

$$= \frac{1}{2} \ln \det \left(\frac{\frac{1}{2\beta} \frac{1}{\Psi + \lambda I_P} + \frac{\sigma^2}{N} \frac{\Psi}{(\Psi + \lambda I_P)^2}}{\frac{1}{2\beta} \frac{1}{\Psi + \lambda I_P}} \right)$$
(25)

$$= \frac{P}{2} \int_{\psi>0} dF^{\Psi}(\psi) \ln\left(1 + \frac{2\beta\sigma^2}{N} \frac{\psi}{\psi+\lambda}\right)$$
(26)

where we use the covariance matrices $\Sigma_{T|W}$ and $\Sigma_{T|Y}$ from Eqs (17) & (14).

C Marchenko-Pastur law

Consider $X = \Sigma^{1/2} Z$ where $Z \in \mathbb{R}^{P \times N}$ is a matrix with iid entries drawn from a distribution with zero mean and unit variance, and $\Sigma \in \mathbb{R}^{P \times P}$ is a covariance matrix. In addition we take the asymptotic limit $N \to \infty$, $N \to \infty$ and $P/N \to \alpha \in (0, \infty)$. If the population spectral distribution F^{Σ} converges to a limiting distribution, the spectral distribution of the sample covariance $\Psi = XX^{T}/N$ becomes deterministic [2]. The density, $f^{\Psi}(\psi) = dF^{\Psi}(\psi)/d\psi$, is related to its Stieltjes transform m(z) via

$$f^{\Psi}(\psi) = \frac{1}{\pi} \operatorname{Im} m(\psi + i \, 0^+), \quad \psi \in \mathbb{R}.$$
(27)

We can obtain f^{Ψ} by solving the Silverstein equation for the companion Stieltjes transform v(z) [3],

$$-\frac{1}{v(z)} = z - \alpha \int_{\mathbb{R}^+} dF^{\Sigma}(s) \frac{s}{1 + sv(z)}, \quad z \in \mathbb{C}^+,$$
(28)

and using the relation

$$n(z) = \alpha^{-1}(v(z) + z^{-1}) - z^{-1}.$$
(29)

Here \mathbb{C}^+ denotes the upper half of the complex plane.

D Supplementary figure

Figure 1: Gibbs ridge regression is least information efficient around N/P = 1. **a** Residual information I(T; Y | W) of the IB optimal algorithm over a range of sample densities N/P (horizontal axis) and given extracted relevant bits I(T; W) (vertical axis). The extracted relevant bits are bounded by the available relevant bits in the data (black curve), i.e., the data processing inequality implies $I(T; W) \leq I(Y; W)$. **b** Same as (a) but for Gibbs regression with $\lambda = 10^{-6}$. Holding other things equal, Gibbs regression estimators encode more residual bits than optimal representations. **c** Information efficiency, the ratio between residual bits in optimal representations (a) and Gibbs estimator (b), is minimum around N/P = 1. Here we set $\omega^2/\sigma^2 = 1$ and let $P, N \to \infty$ at the same rate such that the ratio N/P remains fixed and finite. The eigenvalues of the sample covariance follow the standard Marchenko-Pastur law (see Sec 4).

References

- G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, Information bottleneck for Gaussian variables, Journal of Machine Learning Research 6, 165 (2005).
- [2] V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR–Sbornik 1, 457 (1967).
- [3] J. Silverstein and S. Choi, Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices, Journal of Multivariate Analysis 54, 295 (1995).