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A Information content of maximally efficient algorithms

Consider an IB problem where we are interested in an information efficient representation of Y that is
predictive of W (Fig 1a). When Y and W are Gaussian correlated, the central object in constructing an
IB solution is the normalized regression matrix ZY‘WZ{,l; in particular, its eigenvalues v; [Zy|WZ;1]

completely characterize the information content of the IB optimal representation 7' via (see Ref [1]
for a derivation)
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where N is the dimension of Y and y parametrizes the IB trade-off [Eq (1)].
Our work focuses on the following generative model for W and Y (see Sec 1.1)

W~N(@O,21Ip) and Y |W~NX'W,o2Iy). 3)
Marginalizing out W yields

Y ~ N(0,0*Iy + 5X"X). “4)
As a result, the normalized regression matrix reads
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Substituting Eq (5) into Eqs (1-2) gives
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where ¢;[X"X/N] denote the eigenvalues of X' X/N. Since the eigenvalues of X' X/N and the

sample covariance ¥ = XX /N are identical except for the zero modes which do not contribute to
information, we can recast the above equations as
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where i; are the eigenvalues of ¥ and the summation limits change to P, the number of eigenvalues
of W. Introducing the cumulative spectral distribution ¥ and replacing the summations with integrals
results in
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We see that the contributions to the integrals come from the logarithms but only when they are
positive. This condition can be recast into integration limits (note that y > 0 and 1* > 0)
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Finally we define the lower cutoff . = 1*/(7y — 1) and use the above limits to rewrite the expressions
for relevant and residual informations,
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These equations are identical to Eqs (8-9) in the main text.
B Information content of Gibbs-posterior regression

To compute the information content of Gibbs regression [Eq (14)], we first recall that the mutual
information between two Gaussian correlated variables, A and B, is given by

1
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where X4 is the covariance of A, and X 45 of A | B.

We now write down the relevant information, using the covariances Zrw and Zr from Eqs (17-18),
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where 1* = Po?/Nw?. In the above, we use the identity Indet H = trln H which holds for any
positive-definite Hermitian matrix H, let ; denote the eigenvalues of the sample covariance ¥ and
introduce F¥, the cumulative distribution of eigenvalues. We also assume that 1 and S are finite



and positive. Note that the integral is limited to positive real numbers because the eigenvalues of a
covariance matrix is non-negative and the integrand vanishes for y = 0.

Following the same logical steps as above and noting that the Markov constraint W <> Y < T implies
Zriy,w = Zr|y, we write down the residual information,
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where we use the covariance matrices X7 |w and X7y from Egs (17) & (14).

C Marchenko-Pastur law

Consider X = 2/2Z where Z € RP*N is a matrix with iid entries drawn from a distribution with zero
mean and unit variance, and X € RP*P is a covariance matrix. In addition we take the asymptotic
limit N — co, N — co and P/N — « € (0, o). If the population spectral distribution F* converges
to a limiting distribution, the spectral distribution of the sample covariance ¥ = X X' /N becomes
deterministic [2]. The density, f¥ (y) = dF¥ (¢)/dy, is related to its Stieltjes transform m(z) via
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We can obtain f¥ by solving the Silverstein equation for the companion Stieltjes transform v(z) [3],

1 s s
-———=z-a dF*(s)———, zeCH, 28
v(z) ‘/R+ () 1+sv(z) (28)
and using the relation

m) =a ')+ H -zl (29)

Here C* denotes the upper half of the complex plane.
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Figure 1: Gibbs ridge regression is least information efficient around N /P =1. a Residual information
I(T;Y | W) of the IB optimal algorithm over a range of sample densities N/P (horizontal axis) and
given extracted relevant bits /(7; W) (vertical axis). The extracted relevant bits are bounded by
the available relevant bits in the data (black curve), i.e., the data processing inequality implies
I(T; W) <I(Y;W). b Same as (a) but for Gibbs regression with 1=107%. Holding other things equal,
Gibbs regression estimators encode more residual bits than optimal representations. ¢ Information
efficiency, the ratio between residual bits in optimal representations (a) and Gibbs estimator (b), is
minimum around N/P = 1. Here we set w?/c->=1 and let P, N — co at the same rate such that the
ratio N/P remains fixed and finite. The eigenvalues of the sample covariance follow the standard
Marchenko-Pastur law (see Sec 4).
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