
Published as a conference paper at ICLR 2025

PIORF: PHYSICS-INFORMED OLLIVIER–RICCI FLOW
FOR LONG-RANGE INTERACTIONS IN MESH GRAPH
NEURAL NETWORKS

Youn-Yeol Yu1∗�, Jeongwhan Choi1∗�, Jaehyeon Park2 � , Kookjin Lee3 � , Noseong Park2† �
1Yonsei University 2KAIST 3Arizona State University

ABSTRACT

Recently, data-driven simulators based on graph neural networks have gained at-
tention in modeling physical systems on unstructured meshes. However, they
struggle with long-range dependencies in fluid flows, particularly in refined mesh
regions. This challenge, known as the ‘over-squashing’ problem, hinders infor-
mation propagation. While existing graph rewiring methods address this issue to
some extent, they only consider graph topology, overlooking the underlying phys-
ical phenomena. We propose Physics-Informed Ollivier–Ricci Flow (PIORF), a
novel rewiring method that combines physical correlations with graph topology.
PIORF uses Ollivier–Ricci curvature (ORC) to identify bottleneck regions and
connects these areas with nodes in high-velocity gradient nodes, enabling long-
range interactions and mitigating over-squashing. Our approach is computation-
ally efficient in rewiring edges and can scale to larger simulations. Experimental
results on 3 fluid dynamics benchmark datasets show that PIORF consistently out-
performs baseline models and existing rewiring methods, achieving up to 26.2%
improvement.

(a) ORC distribution

(b) Velocity contour

Figure 1: Visualization of PIORF rewiring in
CYLINDERFLOW-TINY. (a) Blue areas indicate po-
tential bottlenecks. Red circles (A) denote critical
bottleneck nodes. (b) The black circle (A) denotes
the highest velocity node. PIORF connects bottle-
neck nodes (A) with high-velocity nodes (A).

CylinderFlow
 (Velocity)

CylinderFlow
 (Pressure)

AirFoil
(Velocity)

AirFoil
(Pressure)

AirFoil
(Density)

EAGLE
(Velocity)

EAGLE
(Pressure)

-20%-10%0%10%20%

14.8%

21.3%

24.5%

26.2%

23.5%

14.5%
13.3%

MGN
+ DIGL
+ SDRF
+ FoSR
+ BORF
+ PIORF

Figure 2: The radar plot shows the per-
centage improvement over MGN for each
method on 3 datasets. The radial dis-
tance indicates the magnitude of improve-
ment. PIORF consistently outperforms
other methods with substantial gains partic-
ularly in AIRFOIL (24.5% for Velocity) and
CYLINDERFLOW (21.3% for Pressure).

1 INTRODUCTION

Solving the Navier–Stokes equations that govern fluid dynamics remains an open problem. In the
absence of an analytical solution, most studies use numerical methods, representatively, finite ele-

∗Equal contribution.
†Corresponding author.

1

mailto:yyyou@yonsei.ac.kr
mailto:jeongwhan.choi@yonsei.ac.kr
mailto:jaehyeon.park@kaist.ac.kr
mailto:kookjin.lee@asu.edu
mailto:noseong@kaist.ac.kr

Published as a conference paper at ICLR 2025

ment methods (FEMs) (Madenci & Guven, 2015; Stolarski et al., 2018; Abaqus, 2011; Dhatt et al.,
2012) to discretize differential equations spatially and temporally to account for complex physics. To
optimize computational resources while maintaining accuracy in simulations involving unstructured
surfaces, mesh refinement techniques are commonly used. These methods allocate higher resolu-
tion to regions of interest that require more detailed analysis, such as areas with steep gradients or
complex geometries. While this approach balances computational cost with simulation accuracy, it
results in a complex and irregular mesh structure (Löhner, 1995; Liu et al., 2022).

The high computational cost of traditional numerical solutions has sparked interest in data-driven
simulators based on graph neural networks (GNNs). Graph machine learning approaches, par-
ticularly MeshGraphNets (MGNs) (Pfaff et al., 2020), have shown promising results in modeling
physical systems on unstructured meshes. So far, studies using MGNs have shown accurate predic-
tions for various physical systems (Sanchez-Gonzalez et al., 2020; Fortunato et al., 2022; Yu et al.,
2024). However, these methods face the challenge of capturing the long-range dependence of fluid
flows, which is essential for accurately simulating complex phenomena such as turbulence (Benzi &
Toschi, 2023).

Mesh refinement and over-squashing problem. The core problem in using GNNs for fluid dy-
namics simulations lies in balancing mesh refinement and information propagation. To achieve
accurate simulations, it is essential to use finer meshes, especially in regions with significant ve-
locity gradients, such as in boundary conditions (e.g. walls, holes, inlets, and outlets) (Katz &
Sankaran, 2011; Baker, 2005). However, this refinement introduces two critical issues: i) as infor-
mation propagates through the graph, it is repeatedly compressed, leading to an ‘over-squashing’
problem (Alon & Yahav, 2021; Topping et al., 2021). The over-squashing occurs in areas of local
mesh refinement (Imai & Aoki, 2006) and near boundary conditions where the mesh is non-uniform,
resulting in some nodes having few neighbors. ii) As the mesh becomes finer, MGNs need to per-
form more message-passing steps to propagate information over the same physical distance. This
leads to ‘under-reaching’ problems (Fortunato et al., 2022), where the model struggles to capture
interactions beyond a certain range. These issues are particularly pronounced in fluid dynamics
simulations. As the mesh becomes finer, the challenges increase, creating a trade-off between the
demand for high-resolution simulations and the capacity of GNNs to efficiently process the graphs.

Limitations of existing solutions. While several graph rewiring methods have been proposed to
address over-squashing (Topping et al., 2021; Karhadkar et al., 2022; Nguyen et al., 2023; Black
et al., 2023; Arnaiz-Rodrı́guez et al., 2022), they typically consider only the graph topology. This
approach is insufficient for fluid dynamics simulations, where the underlying physical phenomena
play a crucial role in determining important long-range interactions.

Main idea. To address these challenges, we propose Physics-Informed Ollivier–Ricci Flow (PI-
ORF)1, a novel method that incorporates physical quantities such as flow velocity into graph
rewiring. PIORF uses graph topology and physical phenomena to reduce over-squashing and en-
hance information flow. We use the Ollivier–Ricci curvature (ORC) (Ollivier, 2009) to identify
bottleneck regions in the graph structure. Fig. 1 depicts the key idea behind our PIORF using a
CYLINDERFLOW-TINY simulation. The ORC distribution (Fig. 1(a)) reveals potential bottleneck
areas (blue regions), with red circles (A) marking nodes of minimum curvature. The velocity mag-
nitude contour (Fig. 1(b)) shows areas of rapid fluid velocity changes, with the black circle (A)
indicating the highest velocity node. Our approach connects these bottleneck nodes with nodes in
high-velocity gradient regions, enabling long-range interactions and mitigating over-squashing.

Contributions. Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to introduce a rewiring method that considers both
graph topology and physical phenomena for fluid dynamics simulations.

• Our PIORF method shows excellent computational efficiency by adding multiple edges with a
single calculation compared to existing rewiring methods.

• We extend PIORF to handle temporal mesh graphs and apply it to dynamic simulation environ-
ments such as the EAGLE dataset, demonstrating the scalability of PIORF to larger mesh graphs.
1Our code is available here: https://github.com/yuyudeep/piorf

2

https://github.com/yuyudeep/piorf

Published as a conference paper at ICLR 2025

• As shown in Fig. 2, PIORF consistently outperforms MGN model and other rewiring methods
across 3 benchmark datasets, achieving up to 26.2% improvement.

2 RELATED WORK

2.1 MESH-BASED SIMULATION MODELS

Using GNNs to predict the results of complex physical systems is a popular area of scientific
machine learning (SciML) (Li et al., 2020; Michałowska et al., 2023; Belbute-Peres et al., 2020;
Mrowca et al., 2018; Li et al., 2019; 2018; Pfaff et al., 2020). Among them, MGN performs local
message passing by re-expressing it as a graph from a mesh. The strength of MGN lies in its ability
to use mesh-based representations commonly used in many commercial simulation tools to numeri-
cally solve partial differential equations (PDEs). Instead of solving the PDEs directly, MGN learns
the underlying dynamics from data and can be applied to a variety of systems while incorporat-
ing boundary conditions. However, in order to obtain a more accurate solution approximate, MGN
often requires finer meshes. A larger number of nodes causes the GNN’s under-reaching problem
and requires more layers for effective long-range interactions, which reduces learning efficiency. To
address this, recent studies have investigated methods to enable long-range interaction by forming a
hierarchical structure (Fortunato et al., 2022; Cao et al., 2023) or using a Transformer (Janny et al.,
2023; Yu et al., 2024). Fortunato et al. (2022) introduce a dual-layer structure designed to propa-
gate messages at two different resolutions. Janny et al. (2023) proposes a clustering-based pooling
method and performs global self-attention. Cao et al. (2023) reviews the shortcomings of current
pooling methods and proposes Bi-Stride Multi-Scale (BSMS), a hierarchical GNN using bi-stride
pooling. Yu et al. (2024) use hierarchical mesh graphs and has an ability to capture long-range
interactions between spatially distant locations within an object.

