
Bayesian nonparametric (non-)renewal processes for
analyzing neural spike train variability

Supplementary Material
A Point process theory

A.1 Point process definitions

From the conditional intensity function (CIF) defined in Eq. 1, we can obtain the survival function
S(τ) based on the flux of probability using time since last spike τ = t− ti

d

dt
λ(t) = −λ(t)S(τ) (20)

which quantifies what the probability is to have no events from ti up to time t. For the relation between
the interspike interval (ISI) distribution g(τ), we require an event to occur within the infinitesimal
window [t, t+ δt) which is proportional to multiplying the CIF with the survival function [14]

g(τ) =
λ(t)S(τ)∫∞

ti
λ(t′)S(τ ′)dt′

=
λ(t) e

−
∫ t
ti

λ(t′) dt′

1− e
−

∫ ∞
ti

λ(t′) dt′
(21)

Another point process quantity that appears in the literature is the hazard function [9, 31], which is
related to the CIF by number at risk. In our case of modeling neural spike trains, this is the same as
the CIF. The hazard function is often considered in renewal processes, where we have the relation

h(t) = λ(t|ti) =
g(τ)

1−
∫ t−ti
0

g(τ ′) dτ ′
=

g(τ)

S(τ)
(22)

A.2 Time-rescaling and Kolmogorov-Smirnov goodness-of-fit test

A.2.1 Time-rescaling

Time-rescaling is analogous to Eq. 5 but uses the CIF instead of a rate function

t̄(t) =

∫ t

λ(t′| . . .) dt′ (23)

with rescaled time t̄. The rescaled ISIs should then be exponentially distributed if the ISIs are
computed from spike train samples of the point process with the given CIF [27].

A.2.2 Quantile-quantile plots and dispersion

The time-rescaled ISIs ∆̄ can be transformed with the cumulative density function of the unit
exponential distribution into quantiles in the range [0, 1]

q
(
∆̄
)
= Fexp

(
∆̄
)
= 1− e−∆̄ (24)

which should be uniformly distributed if we are working with samples from the point process with
the given CIF. One can visualize the empirical distribution of quantiles from rescaled ISIs using a
quantile-quantile (QQ) plot as in Fig. 2C. There we plot the empirical distribution function F (q) of
quantiles q. If the point process model matches the empirical ISIs well, the QQ plot curve will follow
the diagonal (i.e. the empirical distribution function of a uniform random variables).

The terms over- or underdispersion describe empirical quantile distributions that do not match the
point process model. Overdispersion is associated with too many extreme quantile values near
0 or 1. On the other hand, underdispersion involves an excess of quantiles close to the median
activity q = 1/2. These two forms of dispersion will show up characteristically on QQ plots, with
underdispersion associated to an S-like curve and overdispersion its reflection along the diagonal. In
neuroscience, the reference point process is conventionally taken to be an intensity-matched Poisson
process. Over- or underdispersion then refers to to spiking activity that is more irregular or regular
temporally than a Poisson process, respectively.

1

A.2.3 Kolmogorov-Smirnov test

The intuition from QQ plots can be formalized using a statistical test called the Kolmogorov-Smirnov
goodness-of-fit test. The test statistic is defined by

TKS = max
q

|F (q)− q| (25)

which represents the biggest vertical distance of the empirical distribution function to the diagonal.
Since we deal with a different number of ISIs for each neuron, we report p-values of the observed
TKS [30] in Fig. 3A and Fig. 4A to have a comparable measure across neurons. Low p-values indicate
the null hypothesis (the proposed point process model) should be rejected, or equivalently does not
match the empirical data well. In the literature, this is a standard test for assessing goodness-of-fit of
neural spike train models [8, 23].

A.3 Renewal processes

A.3.1 Firing rates and ISIs

The law of large numbers for renewal processes [24] shows that for a Markov renewal process

lim
T→∞

NT

T
=

1

E[τ]
(26)

where NT is the number of events in the interval [0, T]. This relation can be interpreted as the
asymptotic firing rate being equal to the reciprocal mean ISI. Note for finite bin sizes T , this generally
does not hold and the two quantities will differ depending on the ISI distribution shape.

