
Oblique-MERF: Revisiting and Improving MERF for Oblique Photography

Supplementary Material

A. Additional Experimental Settings
A.1. Datasets

To mitigate variations in lighting and shadows within the
scene, our Campus-Oblique dataset is captured under con-
sistent, cloudy conditions. We adopt a surround-style cap-
turing method, known for its higher overlap rate, which is
superior to traditional grid-style capturing techniques. The
datasets were recorded at altitudes ranging from 150 to 180
meters. Meanwhile, our Campus-extra dataset is captured at
approximately 150 meters altitude, encompassing an area of
120,000 square meters for the training set. For the test set,
we captured two high-rise buildings in the area, each 80 me-
ters in height. The scene was recorded at altitudes ranging
from 40 to 80 meters.

Camera poses were estimated using colmap [7], employ-
ing a vocabulary tree for feature matching. This process was
augmented with a hierarchical mapper and several rounds
of triangulation and bundle adjustment to refine the camera
pose estimations.

A.2. Implementation Details

For the experiments in Section 5.1 and Section 5.3 , we con-
duct training over 80K iterations, while Section 5.2 under-
goes 50K iterations, all with a batch size of 32,768 pixels.
We utilize the Adam optimizer, with the learning rate ex-
ponentially decaying. The occupancy plane’s learning rate
drops from 5 × 10−5 to 1 × 10−5, while for other vari-
ables, it drops from 1 × 10−2 to 1 × 10−3. The Adam op-
timizer’s hyperparameters β1, β2 and ϵ are set to 0.9, 0.99
and 1×10−15 respectively. Training losses are initially bal-
anced with λ1 = 1.0, λ2 = 1.0, λ3 = 0.01, λ4 = 1.0,
λ5 = 0.05, λ6 = 0.001, λ8 = 0.1 at the begining. More-
over, we set λ7 = 0.0 in the first 10K iterations for warmup
training. From the 10,000th iteration onwards, λ7 is ad-
justed to 1×10−4, and every 2,000 iterations thereafter, we
increase this specific loss weight by a factor of 1.5 up to
0.2. The parameters Σ1 and Σ2 for smoothness regulariza-
tion are set to 0.3 . We sample 100 rays for smooth loss, 210

rays for entropy loss, and 214 samples for sparsity loss.
Similar to Mip-NeRF 360 [1], our method incorporates

hierarchical sampling during the training phase, necessitat-
ing the use of two Proposal MLPs. Each Proposal MLP
comprises two layers with 64 hidden units and utilizes hash
encoding. For the decoder MLP that generates density and
color, we utilize a 3-layer MLP with 64 hidden units per
layer. This MLP generates an 8-dimensional output vec-
tor, including density, diffuse colors, and a 4-dimensional
vector for view-dependent features. For deferred view-

dependency model, we employ a 3-layer MLP with 16 hid-
den units, and the viewing directions are encoded using po-
sitional encoding, with the level set to 4.

A.3. Comparative Method Settings

For MobileNeRF [2], we initialized a 192× 192× 192 grid
to generate polygonal meshes while maintaining default pa-
rameters for other settings. We used the open-source ver-
sion1 for BakedSDF [14], setting the batch size to 16,384
and conducting training in two phases: 20,000 and 50,000
epochs, respectively. As for 3DGS [3], we employed its of-
ficial implementation with default configurations. Due to
the unavailability of the sparse SfM point cloud for the Ma-
trix City [4] dataset, we did not conduct experiments on it,
considering the consistency of training data poses.

B. Complete results
B.1. Real-time rendering on oblique photography

We present the quantitative comparisons for all scenes in
the Campus-Oblique and Matrix City datasets in Tab. 2 and
Tab. 3, respectively. Fig. 1 provides qualitative compar-
isons for all three scenes of the Campus-Oblique dataset.

B.2. Color for extrapolation novel viewpoints

We show the qualitative comparisons on the Campus-extra
dataset in Fig. 2.

C. Real-time Rendering
C.1. Sampling strategy

Since we obtain a multi-resolution occupancy plane, we
start by determining sampling points from the coarsest
level. Consistent with the training process, for a sample
point pi = (xi, yi, zi), we project it onto the XY plane and
find the nearest sample grid point to obtain the occupancy
interval [zmin, zmax]. If zi lies within this interval, the
point either proceeds to the next level of occupancy plane
evaluation or is selected for sampling at the current level.
Then, based on the position of zi and the projected grid cell
C = {(x, y)|x ∈ [xmin, xmax], y ∈ [ymin, ymax}, we deter-
mine the bounding box as following:

BoundingBox(xi, yi, zi;Po)

=


{(x, y, z) | C ∧ z ∈ [zmin, zmin]}, if z ∈ [zmin, zmin],

{(x, y, z) | C ∧ z ∈ [zmin, zmax]}, if z ∈ [zmin, zmax],

{(x, y, z) | C ∧ z ∈ [zmax, zmax]}, if z ∈ [zmax, zmax].