2.2 OVER-SQUASHING AND GRAPH REWIRING METHODS

The issue of over-squashing was initially identified by Alon & Yahav (2021) and has since emerged
as a significant challenge in GNNs when dealing with long-range dependencies. This phenomenon
occurs when the information aggregated from a large number of neighbors is compressed into
a fixed-sized node feature vector, resulting in a considerable loss of information (Alon & Ya-
hav, 2021). Several approaches have been studied to address the over-squashing problem in
GNNs (Finkelshtein et al., 2023; Shi et al., 2023; Errica et al., 2023; Choi et al., 2024; Fesser &
Weber, 2024; Choi et al., 2025). While alternative message-passing strategies, such as expanded
width-aware message passing (Choi et al., 2024), have gained attention, graph rewiring – adding
or removing edges – has been the most actively proposed (Gasteiger et al., 2019; Topping et al.,
2021; Nguyen et al., 2023; Arnaiz-Rodrı́guez et al., 2022; Karhadkar et al., 2022; Black et al., 2023;
Banerjee et al., 2022; Attali et al., 2024). Gasteiger et al. (2019) propose DIGL rewiring method
that computes kernel evaluation and sparsification of the adjacency matrix. DIGL smooths the ad-
jacency of the graph, which makes it tend to connect nodes at short distances (Coifman & Lafon,
2006). However, this makes it not suitable for tasks that require longer diffusion distances. Top-
ping et al. (2021) propose a curvature-based graph rewiring strategy. This method identifies edges
with minimal negative curvature and adds new edges around them. First-order spectral rewiring
(FoSR) proposed by Karhadkar et al. (2022) calculates the change in spectral gap due to edge addi-
tion and selects the edge that maximizes the gap. Nguyen et al. (2023) propose batch Ollivier–Ricci
flow (BORF) using ORC to simultaneously solve the over-smoothing and over-squashing problems.
BORF works in batches and calculates the curvature with a minimum and maximum in each batch.
Then, connections are added to the set with the minimum edge value to uniformly weaken the graph
bottleneck. BORF does not recalculate the graph curvature within each batch, but rather reuses the
already computed optimal transfer plan between sets to determine which edges should be added.
Recently, Attali et al. (2024) alleviate over-squashing by using Delaunay triangulation, but this is
not appropriate because mesh-based simulations are already constructed by the triangulation.

Despite interest in over-squashing in GNNs, over-squashing in mesh-based GNNs such as MGN
remains unexplored (See Table 5). Since mesh structures have different characteristics from graph
structures used in existing research, and existing rewiring methods define bottlenecks for graph
topologies from a geometric perspective, it is necessary to verify that existing rewiring methods are
suitable for mesh graphs with a certain number of distributed edges.

3

Published as a conference paper at ICLR 2025

3 PRELIMINARIES

3.1 MESHGRAPHNETS (MGN)

MGNs (Pfaff et al., 2020) are a class of GNNs designed for mesh-based simulation, using an
Encoder-Processor-Decoder framework. The encoder encodes as multigraph, the nodes of the mesh
are converted to graph nodes, and the mesh edges become bidirectional mesh-edges. The proces-
sor updates all node and edge embeddings by performing multiple message passing along the mesh
edges through multiple GraphNet blocks (Sanchez-Gonzalez et al., 2020). Finally, the decoder pre-
dicts the subsequent state by using the updated latent node representations.

Encoder. The mesh Mt at time t is transformed into a graph G = (V, E), where the mesh nodes
become graph nodes vi ∈ V , and the mesh edges become bidirectional edges (i, j) ∈ E . For each
edge, we define the mesh edge feature mij , which encodes connectivity information. The edge
features are derived from the relative displacement vector xij = xi − xj and its norm |xij |. Node
features include the velocity wi and the node type ni, which indicates the boundary conditions. The
input and output characteristics for each dataset are detailed in Appendix C.2.

Processor. The processor consists of several GraphNet blocks. Each block sequentially updates
node and edge embeddings through message passing operations. vl

i and elij denote the node and
edge embeddings at layer l, respectively. The update equations are:

el+1
ij = fE(e

l
ij ,v

l
i,v

l
j), vl+1

i = fV

(
vl
i,
∑
j∈Ni

el+1
ij

)
, (1)

where fE and fV are learnable functions parameterized as multi-layer perceptrons (MLPs), and Ni

denotes the set of neighbors of node i.

Decoder and updater. To predict the next time state from the current time, an MLP decoder is
used to predict one or more output features oi, such as the velocity gradient ˆ̇wi, density gradient ˆ̇ρi
and the next pressure p̂i. The velocity gradient is used to calculate the next velocity ŵt+1

i through
an updater, which performs a first-order integration (ŵt+1

i = ˆ̇wt
i +wt

i).

Training loss. Following the MGN approach, the training loss uses the mean squared error (MSE):

L =
1

|V|

|V|∑
i=1

(wt+1
i − ŵt+1

i)2 +
1

|V|

|V|∑
i=1

(pt+1
i − p̂t+1

i)2, (2)

where |V| is the number of nodes.

3.2 OLLIVIER–RICCI CURVATURE ON GRAPHS

Ricci curvature, a fundamental concept in differential geometry, describes the average dispersion of
geodesics in the local region of a Riemannian manifold. In the context of graphs, ORC (Ollivier,
2009) extends these concepts to graphs and considers random walks between nearby points using
Wasserstein distances between Markov chains.

Given a graph G = (V, E) and a pair of nodes i, j ∈ V , ORC κ(i, j) of edge (i, j) ∈ E is defined as:

κ(i, j) = 1− W1(mi,mj)

d(i, j)
, (3)

where d(i, j) is the shortest-path distance between nodes i and j, mi is probability distribution of
1-step random walk from node i, and W1 is the Wasserstein distance of order 1. For a node p ∈ V ,
mi(p) represents the probability that a random walker starting at i will reach p in one step. The
Wasserstein distance W1(mi,mj) between probability distributions mi and mj is defined as:

W1(mi,mj) = inf
π∈Π(mi,mj)

 ∑
(p,q)∈V2

π(p, q)d(p, q)

 , (4)

4

Published as a conference paper at ICLR 2025

where Π(mi,mj) is the set of joint probability distributions with marginals mi and mj .

ORC quantifies the variance of a geodesic and has positive, negative, and zero values. When it is
0 (κ(i, j) = 0), the geodesics tend to remain parallel, when it is a negative value (κ(i, j) < 0),
they diverge, and when it is a positive value (κ(i, j) > 0), they converge. ORC on edges with
high negative values is known to cause over-squashing (Topping et al., 2021). Equation (4) requires
defining the probability distribution for function neighbor nodes. Since the radius of the neighbor
nodes in the graph is 1, a given one-step random walk m from node i to node p is defined as:

mi(p) =

{
1

deg(i) if p ∈ Ni,

0 otherwise,
(5)

where deg(i) is the degree of node i, which means the number of element in Ni.

4 PIORF: PHYSICS-INFORMED OLLIVIER–RICCI FLOW

In this section, we introduce PIORF, a novel rewiring method to improve long-range dependencies.

Design Goals. Our proposed method is designed with the following 3 goals:

• (Physical Context) The method should incorporate physical quantities (e.g., velocity) with topol-
ogy (e.g., ORC) to improve long-range interactions.

• (Efficiency) The computational cost of adding new edges should be lower than that of existing
rewiring methods.

• (Accuracy) The prediction error should be lower than that of other rewiring methods.

Rewiring with PIORF. To achieve these goals, PIORF selects nodes based on their topological
properties and physical quantities. We extend the ORC to node-level curvature, denoted as γi for a
node i. This node curvature γi is computed as:

γi =
1

|Ni|
∑
j∈Ni

κ(i, j). (6)

The rewiring proceeds as Algorithm 1, of which the key steps are described as follows:

i) PIORF selects ⌊δ|V|⌋ nodes with the lowest γi from V in order to form a set S, so that |S| =
⌊δ|V|⌋ where δ ∈ (0, 1) is the pooling ratio. δ is our sole hyperparameter.

ii) For each s ∈ S, PIORF computes the Euclidean distance d(ws, wi) between velocities ws and
wi for all nodes i ∈ V \ s.

iii) For each s ∈ S, PIORF identifies nodes r = argmaxi∈V\s d(ws, wi) with the largest velocity
differences and defines their set as Rs.

iv) PIORF adds bidirectional edges (s, r) and (r, s) to the graph G for all s ∈ S and r ∈ Rs.