A.3.2 Parametric renewal density families

Below we give the parametric densities for renewal processes used in the paper. Note that for model
fitting, we rescale the density such that we obtain unit mean by dividing τ with E[τ].

Gamma The Gamma renewal process is obtained from picking a Gamma renewal density

g(τ ;α) =
1

Γ(α)
τα−1e−τ (27)

which is parameterized by the shape α. Note the Poisson process corresponds to α = 1 i.e. the
exponential distribution. This has mean E[τ] = α. The shape parameter α acts as a “tuning knob”
for spiking randomness, with α < 1 leading to overdispersed and α > 1 underdispersed activity.

Inverse Gaussian The inverse Gaussian is based on the

g(τ) =

√
λ

2πτ3
e
−λ(τ−µ)2

2µ2τ (28)

where the parameter λ is absorbed by the rate-rescaling transform. Hence we take λ = 1 without loss
of generality for neuroscience applications. This has mean E[τ] = µ.

Log-normal The log-normal distribution is named as the logarithm of the random variable is
normally distributed

g(τ) =
1

τσ
√
2π

e−
(log τ−µ)2

2σ2 (29)

noting that the rate-rescaling absorbs the parameter µ. Hence in neuroscience applications, the
renewal density will be parameterized by σ with µ = 0. This has mean E[τ] = eσ

2/2.

Refractory Poisson The Poisson process is commonly used, but it does not account for the
refractory nature of real neurons. A simple modification is to introduce an absolute refractory period

g(τ) =

{
0 for τ < ∆abs

λ eλ(∆abs−τ) for τ > ∆abs
(30)

which introduces a dependence on the previous spike time, giving a renewal process with

E[τ] = ∆abs + λ−1, Var[τ] = λ−2, CV = 1− ∆abs

E[τ]
(31)

Note the linear relation between the coefficient of variation CV and the inverse mean ISI E[τ]−1.

2

A.3.3 Hazard functions and asymptotic limits

To evaluate the CIF for renewal processes, we need to compute the hazard function as discussed
above. Numerically, this can be challenging as we need to compute the fraction of the renewal
density and the survival function (Eq. 22) which both tend to 0 for large τ , and hence we compute
a truncation of the asymptotic series instead. Note that the survival function for renewal processes
S(τ) = 1− C(τ) with C(τ) cumulative density function of g(τ).

Gamma The cumulative density function is

C(τ) =
1

Γ(α)
γ(α, τ) (32)

where γ(·, ·) denotes the lower incomplete Gamma function. The survival function satisfies

lim
τ→∞

S(τ) =
1

Γ(α)
τα−1e−τ

(
1 +

∞∑
k=1

Γ(α)

Γ(α− k)
τ−k

)
(33)

and the hazard function becomes

h(τ) =
τα−1e−τ

Γ(α, τ)
, lim

τ→∞
h(τ) =

(
1 +

∞∑
k=1

Γ(α)

Γ(α− k)
τ−k

)−1

(34)

using the upper incomplete Γ(α, x) = 1− γ(α, x)

lim
τ→∞

Γ(α, x) = xα−1e−x

(
1 +

∞∑
k=1

Γ(α)

Γ(α− k)
x−k

)
(35)

Inverse Gaussian The cumulative density function is

C(τ) =
1

2

(
1 + erf

(√
1

2τ

(
τ

µ
− 1

)))
+

1

2
e2/µ

(
1 + erf

(
−
√

1

2τ

(
τ

µ
+ 1

)))
(36)

and thus

S(τ) =
1

2
(1− erf(x))− 1

2
e2/µ (1 + erf(x)) , x =

√
1

2τ

(
τ

µ
− 1

)
(37)

and the survival function has asymptotic limit

lim
τ→∞

S(τ) =
1

2πx
e−x2

(
1− e2/µ

)(∞∑
n=0

(−1)nΓ(12 + n)

x2n

)
+ e2/µ (38)

giving the hazard function limit for τ → ∞

h(τ) →

√
2x2 e−2/µ τ−3

e−2/µ + 2πx ex2 − 1

(
1 +

e−2/µ − 1

e−2/µ + 2πx ex2 − 1

(∞∑
n=1

(−1)nΓ(12 + n)

x2n Γ(12)