1https://github.com/hugoycj/torch-bakedsdf



Here zmin and zmax represent the global lower and upper
bounds of the scene along the z-axis, respectively. The next
candidate point is determined as the subsequent intersection
of the ray with this bounding box.

C.2. Visualization for Sampling Point Distribution

Fig. 3 provides a comparison of real-time rendering quality
and sampling efficiency between our method and the base-
line MERF [6]. Our spatial regularization technique partic-
ularly focuses on constraining the scene geometry orthogo-
nal to the ground, facilitating the recovery of richer surface
details, such as small objects on rooftops. Furthermore,
we exhibit a more consistent appearance with the training
dataset, as evidenced by the hues of the trees in the images.
Remarkably, our optimized occupancy plane effectively ex-
cludes empty regions and concentrates sampling points in
critical areas, such as geometric surfaces. This significantly
reduces computational overhead and achieves consistently
higher frame rates across multiple scales compared to the
baseline method.

D. More Ablations

We present additional ablation experiments in Tab. 1, pro-
viding quantitative results regarding their impact on render-
ing quality and storage consumption.

Occupancy plane initialization For initialization, we es-
timate the upper and lower bounds of the occupancy plane
based on camera poses or sparse point clouds. In “Init with
20% Larger” and “Init with 50% Larger”, we respectively
expand the initialization boundaries of the occupancy plane
by 20% and 50%. It can be seen that proper initialization
of the sampling space range facilitates rapid convergence
in optimization. Arbitrarily setting initial values far beyond
the scene range may result in reduced spatial compression
efficiency and decreased reconstruction quality.

Training strategy In “60k Training Iters”, we decrease
the training epochs from 80K to 60K, while in “100k Train-
ing Iters”, we increase them from 80K to 100K. Lastly, in
“Smaller Hash Table”, we decrease the number of entries in
the multi-resolution hash encoding from 222 to 221. It is in-
dicated that sufficient training time and an adequate amount
of feature representation are crucial for large-scale scenes.
Moreover, extending the training time does not yield signif-
icant improvements in memory consumption, implying that
our regularization technique achieves convergence within a
finite number of epochs, while effectively balancing render-
ing fidelity and storage optimization.

PSNR↑ SSIM↑ LPIPS↓ VRAM(MB)↓

(a) Init with 20% Larger 24.21 0.719 0.224 110.8
(b) Init with 50% Larger 24.01 0.690 0.245 123.4
(c) 60k Training Iters 24.22 0.708 0.231 113.9
(d) 100k Training Iters 24.40 0.719 0.217 111.6
(e) Smaller Hash Table 23.84 0.692 0.247 108.2

Ours 24.33 0.716 0.222 111.9

Table 1. Ablations on initialization and training strategy.

E. Further Discussion

Similar to our work, recent efforts have focused on acceler-
ating rendering in NeRF-like methods by regularizing the
sampling space. Due to the lack of open-source imple-
mentations, we cannot provide comparative experimental
results. However, we will discuss the relevant methods.

Adaptive Shells [11] incorporates a spatially-varying
kernel in the NeuS [10] formulation and requires extracting
two layers of explicit meshes to guide its sampling. Hy-
bridNeRF [9] optimizes the surfaceness of points in a 3D
voxel grid following the VolSDF’s approach [13], thereby
approximating SDF representation for foreground modeling
and conducting Sphere Tracing sampling within it.

Both of these methods rely on surface modeling, and
when applied to large-scale datasets, adaptive sampling op-
timization typically requires high-resolution representation,
leading to significant memory consumption and optimiza-
tion challenges. In contrast, we optimize the sampling space
by improving the volume rendering formulation and, con-
sidering the characteristics of oblique photography, offer
a straightforward, memory-efficient, and easily applicable
representation.