For the sake of convenience in explanation, the physical quantity used in PIORF is described based
on the use of velocity from the node features. By integrating both physical and topological proper-
ties, PIORF enhances long-range interactions and mitigates over-squashing. The detailed description
of the notations used in the formulas written so far is summarized in Appendix E.

Algorithm 1 Physics-Informed Ollivier–Ricci Flow (PIORF)
1: Input: A graph G = (V, E), pooling ratio δ ∈ (0, 1), velocity wi of node i
2: Output: Rewired graph G′ = (V, E ′)
3: Calculate the ORC, γi, for all nodes i in V using Equation (6)
4: Selects ⌊δ|V|⌋ nodes with the lowest γi in order to form a set S, where |S| = ⌊δ|V|⌋.
5: For each node s ∈ S, calculate the Euclidean distance d(ws, wi) between velocities of s and all

other nodes i ∈ V \ s.
6: Find the node r = argmaxi∈V\s d(ws, wi) with the largest velocity differences.
7: Add bidirectional edges (s, r) and (r, s) to E ′.
8: return G′ = (V, E ′)

5

Published as a conference paper at ICLR 2025

Physical interpretation. In fluid dynamics, the distinction between laminar (Schubauer & Skram-
stad, 1947) and turbulent (Mathieu & Scott, 2000) flows, as quantified by velocity and the Reynolds
numbers (Lissaman, 1983), is important for understanding system behavior. The relationship be-
tween velocity and pressure is described through the rate of change and is explained by the Navier-
Stokes equations (Temam, 2001). The velocity refers to the speed at which a fluid moves at a specific
point in space. The pressure is the force exerted by a fluid per unit area on the surfaces. PIORF in-
tegrates this physical context by adding edges between nodes with significant velocity differences.
This allows the model to help with long-range interactions to better simulate real-world phenomena
such as fluid turbulence. Physically, connecting nodes with large velocity differences indicates re-
gions of instability. Unlike existing rewiring methods, PIORF ensures that the rewiring process takes
on the actual physical context of the system, leading to physically meaningful signal propagation.
With this physical insight, PIORF can improve long-range interactions and prediction performance
in physics-based simulations.

Computational efficiency. Unlike existing rewiring methods, which rely on greedy algorithms to
iteratively add edges based on their objective functions (Karhadkar et al., 2022; Black et al., 2023),
PIORF introduces a more efficient approach. PIORF identifies nodes with significant differences in
physical quantities and adds new edges in a single pass. This avoids the high computational cost of
iterative edge addition and, thus, improves scalability. We show that PIORF is more efficient than
other rewiring methods in rewiring new edges in Section 6.3.

5 DISCUSSION

In this section, we analyze mesh graphs and distinguish our method from graph pooling techniques.

(a) (b)

5
3
4

4
6
4
6
4

5
7

4
4 6

6 6

67
55

7
6

6 6

65
765

6
6

5WALL

(c)

Figure 3: Structural analyses of mesh graphs: (a) Correlation between ORC and node degree in
training dataset of CYLINDERFLOW, revealing potential information bottlenecks. (b) Node degree
distribution across datasets, showing the prevalence of degree-6 nodes in uniform regions. (c) Non-
uniform mesh refinement near boundary conditions.

Analysis of mesh graphs. We use ORC to analyze the topology of mesh graphs of fluid dynamics
benchmark datasets. This analysis reveals several key insights:

• Fig. 3(a) shows a strong negative correlation between ORC and node degree. This relationship
identifies potential information bottlenecks in the mesh graph, particularly in high-degree nodes.

• Fig. 3(b) indicates a prevalence of degree-6 nodes in uniform regions, typical of Delaunay trian-
gulation (Weatherill, 1992). However, boundary condition nodes (e.g., holes, walls, inlets, and
outlets) show lower degrees due to their sparse distribution, as shown in Fig. 3(c).

• In computational fluid dynamics (CFD) (Anderson & Wendt, 1995), local mesh refinement is
often applied to enhance accuracy in specific areas. This process leads to a gradual transition from
fine meshes near boundaries to coarser meshes, resulting in non-uniform structures (Fig. 3(c)).

These findings emphasize the relationship between the mesh configuration, boundary conditions,
and the risk of information bottlenecks in GNNs used for fluid dynamics simulations. Fig. 8 in
Appendix B shows the ORC distribution obtained through this information for each dataset.

Pooling and rewiring methods in mesh graphs. Due to mesh graphs with more than thousands of
nodes, node pooling techniques (Fortunato et al., 2022; Cao et al., 2023; Yu et al., 2024) are widely

6

Published as a conference paper at ICLR 2025

used to reduce computational complexity and enhance the capture of long-range interactions. We
extend the application of our PIORF beyond MGN to hierarchical models such as BSMS (Cao et al.,
2023) and HMT (Yu et al., 2024). While these models already incorporate pooling to effectively
reduce the number of nodes, we hypothesize that applying PIORF to the pooled structures could
further optimize edge connections. This integration of pooling and rewiring aims to refine capacity
of the model to represent complex physical relationships across different scales. In Section 6, we
explore whether this combination can yield additional improvements in fluid dynamics benchmarks.

6 EXPERIMENTS

6.1 EXPERIMENTS ON FLUID DYNAMICS BENCHMARK DATASETS

Datasets. We evaluate our method on two publicly available datasets: CYLINDERFLOW and AIR-
FOIL. Both datasets follow the Navies–Stokes equations (Temam, 2001), but differ in their flow
characteristics. CYLINDERFLOW shows laminar flow behavior. In contrast, AIRFOIL represents a
turbulent flow model with high velocity, where fluid particles move irregularly in time and space.
(See Appendix B for a detailed description of datasets.)

Setting. We compare our PIORF against rewiring methods: DIGL (Gasteiger et al., 2019),
FoSR (Karhadkar et al., 2022), SDRF (Topping et al., 2021), and BORF (Nguyen et al., 2023)
These are apllied to 4 different models architectures: MGN (Pfaff et al., 2020), BSMS (Cao et al.,
2023), Graph Transformer (GT) (Dwivedi & Bresson, 2020) and HMT (Yu et al., 2024). BSMS is a
hierarchical GNN and HMT is a hierarchical Transformer. For MGN, we use 15 blocks. For optimal
performance, BSMS is set to level 7 for CYLINDERFLOW and level 9 for AIRFOIL. Detailed hyper-
parameters for all baselines are provided in Appendix C. Each experiment is repeated 5 times with
different random seeds. All experiments are performed on NVIDIA 3090 and Intel Core-i9 CPUs.

Results. Table 1 shows a comprehensive performance comparison of different rewiring methods
across the 4 model architectures. PIORF consistently outperforms other rewiring baselines when
applied to MGN, BSMS, GT, and HMT models. For CYLINDERFLOW, PIORF achieves the lowest
RMSE in both velocity and pressure when applied to MGN. This improvement is especially sig-
nificant compared to MGN and other rewiring methods. For AIRFOIL, PIORF achieves the best
performance in all cases. Fig. 4 shows the superiority of PIORF by showing velocity magnitude
contours at the final timestep. Our PIORF results closely align with the ground truth, especially in
regions marked by black boxes.

Sensitivity to pooling ratio. We analyze sensitivity to pooling ratio δ, which is our sole hyper-
parameter and determines the number of new edge connections. Fig. 5 shows how rollout RMSE
varies with δ for both datasets. Velocity RMSE of CYLINDERFLOW is optimal at 3%, while pres-
sure RMSE generally improves with higher ratios. For AIRFOIL, velocity RMSE is best at 7%, and
pressure RMSE at 7%. Across all cases, 1% pooling ratio often performs worse than MGN, while
9% increases standard deviations. The results show the need to tune δ specfically for each dataset.
Fig. 5 (a) shows the Velocity RMSE of CYLINDERFLOW, and it can be seen that the average and
standard deviation of RMSE increase at 9% where a large number of edges are connected.

6.2 SCALING TO LARGER FLUID DYNAMICS

Table 2: Comparison of fluid dynamics datasets
Dataset Size Dynamic Scene Dynamic Mesh

CYLINDERFLOW 15GB % %

AIRFOIL 56GB % %

EAGLE 270GB ! !