))−1

(39)

Log normal The cumulative density function is

C(τ) =
1

2

(
1 + erf

(
log τ

σ
√
2

))
(40)

and the survival function has asymptotic limit

lim
τ→∞

S(τ) =
e−x2

2πx

∞∑
n=0

(−1)nΓ(12 + n)

x2n
, x =

log τ

σ
√
2

(41)

giving the hazard function

h(τ) =
2

τσ
√
2π

e−x2

1− erf(x)
, lim

τ→∞
h(τ) =

log τ

τσ2

(
1 +

∞∑
n=1

(−1)nΓ(12 + n)

x2n Γ(12)

)−1

(42)

using Γ(1/2) =
√
π and the error function expansion

1− erf(x) =
e−x2

πx

∞∑
n=0

(−1)nΓ(12 + n)

x2n
(43)

3

B Implementation details

B.1 Sparse variational Gaussian processes

B.1.1 Gaussian processes as priors over functions

Gaussian processes (GPs) are a class of widely used Bayesian nonparametric models for modeling
unknown functions [36]. Briefly, a Gaussian process GP(m(·), k(·, ·)) is defined by a mean and
covariance function m(·) and k(·, ·), and specifies a prior over functions f(·) ∼ GP such that for any
set of input locations {xn}N1 , the function values f = [f(x1), . . . , f(xN)] satisfy

f ∼ N (m,K) (44)

with mean vector m = [m(x1), . . . ,m(xN)] and covariance matrix Kij = k(xi,xj).

B.1.2 Sparse approximation

GPs suffer from an O(N3) computational bottleneck for inference [36], where N is the number of
data points. In addition, closed-form inference and prediction are not possible for non-Gaussian
likelihoods as used in this paper. To approximate intractable Gaussian process posteriors in non-
conjugate settings, as well as remove the O(N3) bottleneck for inference and posterior evaluation,
we use variational inference along with a sparse approximation of the variational psoterior. The latter
refers to parameterizing an approximate posterior as a conditional Gaussian distribution, conditioned
on M additional function points at locations {zm}M1 called inducing points. This leads to a sparse
posterior in the sense that M < N , while the generative model is augmented given by the joint
distribution (where we set the mean m(·) = 0 for convenience without loss of generality)

p(f ,u) = N
([

0x

0z

]
,

[
Kxx Kxz

Kzx Kzz

])
(45)

Following [33], we directly parameterize the posterior over the function values at inducing points

q(u) = N (µ, S) (46)

giving a joint posterior for the GP model

q(f ,u) = p(f |u) q(u) (47)

The resulting variational free energy or negative evidence lower bound (ELBO) becomes

L = −Eq(f ,u)

[
log

p(y|f) p(f ,u)
q(f ,u)

]
= −Eq(f) [log p(y|f)] + Eq(u)

[
log

q(u)

p(u)

]
(48)

where the first term is the variational expectation of the negative log likelihood with observations y,
and the last term is the Kullback-Leibler (KL) divergence of a multivariate normal given by

DKL(q(u)∥p(u)) =
1

2

(
Tr
(
K−1

zz S
)
−M + µTK−1

zz µ+ log
|Kzz|
|S|

)
(49)

which does not involve the inverse of the full covariance matrix Kxx as for standard GP inference.
Minimizing L can then be interpreted as finding the inducing points that optimally summarize the
training data y. The variational expectation term involves the sparse posterior

q(f) =

∫
q(f ,u) du =

∫
p(f |u) q(u) du (50)

which is another multivariate normal with moments

µq(f) = KxzK
−1
zz µ

Σq(f) = Kxx −KxzK
−1
zz Kzx +KxzK

−1
zz SK−1

zz Kzx

(51)

For predictions at new locations {x∗}, we obtain the posterior predictive distribution by replacing
training locations {xn}N1 in the sparse posterior above. The decoupling of the data y from the
posterior distributions amortizes the variational inference, which allows mini-batching and hence
scalability to large data [16]. Overall, this gives the sparse variational Gaussian process (SVGP).