References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In CVPR, 2022. 1, 4

[2] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon ras-
terization pipeline for efficient neural field rendering on mo-
bile architectures. In CVPR, 2023. 1, 4

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 1, 4

[4] Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhen-
zhi Wang, Dahua Lin, and Bo Dai. Matrixcity: A large-scale
city dataset for city-scale neural rendering and beyond. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3205–3215, 2023. 1, 4

[5] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-



tiresolution hash encoding. ACM transactions on graphics
(TOG), 41(4):1–15, 2022. 4

[6] Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srini-
vasan, Ben Mildenhall, Andreas Geiger, Jon Barron, and Pe-
ter Hedman. Merf: Memory-efficient radiance fields for real-
time view synthesis in unbounded scenes. ACM Transactions
on Graphics (TOG), 42(4):1–12, 2023. 2, 4, 5

[7] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4104–
4113, 2016. 1

[8] Haithem Turki, Deva Ramanan, and Mahadev Satya-
narayanan. Mega-nerf: Scalable construction of large-scale
nerfs for virtual fly-throughs. In CVPR, pages 12922–12931,
2022. 4

[9] Haithem Turki, Vasu Agrawal, Samuel Rota Bulò,
Lorenzo Porzi, Peter Kontschieder, Deva Ramanan, Michael
Zollhöfer, and Christian Richardt. Hybridnerf: Efficient neu-
ral rendering via adaptive volumetric surfaces. In Computer
Vision and Pattern Recognition (CVPR), 2024. 2

[10] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems, pages 27171–27183. Curran Associates, Inc., 2021.
2

[11] Zian Wang, Tianchang Shen, Merlin Nimier-David, Nicholas
Sharp, Jun Gao, Alexander Keller, Sanja Fidler, Thomas
Muller, and Zan Gojcic. Adaptive shells for efficient neu-
ral radiance field rendering. ACM Transactions on Graphics
(TOG), 42:1 – 15, 2023. 2

[12] Linning Xu, Yuanbo Xiangli, Sida Peng, Xingang Pan,
Nanxuan Zhao, Christian Theobalt, Bo Dai, and Dahua Lin.
Grid-guided neural radiance fields for large urban scenes. In
CVPR, pages 8296–8306. IEEE, 2023. 4

[13] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Thirty-
Fifth Conference on Neural Information Processing Systems,
2021. 2

[14] Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin,
Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron,
and Ben Mildenhall. Bakedsdf: Meshing neural sdfs for real-
time view synthesis. In ACM SIGGRAPH 2023 Conference
Proceedings, SIGGRAPH 2023, Los Angeles, CA, USA, Au-
gust 6-10, 2023, pages 46:1–46:9. ACM, 2023. 1, 4



Scene-1 Scene-2 Scene-3
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InstantNGP [5] 23.48 0.653 0.415 23.47 0.587 0.535 22.28 0.560 0.565
Nerfacto [1] 21.24 0.570 0.366 23.80 0.685 0.256 21.57 0.598 0.384
Mega-NeRF [8] 23.65 0.648 0.437 24.88 0.632 0.388 21.86 0.494 0.573
MobileNeRF [2] 20.46 0.446 0.490 21.21 0.420 0.508 - - -
BakedSDF [14] 21.14 0.526 0.501 22.37 0.499 0.546 20.20 0.455 0.671
3DGS [3] 24.32 0.766 0.215 23.82 0.714 0.245 21.09 0.540 0.503
MERF [6] 23.31 0.670 0.264 23.53 0.647 0.284 21.67 0.535 0.485

Ours 24.33 0.716 0.222 24.20 0.680 0.261 22.53 0.589 0.410

Table 2. Quantitative results on Campus-Oblique datasets. “-” means that due to the huge amount of data exceeding the memory capacity,
corresponding comparative experiments cannot be performed.

Block-A Block-D
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InstantNGP [5] 24.04 0.636 0.716 22.15 0.587 0.697
Nerfacto [1] 23.99 0.689 0.454 22.80 0.659 0.433
Mega-NeRF [8] 25.24 0.669 0.603 24.16 0.631 0.597
Grid-NeRF [12] 25.37 0.705 0.536 24.75 0.702 0.487
MobileNeRF [2] 16.55 0.508 0.671 21.48 0.526 0.544
BakedSDF [14] 22.37 0.603 0.679 21.81 0.561 0.625
MERF [6] 24.51 0.673 0.522 24.48 0.680 0.385

Ours 25.72 0.710 0.430 24.88 0.701 0.382

Table 3. Quantitative results on Matrix City [4] datasets.

Scene-1

Scene-2

Figure 1. Comparison on rendering quality for novel views between Oblique-MERF and other methods on the Campus-Oblique and Matrix
City [4] dataset.From left to right are ground truth, Oblique-MERF, MERF, Mega-NeRF, and Instant-NGP.



Figure 2. Rendering quality comparison between Oblique-MERF and other MERF variants for test views on the Campus-extra dataset.
There are fewer artifacts in the rendering results of our method.

Figure 3. Visualization of Oblique-MERF and the baseline MERF [6] for real-time rendering and sampling point distribution on the
Campus-Oblique dataset. In “#sample” , we utilize the color bar to represent the number of sampling points, transitioning from
blue to yellow to indicate an increase in sampling points from 4 to 16.