Datasets. To evaluate scalability and effi-
ciency of PIORF, we use EAGLE (Janny
et al., 2023), which simulates turbulent flows
created by drones in various scenes. As
shown in Table 2, EAGLE significantly sur-
passes CYLINDERFLOW and AIRFOIL in
scale and complexity. EAGLE has dynamic meshes (Malcevic & Ghattas, 2002; Jasak, 2009),
where the mesh positions and boundary conditions change at each time step. This dynamic nature
requires temporal graph rewiring, presenting a more challenging and realistic scenario compared to
the static meshes of CYLINDERFLOW and AIRFOIL.

7

Published as a conference paper at ICLR 2025

Table 1: RMSE (rollout-all, ×103) for our PIORF and other rewiring methods.

Method CYLINDERFLOW AIRFOIL

Velocity Pressure Velocity Pressure Density

MGN 48.8 ± 5.6 36.7 ± 2.4 10,261 ± 832 3,043,186 ± 282,514 29.4 ± 2.7
+ DIGL 62.0 ± 1.7 46.0 ± 0.4 11,534 ± 623 3,495,260 ± 252,832 33.6 ± 2.2
+ SDRF 43.0 ± 3.0 35.5 ± 1.0 10,714 ± 669 3,238,730 ± 183,094 31.1 ± 1.9
+ FoSR 43.7 ± 3.2 35.0 ± 1.2 11,068 ± 377 3,314,506 ± 164,026 31.9 ± 1.5
+ BORF 48.5 ± 7.8 36.9 ± 2.2 10,029 ± 410 2,884,555 ± 186,003 28.1 ± 1.8

+ PIORF 41.6 ± 3.9 28.9 ± 1.5 7,743 ± 584 2,245,858 ± 142,452 22.5 ± 1.4

BSMS 78.7 ± 2.8 50.7 ± 2.2 10,883 ± 460 2,640,398 ± 158,480 26.5 ± 2.1
+ DIGL 237.8 ± 7.3 163.6 ± 8.5 40,312 ± 3,936 8,218,660 ± 1,281,200 81.3 ± 11.5
+ SDRF 78.0 ± 4.1 50.7 ± 1.9 36,539 ± 3,980 7,426,023 ± 642,555 74.2 ± 8.1
+ FoSR 82.2 ± 3.8 52.3 ± 3.0 41,831 ± 2,011 8,490,283 ± 352,622 84.0 ± 2.4
+ BORF 84.9 ± 2.3 54.2 ± 1.6 10,750 ± 430 2,632,487 ± 126,177 25.8 ± 1.2

+ PIORF 76.9 ± 3.8 50.6 ± 2.4 10,482 ± 500 2,584,690 ± 163,680 25.4 ± 1.6

GT 54.3 ± 7.3 40.0 ± 2.0 10,002 ± 218 2,979,573 ± 99,293 29.0 ± 0.9
+ DIGL 68.4 ± 3.6 49.5 ± 1.0 11,004 ± 511 3,331,160 ± 192,098 32.7 ± 1.9
+ SDRF 52.1 ± 9.1 39.0 ± 1.3 10,354 ± 610 3,120,743 ± 179,587 30.1 ± 1.9
+ FoSR 50.7 ± 8.7 39.3 ± 1.6 11,211 ± 868 3,415,094 ± 312,517 33.6 ± 3.1
+ BORF 58.9 ± 9.7 40.6 ± 2.4 9,830 ± 416 2,883,648 ± 136,064 28.6 ± 1.3

+ PIORF 48.5 ± 4.5 31.3 ± 2.3 7,429 ± 778 2,124,920 ± 130,279 21.4 ± 1.2

HMT 71.0 ± 1.2 51.1 ± 1.5 5,303 ± 414 1,251,955 ± 79,764 12.8 ± 0.8
+ DIGL 76.3 ± 1.7 54.0 ± 0.7 5,176 ± 409 1,232,486 ± 79,250 12.5 ± 0.8
+ SDRF 71.0 ± 1.0 51.3 ± 0.6 32,695 ± 1,013 7,579,699 ± 247,004 74.4 ± 2.3
+ FoSR 72.1 ± 1.5 52.3 ± 1.1 35,474 ± 1,011 8,137,115 ± 231,038 79.4 ± 2.0
+ BORF 74.2 ± 3.1 53.6 ± 1.2 5,591 ± 416 1,306,555 ± 82,509 13.3 ± 0.8

+ PIORF 70.9 ± 1.6 50.9 ± 0.8 4,961 ± 378 1,182,495 ± 67,499 12.1 ± 0.7

g

(a) Ground Truth (b) MGN + PIORF (c) MGN + BORF (d) MGN

(e) Ground Truth (f) MGN + PIORF (g) MGN + BORF (h) MGN

Figure 4: Comparison of 2D cross-sectional velocity magnitude contours for CYLINDERFLOW (a)-
(d) and AIRFOIL (e)-(h) at the last time step with the largest cumulative error. It is most similar
to ground truth when PIORF is applied. The closer the color is to red, the faster the velocity. The
black boxes (A) highlight regions where PIORF shows particular accuracy in predicting complex
flow structures. PIORF consistently achieves the closest match to ground truth on both datasets.
More rollout images can be found in Appendix D.

Setting. We use MGN with 15 layers and maintain the same baseline rewiring methods, adjusting
only dataset-specific hyperparameters. We set the velocity noise standard deviation to 0.02 in all
methods. DIGL is set with alpha to 0.01 and eps at 0.4. For SDRF, we set a maximum of 10

8

Published as a conference paper at ICLR 2025

1 3 5 7 9
Pooling Ratio (%)

35

40

45

50

55

RM
SE

 (
Ve

lo
ci

ty
)

1e3

Mean MGN

(a) CYLINDERFLOW

1 3 5 7 9
Pooling Ratio (%)

25

30

35

40

RM
SE

 (
Pr

es
su

re
) 1e3

Mean MGN

(b) CYLINDERFLOW

1 3 5 7 9
Pooling Ratio (%)

2.0

2.5

3.0

3.5

RM
SE

 (
Pr

es
su

re
) 1e9

Mean MGN

(c) AIRFOIL

1 3 5 7 9
Pooling Ratio (%)

20

25

30

35

RM
SE

 (
D

en
si

ty
)

1e3
Mean MGN

(d) AIRFOIL

Figure 5: Sensitivity to pooling ratio δ. The dashed lines represent RMSE of MGN without rewiring.

iterations and no edge removal, and for FoSR, we use an initial power of 5 and a maximum of 20
iterations. To ensure statistical significance, we repeat each experiment 5 times with different seeds.

Table 3: Rollout-all RMSE (×103)

Model EAGLE

Velocity Pressure

MGN 2,280 ± 135 10,893 ± 632
+ DIGL 2,623 ± 114 12,688 ± 698
+ SDRF 2,186 ± 70 10,504 ± 297
+ FoSR 2,254 ± 63 10,755 ± 246
+ BORF Time-out Time-out

+ PIORF 1,950 ± 28 9,449 ± 167

Results. The timeout of BORF highlights the computational
challenges in applying rewiring to the large-scale dataset.
As shown in Table 3, our PIORF outperforms all baselines,
achieving a 14.5% improvement in velocity RMSE over MGN.
While other rewiring methods such as SDRF and FoSR show
some improvements, they are significantly smaller compared
to PIORF. Fig. 11 in Appendix D shows the result of the last
step with different rewiring methods applied.

6.3 COMPUTATIONAL EFFICIENCY

Given the large scale of mesh graphs, with thousands of nodes and tens of thousands of edges
(see Table 6 in Appendix B), we need to add a large number of edges to alleviate over-squashing.
However, existing rewiring methods require multiple iterations to add or delete edges, leading to
increased computational overhead. Fig. 6 shows the computation time required to add varying
numbers of edges when rewiring one trajectory in the CYLINDERFLOW, AIRFOIL, and EAGLE
datasets. PIORF maintains the lowest computation time in all datasets and edge counts. This is
due to the ability of PIORF to compute all the necessary rewiring in a single pass, avoiding an it-
erative process. In contrast, BORF shows a steep increase in computation time as the number of
added edges grows, particularly evident in EAGLE. Although SDRF and FoSR are more efficient
than BORF, they still show a trend of increasing computational time, emphasizing the scalability
advantage of PIORF in handling large-scale fluid dynamics simulations.