4

B.1.3 Posterior sampling and Matheron’s rule

Conventionally, one samples from conditionals of multivariate Gaussian distributions by computing
the moments and using the Cholesky decomposition. However, this approach comes with O(N3

∗)
computational complexity, which becomes prohibitive for evaluating posterior function samples at
many locations. An alternative to directly working with distributions is the idea of pathwise sampling
or Matheron’s rule [37]. For random vectors a and b distributed as a multivariate Gaussian we have

(a | b = β)
d
= a+ Cov(a, b)Cov(b, b)−1 (β − b) (52)

where we have now expressed a procedure involving manipulations of samples rather than distribu-
tions. The validity follows from the linearity of the transformation and noting the resulting moments
match the posterior Gaussian distribution. In particular, a and b are sampled independently.

Sparse posteriors Sparse Gaussian process posteriors are of the form Eq. 50. Matheron’s rule
applies to sampling from p(f |u) with given u. In the sparse posterior, we can interpret the expression
as drawing β ∼ q(u) and then conditioning p(f |u = β). This gives us the posterior distribution
written as manipulations on a prior sample f(·) ∼ GP(0, k(·, ·))

f∗ | y d
= f∗ +K∗z K

−1
zz (µ+ ϵS − fz) (53)

where f∗ and fz is the same prior sample evaluated at test and inducing point locations, respectively.

Pathwise conditioning From the above, we note that the computational bottleneck is due to
sampling the prior f∗ at test locations. To work around this, we change our perspective from the
function space to the Fourier domain and sample the prior using random Fourier features (see below)

f∗ | u d
= f∗ +K∗z K

−1
zz µ−K∗z K

−1
zz (fz − ϵS) (54)

with ϵS ∼ N (0, S). Because Matheron’s rule decouples the sampling procedure, we can change the
method for sampling the prior to obtain this decoupled posterior sampling procedure. This reduces the
computational complexity from O(N3

∗) to O(N∗), combining the relative strengths of the functional
and Fourier perspectives of GPs [37].

B.1.4 Random Fourier features

GPs are conventionally defined in the functional perspective as a prior over functions specified by a
covariance kernel function k(x,x′). For stationary kernels k(x,x′) = k(x − x′), and Bochner’s
theorem states that valid stationary covariance functions must have a non-negative Fourier transform
k̃(ω) ≥ 0. One can interpret this as some probability measure p(ω) after suitable normalization, and
this provides an alternative view on Gaussian process functions as linear combinations of random
Fourier features [26]

f(x) =
σ√
2L

L∑
j=1

wj cos (ωj · x+ ϕj) (55)

where σ2 is the kernel variance, wj ∼ N (0, 1), ωj ∼ p(ω) and ϕj ∼ U(0, 2π). For L → ∞, this
will tend to exact function draws from the GP prior. Note for a product kernel as used in this work,
p(ω) will also be a product of individual kernel factor probability measures.

Periodic kernels For periodic kernels

k(θ;σ, l) = σ2 e−(1−cos θ)/l2 (56)

we use the following series expansion [34]

e−(1−cos θ)/l2 =
I0(1/l

2)

e1/l2
+

∞∑
j=1

2Ij(1/l
2)

e1/l2
cos (jθ) (57)

and we note the corresponding probability measure for random Fourier features is discrete. We
sample a discrete variable from the truncated series after normalizing the terms

p(ω) =

J∑
j=0

cj
NJ

δ(ω − j), NJ =

J∑
j=0

cj (58)

5

Due to the discrete nature of the probability measure, sample functions are not directly differentiable
as we can no longer rely on the reparameterization trick. We can work around this with importance
sampling [5], yielding generalized random Fourier features

f(x) = σ

√
NK

2L

L∑
j=1

γjwj cos (ωj · x+ ϕj) (59)

where now ωj ∼ pref(ω) from a reference distribution where the discrete spectrum factors are not
sampled from in a differentiable manner, and with importance sampling weights

γj =

√
p(ωj)

pref(ωj)
(60)

By taking pref(ω) = p(ω) we obtain γi = 1 but non-zero gradients for each factor on the backward
pass. This is achieved by stopping the automatic differentiation for discrete density factors of pref(ω).