0 50 100 150 200
Number of added edges

100

101

102

103

104

Co
m

pu
ta

ti
on

 T
im

e
(s

) SDRF
FoSR
BORF
PIORF

(a) CYLINDERFLOW

0 50 100 150 200
Number of added edges

101

103

105

Co
m

pu
ta

ti
on

 T
im

e
(s

) SDRF
FoSR
BORF
PIORF

(b) AIRFOIL

0 20 40 60
Number of added edges

102

104

106

Co
m

pu
ta

ti
on

 T
im

e
(s

) SDRF
FoSR
BORF
PIORF

(c) EAGLE

Figure 6: Comparison of computation time as the number of edges added increases.

6.4 ABLATION STUDIES

We conduct ablation studies to evaluate components of PIORF and Table 4 summarizes our findings.

Choice of physical value for rewiring. We analyze the impact of using velocity or pressure to
identify nodes for edge rewiring in PIORF. For CYLINDERFLOW, an incompressible flow (Panton,

9

Published as a conference paper at ICLR 2025

Table 4: Rollout-all RMSE (×103) for PIORF and the ablations.

Ablation Model Actions CYLINDERFLOW AIRFOIL

Add Remove Velocity Pressure Velocity Pressure Density

MGN 48.8 ± 5.6 36.7 ± 2.4 10,261 ± 832 3,043,186 ± 282,514 29.4 ± 2.7

Velocity ! 41.6 ± 3.9 28.9 ± 1.5 7,743 ± 584 2,245,858 ± 142,452 22.5 ± 1.4

Pressure ! 80.9 ± 13.4 75.8 ± 15.3 7,768 ± 288 2,293,481 ± 108,098 23.1 ± 1.2

Random ! 43.4 ± 2.4 32.3 ± 1.2 10,317 ± 771 3,115,406 ± 230,796 30.2 ± 2.2

Only Removal ! 42.0 ± 2.3 36.8 ± 0.5 10,890 ± 438 3,289,964 ± 94,568 31.7 ± 0.8

Both ! ! 49.0 ± 7.5 31.1 ± 2.9 7,813 ± 551 2,334,583 ± 182,600 23.4 ± 1.9

Weighted Edges ! 53.2 ± 8.6 44.1 ± 4.5 11,214 ± 563 3,486,655 ± 203,277 32.9 ± 1.6

To Senders ! 53.4 ± 7.2 35.8 ± 1.0 10,358 ± 866 3,099,548 ± 320,553 29.7 ± 2.8

To Receivers ! 47.9 ± 4.9 35.0 ± 4.9 10,421 ± 704 3,132,703 ± 119,582 30.3 ± 1.2

2024), velocity-based rewiring significantly outperforms pressure-based rewiring. This aligns with
Bernoulli’s principle for incompressible flows, where velocity changes more indicate key flow dy-
namics. For AIRFOIL, a compressible (Saad, 1985) and turbulent flow (Mathieu & Scott, 2000),
pressure-based and velocity-based rewiring performs well and outperforms other rewiring methods.

Effect of physical-informed node selection. PIORF selects the nodes based on ORC-identified
bottlenecks and nodes with high physical changes. To assess the impact of using physical values in
this selection process, we compare our approach (“Velocity”) with a modified version (“Random”)
where nodes are chosen based on ORC bottlenecks but the second node is selected randomly, ignor-
ing physical values. Results show that physics-informed selection outperforms random selection.

Effect of edge addition/removal. We analyze the effects of edge addition (“Velocity”), removal
(“Only Removal”), and both (“Both”). Removal (“Only Removal”) removes the edge with the high-
est positive curvature. Interestingly, edge addition alone yields the best performance for all datasets,
suggesting that adding new edges is beneficial than removing existing ones.

Weighted edges. We explore the impact of weighted edges by the L2 distance of velocity when
calculating ORC in Equation (3) and Equation (4). The “Weighted Edges” results indicate that this
approach does not improve performance. It means that binary edge existence might be sufficient for
capturing relevant physical relationships.

Directionality in rewiring. We dissect the effect of directional rewiring by adding one-way edge
sets. ‘To Senders” is when aggregation is performed from receivers to senders, while “To Receivers”
is the opposite. The results show that bidirectional rewiring outperforms unidirectional approaches.

7 CONCLUSIONS

We introduce PIORF as a new rewiring method that simultaneously considers the topology and
physical correlation of the mesh graph and experimentally demonstrate best performance in the field
of physics mesh simulation. Moreover, we show for the first time that applying our rewiring method
to hierarchical GNNs and Transformer also improves model performance in mesh graph.

Limitations and future work. One limitation of PIORF is its dependence on the choice of phys-
ical values for rewiring. Future research could focus on developing adaptive mechanisms for se-
lecting the most relevant physical quantities automatically. Another important direction is to extend
PIORF to handle dynamic adaptive mesh refinement (Bangerth & Rannacher, 2003; Cerveny et al.,
2019), which could include integrating PIORF with error estimation techniques that enable more
targeted refinement in areas with large solution errors. Additionally, extending our PIORF to appli-
cations in multi-body dynamics (Choi et al., 2013), equivariant graphs (Satorras et al., 2021), and
particle-based simulations (Li et al., 2018) is an important area of future work.

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

Our proposed PIORF is a rewiring method designed for modeling physical systems on unstructured
meshes, and thus it poses no clear negative societal or ethical implications. However, potential
misuse or application of the algorithm in unintended areas could result in unintended consequences.

Additionally, this paper may have implications regarding the carbon footprint and accessibility of
learning algorithms. Recently, as the computational demands in machine learning research have
grown, they have led to an increasing carbon footprint. Our proposed method contributes to re-
ducing this carbon footprint by not only improving performance but also enhancing computational
efficiency in such contexts.

REPRODUCIBILITY

We provide the source code for our experimental environments and the proposed method. In the
future, we intend to make this source code available for the benefit of the community. PIORF source
code can be found in the following: https://github.com/yuyudeep/piorf

PIORF has a single hyperparameter, the pooling ratio δ. The best hyperparameter option for repro-
duction in each dataset is described in Section 5, along with sensitivity analysis. Additionally, the
experimental settings for the proposed method and baseline can be found in Section 6.1, Section 6.2,
and Appendix C.

ACKNOWLEDGEMENTS

This work was supported by the LG Display and an IITP grant funded by the Korean government
(MSIT) (No. RS-2020-II201361, Artificial Intelligence Graduate School Program (Yonsei Univer-
sity)). K. Lee acknowledges support from the U.S. National Science Foundation under grant IIS
2338909.

REFERENCES

G Abaqus. Abaqus 6.11. Dassault Systemes Simulia Corporation, Providence, RI, USA, 3, 2011.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical im-
plications. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=i80OPhOCVH2.

John David Anderson and John Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

Adrián Arnaiz-Rodrı́guez, Ahmed Begga, Francisco Escolano, and Nuria Oliver. Diffwire: Inductive
graph rewiring via the lovász bound. arXiv preprint arXiv:2206.07369, 2022.

Hugo Attali, Davide Buscaldi, and Nathalie Pernelle. Delaunay graph: Addressing over-squashing
and over-smoothing using delaunay triangulation. In International Conference on Machine Learn-
ing, 2024. URL https://openreview.net/forum?id=uyhjKoaIQa.

Timothy Baker. On the relationship between mesh refinement and solution accuracy. In 17th AIAA
Computational Fluid Dynamics Conference, pp. 4875, 2005.

Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Over-
squashing in gnns through the lens of information contraction and graph expansion. In 2022 58th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1–8.
IEEE, 2022.

Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential equations.
Springer Science & Business Media, 2003.

Marc Barthelemy. Betweenness centrality in large complex networks. The European physical jour-
nal B, 38(2):163–168, 2004.

11

https://github.com/yuyudeep/piorf
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=uyhjKoaIQa

Published as a conference paper at ICLR 2025

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde
solvers and graph neural networks for fluid flow prediction. In international conference on ma-
chine learning, pp. 2402–2411. PMLR, 2020.

Roberto Benzi and Federico Toschi. Lectures on turbulence. Physics Reports, 1021:1–106, 2023.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in
gnns through the lens of effective resistance. In International Conference on Machine Learning,
pp. 2528–2547. PMLR, 2023.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based phys-
ical simulation with bi-stride multi-scale graph neural network. In International Conference on
Machine Learning, pp. 3541–3558. PMLR, 2023.

Jakub Cerveny, Veselin Dobrev, and Tzanio Kolev. Nonconforming mesh refinement for high-order
finite elements. SIAM Journal on Scientific Computing, 41(4):C367–C392, 2019.

Jeongwhan Choi, Sumin Park, Hyowon Wi, Sung-Bae Cho, and Noseong Park. PANDA: Expanded
width-aware message passing beyond rewiring. In Forty-first International Conference on Ma-
chine Learning, 2024. URL https://openreview.net/forum?id=J1NIXxiDbu.

Jeongwhan Choi, Seungjun Park, Sumin Park, Sung-Bae Cho, and Noseong Park. Fractal-inspired
message passing neural networks with fractal nodes, 2025. URL https://openreview.
net/forum?id=zPoW8CajCN.

Juhwan Choi, Sungsoo Rhim, and Jin Hwan Choi. A general purpose contact algorithm using a
compliance contact force model for rigid and flexible bodies of complex geometry. International
Journal of Non-Linear Mechanics, 53:13–23, 2013.

Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006.

Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons,
2012.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020.

Federico Errica, Henrik Christiansen, Viktor Zaverkin, Takashi Maruyama, Mathias Niepert, and
Francesco Alesiani. Adaptive message passing: A general framework to mitigate oversmoothing,
oversquashing, and underreaching. arXiv preprint arXiv:2312.16560, 2023.

Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using augmenta-
tions of forman-ricci curvature. In Learning on Graphs Conference, pp. 19–1. PMLR, 2024.

Ben Finkelshtein, Xingyue Huang, Michael Bronstein, and İsmail İlkan Ceylan. Cooperative graph
neural networks. arXiv preprint arXiv:2310.01267, 2023.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Yohsuke Imai and Takayuki Aoki. A higher-order implicit ido scheme and its cfd application to
local mesh refinement method. Computational Mechanics, 38:211–221, 2006.

Steeven Janny, Aurélien Beneteau, Nicolas Thome, Madiha Nadri, Julie Digne, and Christian Wolf.
Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. arXiv preprint
arXiv:2302.10803, 2023.

Hrvoje Jasak. Dynamic mesh handling in openfoam. In 47th AIAA aerospace sciences meeting
including the new horizons forum and aerospace exposition, pp. 341, 2009.

12

https://openreview.net/forum?id=J1NIXxiDbu
https://openreview.net/forum?id=zPoW8CajCN
https://openreview.net/forum?id=zPoW8CajCN

Published as a conference paper at ICLR 2025

Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022.

Aaron Katz and Venkateswaran Sankaran. Mesh quality effects on the accuracy of cfd solutions on
unstructured meshes. Journal of Computational Physics, 230(20):7670–7686, 2011.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning par-
ticle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.
Propagation networks for model-based control under partial observation. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 1205–1211. IEEE, 2019.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

PBS Lissaman. Low-reynolds-number airfoils. Annual review of fluid mechanics, 15(1):223–239,
1983.

Lu Liu, Jie Wu, and Shunying Ji. Dem–sph coupling method for the interaction between irregularly
shaped granular materials and fluids. Powder Technology, 400:117249, 2022.

Rainald Löhner. Mesh adaptation in fluid mechanics. Engineering Fracture Mechanics, 50(5-6):
819–847, 1995.

Erdogan Madenci and Ibrahim Guven. The finite element method and applications in engineering
using ANSYS®. Springer, 2015.

Ivan Malcevic and Omar Ghattas. Dynamic-mesh finite element method for lagrangian computa-
tional fluid dynamics. Finite Elements in Analysis and Design, 38(10):965–982, 2002.

Jean Mathieu and Julian Scott. An introduction to turbulent flow. Cambridge University Press, 2000.

Katarzyna Michałowska, Somdatta Goswami, George Em Karniadakis, and Signe Riemer-Sørensen.
Neural operator learning for long-time integration in dynamical systems with recurrent neural
networks. arXiv preprint arXiv:2303.02243, 2023.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and
Daniel L Yamins. Flexible neural representation for physics prediction. Advances in neural
information processing systems, 31, 2018.

Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and Tan Minh
Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In In-
ternational Conference on Machine Learning, pp. 25956–25979. PMLR, 2023.

Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with ricci
flow. Scientific reports, 9(1):9984, 2019.

Yann Ollivier. Ricci curvature of markov chains on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

Ronald L Panton. Incompressible flow. John Wiley & Sons, 2024.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Michel A Saad. Compressible fluid flow. Englewood Cliffs, 1985.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

13

Published as a conference paper at ICLR 2025

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural net-
works. In International conference on machine learning, pp. 9323–9332. PMLR, 2021.

Galen B Schubauer and Harold K Skramstad. Laminar boundary-layer oscillations and stability of
laminar flow. Journal of the Aeronautical Sciences, 14(2):69–78, 1947.

Dai Shi, Andi Han, Lequan Lin, Yi Guo, and Junbin Gao. Exposition on over-squashing problem on
GNNs: Current methods, benchmarks and challenges. arXiv preprint arXiv:2311.07073, 2023.

RP Sreejith, Karthikeyan Mohanraj, Jürgen Jost, Emil Saucan, and Areejit Samal. Forman curva-
ture for complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2016(6):
063206, 2016.

Tadeusz Stolarski, Yuji Nakasone, and Shigeka Yoshimoto. Engineering analysis with ANSYS soft-
ware. Butterworth-Heinemann, 2018.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. arXiv preprint
arXiv:2111.14522, 2021.

Nigel P Weatherill. Delaunay triangulation in computational fluid dynamics. Computers & Mathe-
matics with Applications, 24(5-6):129–150, 1992.

Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSe-
ung Woo, ILHO KIM, SeokWoo Lee, Joon Young Yang, SOOYOUNG YOON, and Noseong
Park. Learning flexible body collision dynamics with hierarchical contact mesh transformer.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=90yw2uM6J5.

14

https://openreview.net/forum?id=90yw2uM6J5
https://openreview.net/forum?id=90yw2uM6J5

Published as a conference paper at ICLR 2025

Supplementary Materials for “PIORF”

Table of Contents
A Comparison of Rewiring Methods and Complexcity 15

B Datasets Details 16

C Baseline Details 17
C.1 Rewiring Methods . 17
C.2 Models . 17

D Other Variable Contour and Rollout Figures 19

E Notations 22

F Additional Ablation Studies 23

G Additional Discussion 23
G.1 Graph topology changes. 23
G.2 Effective Resistance on Graphs. 24
G.3 Relationship Between Accumulated Error and Velocity Gradient. 24
G.4 Discussion on ORC in PIORF . 25

A COMPARISON OF REWIRING METHODS AND COMPLEXCITY

We further compare existing graph rewiring methods with our proposed method. As shown in Ta-
ble 5, our method, PIORF, takes the physical context into account, which other rewiring methods do
not. This is a key characteristic of our approach, which aims to overcome the limitations of existing
methods for learning fluid dynamics simulations that are not designed for this purpose.

The complexity of PIORF is O(|E|d3max), where |E| is the number of edges and dmax is the maximal
degree. In particular, simulation datasets in fluid dynamics use thousands to tens of thousands of
nodes and edges to ensure solution accuracy, so the PIORF method is advantageous in applying
more edges to these datasets. One of the biggest differences is the computational cost. Existing
methods such as DIGL, SDRF, FoSR, and BORF incur significant computational cost in the process
of selecting which edges to rewiring to optimize their own defined objective function (See Fig. 6).
Our method, on the other hand, performs the rewiring without any objective function optimization,
which is beneficial in terms of computational cost. Another important difference is the number of
hyperparameters. Existing rewiring methods typically require two or more hyperparameters, while
our PIORF uses only one hyperparameter, the pooling ratio. This has the advantage of reducing the
hyperparameter search space.

Table 5: Comparison of different rewiring methods and our PIORF.
Methods Indicator Complexity Geometry Physics

SDRF Balanced Forman curvature O(|E|d2max) ! %

FoSR Spectral gap O(V2) ! %

BORF Ollivier–Ricci curvature O(|E|d3max) ! %

PIORF Ollivier–Ricci curvature with physical context O(|E|d3max) ! !

15

Published as a conference paper at ICLR 2025

B DATASETS DETAILS

CYLINDERFLOW-TINY dataset used in Fig. 1 is used to illustrate the concept of PIORF and is not
desinged for evaluation. We use three public datasets for evaluation, and Table 6 shows information
such as the number of cases, number of steps, number of nodes and number of edges for each dataset.
AIRFOIL and EAGLE datasets are turbulent flow models, and CYLINDERFLOW is a laminar flow
model. Fig. 7 shows the velocity magnitude contour image of each datasets. In all datasets, the
velocity is high in areas near boundary conditions such as walls. Fig. 8 shows the distribution of
ORC by each dataset. When creating a mesh, nodes with high degrees occur due to local fine mesh
and boundary conditions. Red circles are nodes where the degree is 7 or higher and bottlenecks
occur.