B.1.5 Whitened posteriors

The variable transform v = L−1u leads to a whitened prior p(v) = N (0, I). Instead of parameteriz-
ing q(u) = N (µ, S), we can parameterize q(v) = N (ν,W) linked by the same variable transform.
This variational parameterization generally leads to improved conditioning of the inference problem
[1], and we implement SVGPs in all models of this paper with the whitened variational parameteri-
zation. The ELBO now involves the KL divergence between the variational posterior and the unit
normal distribution. Matheron’s rule takes the form with ϵW ∼ N (0,W)

f∗ | v d
= f∗ +K∗z L

−1
zz ν −K∗z

(
K−1

zz fz − L−1
zz ϵW

)
(61)

B.2 General variational inference framework

B.2.1 Constructing probabilistic models

Constructing the baseline models for this paper with GPs involves different probabilistic model
structures specific to each model that are described below. However, the inference framework
presented for each model is a special case of general probabilistic programming with stochastic
variational inference [4, 12, 19] with SVGPs. From this perspective, the negative ELBO generally
consists of two parts

L = Llik + LKL (62)
with Llik the variational expectation of the likelihood given the GP posteriors, and LKL the KL
divergences of each individual GP component.

B.2.2 Data scaling

Our method builds on sparse variational Gaussian processes, and hence inherits the convergence
properties and data scaling from such models analyzed in previous work [7, 16, 25]. In this study, our
synthetic validation experiment involves 2D inputs xt with a million time points, and we are able to
accurately recover the ground truth (Fig. 2). Real data has either 1D or 3D xt and > 1 million time
points. Based on the synthetic experiment, this suggests that we are in the regime of sufficient data.
Note that the total number of GP input dimensions includes the K = 4 lagging ISI dimensions for all
models.

B.3 Rate-rescaled renewal processes

B.3.1 Relation to time-rescaling and modulated renewal processes

Note that rate-rescaling for inhomogeneous renewal processes in Eq. 5 is a special case of time-
rescaling when applied to the CIF of the rate-rescaled renewal process. As the CIF of renewal
processes is related to the ISI distribution via Eq. 22, we can apply change of variables with Eq. 5 as
the transformation. Using the shorthand notation r(t) = r(xt), we obtain

λ(t|ti) =
g(t− ti)

1−
∫ ti+1

ti
g(t′ − ti) dt′

= r(t)
g
(
t̃− t̃i

)
1−

∫ t̃i+1

t̃i
g
(
t̃′ − t̃i

)
dt̃′

= h
(
t̃(t)
)
· r(t) (63)

6

where in the last equality, we wrote in analogous terms to modulated renewal processes Eq. 4. We
see that the rate r plays a similar role as the modulator ρ, but in addition it also affects the hazard
function argument via the rate-rescaling integral t̃(t) =

∫ t
r(xt′) dt

′. This overall gives

λ(t|Ht,Pt) = λ(t|ti, {x(u)|u ∈ (ti, t])}) (64)

which is a covariate path history dependence rather than an instantaneous dependence λ(t|xt, . . .)
like other models in this paper, though in a highly restricted manner through the rate function r(x).
Note we parameterize g(∆) such that the mean is always one (Appendix A.3), which allows r(t) to
be interpreted as the instantaneous firing rate of a neuron.

B.3.2 Time discretization

In discrete time settings, the transformation applied in practice is discrete rate-rescaling [15]

t̃ =

t∑
t′=1

rt′ ∆t, (65)

Note that time discretization introduces biases in the KS test rate-rescaled renewal process models
[13, 15], as the quantiles are computed using the cumulative density function of continuous-time
renewal densities. In particular, very small ISIs in the rescaled time domain will be mapped onto the
same time bin in the real time domain if the interval is smaller than the bin size. For our nonparametric
non-renewal process model, this bias is not an issue due to the flexibility of the CIF function.