Table 6: Dataset description: Fluid dynamics behavior, number of trajectories for each data set, time
step, and average number of nodes, edges, and cells in the training data set. A cell refers to an
element and is a small unit that makes up a mesh. In the case of a triangular mesh, one cell consists
of three nodes.
Datasets Behavior Cases (Train) Cases (Test) Steps Nodes (avg) Edges (avg) Cells (avg)

CYLINDERFLOW Laminar 1,000 100 600 1,886 10,848 3,538
AIRFOIL Turbulent 1,000 100 600 5,233 30,898 10,216
EAGLE Turbulent 947 118 990 3,389 20,023 6,623

(a) CYLINDERFLOW (b) AIRFOIL (c) EAGLE

Figure 7: Velocity magnitude contour image for each dataset. In all cases, changes in velocity occur
in walls where fluid cannot flow.

CYLINDERFLOW-TINY. CYLINDERFLOW-TINY is the dataset used to illustrate the concept of
our PIORF for understanding the flow of fluid in narrow passages around a cylinder. To create
CYLINDERFLOW-TINY dataset, we consider performing simulation modelling in an environment
similar to that of CYLINDERFLOW. We use the Ansys Fluent® solver (Stolarski et al., 2018) to
generate the dataset. The number of nodes is approximately 300 and the fluid input is air.

CYLINDERFLOW. CYLINDERFLOW is important in many industrial applications, such as the
cooling of cylindrical pipes, by analyzing the flow of fluid around a cylinder. The flow can exhibit
laminar or turbulent flow behavior depending on factors such as flow rate, fluid density, and cylinder
size. CYLINDERFLOW dataset (Pfaff et al., 2020) consists of 1,000 analysis results, with each case
containing 600 time steps. The dataset contains a single cylinder, but includes a variety of Reynolds
numbers, sizes, and positions.

AIRFOIL. AIRFOIL is an application of aerodynamics and the most basic CFD modeling. AIR-
FOIL, also known as wings, is utilized in the design of airfoils and various other aerodynamic ap-
plications such as aircraft, helicopters, and spacecraft. AIRFOIL plays a central role in designing
an airplane’s wings to generate lift, control flight, and move through airflow. Moreover, it is very
important to design an aerodynamic design that is effective in a specific range of flow conditions.
AIRFOIL dataset (Pfaff et al., 2020) consists of 1,000 analysis results, with each case containing 600
time steps. The data set contains one AIRFOIL and various input conditions, such as velocity and
pressure, with the fluid density changing at every step.

16

Published as a conference paper at ICLR 2025

EAGLE. EAGLE is a large-scale dataset for learning non-steady fluid dynamics. This is a sim-
ulation of the airflow generated by a drone moving in a 2D environment with various boundary
shapes. It is much more difficult than other datasets such as CYLINDERFLOW or AIRFOIL as it
models the complex ground effect turbulence created by the drone’s airflow according to its control
laws. Different scene geometries produce completely different results, resulting in highly turbulent
and non-periodic eddies and high flow diversity. In the field of learned simulators, EAGLE is the
first to apply a dynamic mesh effect in which the shape and position of the mesh change at every
time step. It accurately simulates fluid behavior by changing the drone’s position over time.

(a) CYLINDERFLOW (b) AIRFOIL (c) EAGLE

Figure 8: ORC distribution image for each dataset. Red circles (A) are the nodes where the degree
is high and a bottleneck occurs.

Representative physical quantity. The velocity refers to the speed at which a fluid moves at a
specific point in space. The pressure is the force exerted by a fluid per unit area on the surfaces. The
density ρ is a measure of how much mass is contained within a given volume of the substance. It is
defined as mass per unit volume. The density of a fluid depends on temperature and pressure. These
three physical quantities are related by Bernoulli’s equation. When density is constant, increasing
velocity causes pressure to decrease.

C BASELINE DETAILS

We compare four competitive rewiring methodologies and four models. For models, MGN (Pfaff
et al., 2020), BSMS, GT, and HMT are used, along with rewiring methods such as DIGL (Gasteiger
et al., 2019), SDRF (Topping et al., 2021), FoSR (Karhadkar et al., 2022), and BORF (Nguyen et al.,
2023). For all datasets, training steps are set to 10,000,000. Velocity noise standard deviation is 0.02
and 10 for CYLINDERFLOW and AIRFOIL datasets, respectively.

C.1 REWIRING METHODS

For DIGL, we set alpha to 0.01 and use 0.4 for eps. For SDRF, max number of iterations is 10.
Edge removal is not used. For FoSR, initial power and max number of iterations are set to 5 and 20,
respectively. In the case of BORF, the max number of iterations is set to 10, and edge addition and
deletion for each batch are set to 4 and 2, respectively. We use the official implementation released
by the authors on GitHub for all rewiring baselines:

• DIGL: https://github.com/gasteigerjo/gdc.git
• SDRF: https://github.com/jctops/understanding-oversquashing
• FoSR: https://github.com/kedar2/FoSR
• BORF: https://github.com/hieubkvn123/revisiting-gnn-curvature

C.2 MODELS

MGN. To align with the MGN methodology, we apply 15 iterations of message passing in all
datasets. All MLPs have a hidden vector size of 128. Table 7 indicates the input, edge, and output
features used for each dataset.

17

https://github.com/gasteigerjo/gdc.git
https://github.com/jctops/understanding-oversquashing
https://github.com/kedar2/FoSR
https://github.com/hieubkvn123/revisiting-gnn-curvature

Published as a conference paper at ICLR 2025

Table 7: Details of features for each dataset. ρi is the fluid density and wi is the velocity of the fluid.
ẇi is the gradient of velocity, ni is the node type, and xi is the position of the node.

Datasets Inputs mij Inputs vi Outputs oi

CYLINDERFLOW xij , |xij | ni,wi ẇi, pi
AIRFOIL xij , |xij | ni,wi, ρi ẇi, pi, ρ̇i
EAGLE xij , |xij | ni,wi ẇi, pi

BSMS. We implement the BSMS model with Tensorflow. And according to the best hyperpa-
rameters of BSMS, levels 7 and 9 are used for CYLINDERFLOW and AIRFOIL, respectively. Noise
standard deviation is set the same as MGN. All MLPs have a hidden vector size of 128. The En-
coder/decoder are set to those in MGN.

GT. The hidden dimension size inside its Transformer is set to 128. FFN used three linear layers
and two ReLU activations. To ensure numerical stability, the results obtained with the exponential
term within the softmax function are constrained to fall in the range of [−2, 2]. We use the FFN with-
out using positional encoding. There are 15 transformer blocks with 4 heads. The encoder/decoder
are set to those in MGN.

HMT. Because contact edges are not used in fluid datasets, we only use HMT among the mod-
ules of the HCMT model. The hidden dimension size of HMT is set to 128, and both FFN and
numerical stability are set to the same as GT. There are 15 transformer blocks with 4 heads. The
encoder/decoder are set to those in MGN.

We use the official implementation released by the authors on GitHub for all baselines models:

• MGN: https://github.com/google-deepmind/deepmind-research/
tree/master/meshgraphnets

• BSMS: https://github.com/Eydcao/BSMS-GNN
• GT: https://github.com/graphdeeplearning/graphtransformer
• HMT: https://github.com/yuyudeep/hcmt

18

https://github.com/google-deepmind/deepmind-research/tree/master/meshgraphnets
https://github.com/google-deepmind/deepmind-research/tree/master/meshgraphnets
https://github.com/Eydcao/BSMS-GNN
https://github.com/graphdeeplearning/graphtransformer
https://github.com/yuyudeep/hcmt

Published as a conference paper at ICLR 2025

D OTHER VARIABLE CONTOUR AND ROLLOUT FIGURES

Figs. 9 to 11 are rollout images of CYLINDERFLOW, AIRFOIL, and EAGLE, from the last time
step with the highest cumulative error.

Models Traj. 1 Traj. 2 Traj. 3

Ground Truth

MGN

+ DIGL

+ FoSR

+ SDRF

+ BORF

+ PIORF

Figure 9: The velocity magnitude contours of various rewiring methods compared to the ground
truth at CYLINDERFLOW

19

Published as a conference paper at ICLR 2025

Models Traj. 1 Traj. 2 Traj. 3

Ground Truth

MGN

+ DIGL

+ FoSR

+ SDRF

+ BORF

+ PIORF

Figure 10: The velocity magnitude contours of various rewiring methods compared to the ground
truth at AIRFOIL

20

Published as a conference paper at ICLR 2025

Models Traj. 1 Traj. 2 Traj. 3

Ground Truth

MGN

+ DIGL

+ SDRF

+ FoSR

+ PIORF

Figure 11: The velocity magnitude contours of various rewiring methods compared to the ground
truth at EAGLE.

21

Published as a conference paper at ICLR 2025

E NOTATIONS

Table 8 outlines the key notations used in the paper.

Table 8: Notation summary.
Name index

senders i
receivers j

ORC(edge) κ(i, j)
ORC(node) γi

nodes u, v
the shortest distance d(u, v)

distribution of 1-step random walk from node u mu

L1 Wassertein transport distance W1(µi, µj)
sets of nodes V
sets of edges E

ORC Pooling Ratio δ

Inputs(edge features) mij

Inputs(node features) vi

Outputs oi

Edge Hidden Features eij

Updated Edge Hidden Features e′
ij

Node Hidden Features vij

Updated Node Hidden Features v′
ij

Node MLP fV

Edge MLP fE

Number of nodes |V|
Number of edges |E|
Mesh Positions xi

Relative Mesh Positions xij

Norm Relative Mesh Positions |xij |
Node Type ni

Velocity wi

Velocity Gradient ẇi

Predicted Velocity Gradient ˆ̇wi

Pressure pi
Predicted Pressure p̂i

Density ρi
Density Gradient ρ̇i

Predicted Density Gradient ˆ̇ρi

22

Published as a conference paper at ICLR 2025

F ADDITIONAL ABLATION STUDIES

Our proposed rewiring method has node selection steps that depend on ingredients such as degree,
ORC, and physical context. We conduct additional ablation studies to evaluate performance across
different ingredient selections. The pooling ratio for all experiments is 3%.

Table 9 shows performance based on ingredient selection. The first step is to select nodes based
on curvature(“Former”, Algorithm 1 lines 3-4), and the second is to select nodes based on physical
context(“Latter”, Algorithm 1 lines 5-6). We define the following four rewiring methods for ablation
studies: i) “Ablation 1”, where the former refers to high degree and the latter to physics, ii) “Ablation
2”, where the former refers to random and the latter to physics, iii) “Ablation 3”, where the former
refers to random and the latter to random, and iv) “Ablation 4”, where the former refers to ORC and
the latter to random.

In CylinderFlow, “Ablation 1” shows results with high-degree selection, achieving improved per-
formance compared to MGN. However, it underperforms relative to PIORF, as it exhibits varying
curvature values for the same degree. “Ablation 2” and “Ablation 4” show performance based on
the choice of physical context and ORC, respectively. Both outperform MGN, and Physical Context
provides slightly better performance than ORC. “Ablation 3” is the result of randomly selecting both
the former and the latter and adding edges, and is similar to the performance of MGN.

Table 9: Rollout-all RMSE (×103) for PIORF and the ablations.

Model Ingredient CYLINDERFLOW AIRFOIL

Former Latter Velocity Pressure Velocity Pressure Density

MGN 48.8 ± 5.6 36.7 ± 2.4 10,261 ± 832 3,043,186 ± 282,514 29.4 ± 2.7
PIORF ORC Physics 41.6 ± 3.9 28.9 ± 1.5 7,743 ± 584 2,245,858 ± 142,452 22.5 ± 1.4

Ablation 1 Degree Physics 44.9 ± 5.7 33.3 ± 1.1 10,379 ± 607 3,065,807 ± 276,373 29.6 ± 2.6
Ablation 2 Random Physics 44.6 ± 0.8 31.1 ± 1.0 10,150 ± 505 2,936,397 ± 177,037 28.4 ± 1.8
Ablation 3 Random Random 48.4 ± 1.6 35.3 ± 0.9 11,220 ± 538 3,305,957 ± 176,642 31.9 ± 1.7
Ablation 4 ORC Random 43.4 ± 2.4 32.3 ± 1.2 10,317 ± 771 3,115,406 ± 230,796 30.2 ± 2.2

G ADDITIONAL DISCUSSION

G.1 GRAPH TOPOLOGY CHANGES.

We analyze changes in graph topology in each dataset. Fig. 12 shows a comparison of curvature
distributions between the original graph and the graph using PIORF. The graph constructed after
applying PIORF shows the removal of highly negative curvatures that cause bottlenecks (Topping
et al., 2021).

0.2 0.1 0.0 0.1 0.2
Ollivier curvature

0.0

0.2

0.4

0.6

D
en

si
ty

Original
SDRF
BORF
PIORF

(a) CYLINDERFLOW

0.2 0.1 0.0 0.1 0.2
Ollivier curvature

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Original
SDRF
BORF
PIORF

(b) AIRFOIL

Figure 12: Comparison of curvature distributions between the original graph and the graph using
PIORF. The x-axis represents the Olivier curvature of the edges, and the plots show a kernel density
estimate of the curvature distribution.

23

Published as a conference paper at ICLR 2025

G.2 EFFECTIVE RESISTANCE ON GRAPHS.

The effective resistance (Black et al., 2023) provides a metric for measuring over-squashing. We
randomly pick up 10,000 sample graphs from each dataset and analyze the total resistance (the sum
of the effective resistance between all pairs of nodes). Table 10 shows the total effective resistance
results in the original graph and the graph after applying the PIORF method in each dataset. The
total effective resistance is significantly reduced, which indicates that the bottleneck is alleviated
and enables long-range propagation.

Table 10: Total resistance for our PIORF and baselines.
Methods CylinderFlow Airfoil

MGN 2,491,084 15,644,891
SDRF 2,487,198 15,628,620
BORF 2,398,661 15,403,149
PIORF 1,653,709 10,140,834

G.3 RELATIONSHIP BETWEEN ACCUMULATED ERROR AND VELOCITY GRADIENT.

In the field of dynamics learning simulations, such as MGN, the model iteratively predicts the next
step. The longer the simulation steps, the more accumulated error occurs during inference. Fig. 13
shows the change in accumulated error and the gradient of velocity for each step after applying
PIORF. Areas with significant accumulated errors depend on the velocity gradient. In PIORF, which
reflects this physical quantity, the overall accumulated error is reduced compared to the original.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(a) MGN at step 200
0.00

0.05

0.10

0.15

0.20

0.25

(b) MGN at step 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) MGN at step 400

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(d) PIORF at step 200
0.00

0.05

0.10

0.15

0.20

0.25

(e) PIORF at step 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(f) PIORF at step 400

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(g) Gradient at step 100
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(h) Gradient at step 200
0.00

0.05

0.10

0.15

0.20

(i) Gradient at step 300

Figure 13: Comparison of accumulated error distribution and gradient magnitude of velocity distri-
bution according to PIORF application.

24

Published as a conference paper at ICLR 2025

G.4 DISCUSSION ON ORC IN PIORF

In studies proposing rewiring methods in the field of graph machine learning, metrics with various
curvature concepts are typically used to optimize edge addition or removal by maximizing their
values (Topping et al., 2021; Nguyen et al., 2023). In physics simulation, alternatives to our ORC-
based approach could include methods such as SDRF (Topping et al., 2021) and BORF (Nguyen
et al., 2023) that use different metrics for optimization. For example, SDRF uses a balanced Forman
curvature, which provides a more conservative estimate compared to ORC (Nguyen et al., 2023,
Lemma 4.1). While BORF similarly uses ORC for rewiring, our experiments in Table 1 demonstrate
why it is less suitable for physics simulation.

Metrics that can be presented as alternatives with a similar role to ORC are Forman curvature (Sree-
jith et al., 2016) and betweenness centrality (Barthelemy, 2004). However, these metrics do not
capture the area near the boundary conditions effectively. This region is where fluid flow changes
and is also crucial from a domain knowledge. While Forman curvature, based on the graph Lapla-
cian, is easier and faster to compute than Ollivier-Ricci curvature, it is less geometric (Ni et al.,
2019). We choose ORC specifically because it better captures geometric characteristic, particularly
around boundary conditions where fluid flow changes dramatically. Betweenness centrality could
be used for source node selection, its high complexity O(|V||E|) and need for global information
make it impractical for mesh graphs with thousands of nodes and edges.

25

	Introduction
	Related Work
	Mesh-based Simulation Models
	Over-squashing and Graph Rewiring Methods

	Preliminaries
	MeshGraphNets (MGN)
	Ollivier–Ricci Curvature on Graphs

	PIORF: Physics-Informed Ollivier–Ricci Flow
	Discussion
	Experiments
	Experiments on Fluid Dynamics Benchmark Datasets
	Scaling to Larger Fluid Dynamics
	Computational Efficiency
	Ablation Studies

	Conclusions
	Appendix
	 Supplementary Materials for ``PIORF''
	Comparison of Rewiring Methods and Complexcity
	Datasets Details
	Baseline Details
	Rewiring Methods
	Models

	Other Variable Contour and Rollout Figures
	Notations
	Additional Ablation Studies
	Additional Discussion
	Graph topology changes.
	Effective Resistance on Graphs.
	Relationship Between Accumulated Error and Velocity Gradient.
	Discussion on ORC in PIORF