B.3.3 Generative model structure

Joint versus marginal posterior samples The structure in the Llik term induced by discrete rate-
rescaling Eq. 65 requires us to draw full posterior function samples, as the joint likelihood does not
factorize across time steps p(y|f) ̸= p(y1|f1) · · · p(yT |fT). The posterior rate function samples are
then individually integrated over to perform rate-rescaling. Experiments with joint posterior rate
function samples from the GP were significantly slower and less numerically stable failing to fit the
data successfully, especially on the hippocampal data. Instead, we use a quasi-MAP approximation
where we sample from the marginal posterior rates

Eq(f1,...,fT) [log p(y|f1, . . . , fT)] → Eq(f1)···q(fT) [log p(y|f1, . . . , fT)] (66)

Note that this approximation for Llik no longer leads to a strict negative ELBO. The marginal posterior
samples lead to independent noise in the rates, which gives smaller fluctuations in the rescaled times
compared to correlated joint posterior samples.

Temporal batching and boundary ISIs As we fit neural population in parallel and temporally
batch with fixed batch sizes, each batch will cut off ISIs at the edges. Generally, the likelihood of a
given renewal process has boundary terms to account for unobserved spikes outside the temporal range
considered, such as incomplete gamma functions in gamma renewal processes [3] or exponential
interval terms to approximate the intractable boundary terms [10, 31]. We instead choose to use the
rescaled time from the end of the last batch for initializing the rate-rescaling in a given batch, or ignore
the first and last boundary terms of the entire spike train in the first and final batches, respectively. As
mini-batching cuts the computation graph between batches, we do not back-propagate beyond the
batch cutoff and this introduces a small bias to the gradient as. For sufficiently large batch sizes and
overall spike train lengths, these boundary effects are negligible.

Spike train samples To sample from the rate-rescaled renewal processes, one first samples from
the homogeneous renewal process to obtain spike times t̃i. One then applies the transformation shown
in Fig. 5A to obtain the real spike times ti, which are modulated according to the rate function r(t).

B.4 Conditional processes

B.4.1 Raised cosine spike-history filters

The classical raised cosine basis [35] is defined by

h(t; a, c, ϕ) =
1

2
[cos (min (max (a log (t+ c)− ϕ,−π), π)) + 1] (67)

7

where we can build filters as linear combinations

h(t) =
∑
l

wl h(t; al, cl, ϕl) (68)

The parameters a, c and ϕ are fixed while the weights w are learned.

B.4.2 Nonparametric spike-history filters

Recent work [11] has explored modeling spike-history filters in a nonparametric manner. One can use
a Gaussian process with suitable properties for neural data to infer the filter shape in a probabilistic
manner. The decaying squared exponential (DSE) kernel encodes suitable inductive biases similar to
the ones discussed for our time warping procedure (Eq. 12)

k(t, t′;σ, β, l, lβ) = σ2 e−(t−β)2/(2l2β) e−(t′−β)2/(2l2β) e−(t−t′)2/(2l2) (69)

where β and lengthscale lβ control the non-stationary aspects of the kernel. Note for lβ → ∞, we
recover the stationary squared exponential kernel. The GP mean function used is the same as in
Eq. 14, now placed on the spike-history time

m(t) = am e−t/τm + bm (70)

B.4.3 Generative model structure

Hierarchical GPs The likelihood term Llik now involves performing a 1D convolution on the
spike train. For the nonparametric filters, we sample a filter function h(t) from the GP posterior
and use this same sample throughout the spike train convolution. To handle the resulting intractable
hierarchical model, SVGPs are used within the general variational inference framework discussed in
Appendix B.2. Note this involves adding an additional KL divergence term of the spike-history filter
GP to LKL. The parametric raised cosine basis filters simply use point estimates of their parameters,
which are treated as hyperparameters of the likelihood.

Spike train samples and temporal batching Temporal batching is straight-forward here as the
point process likelihood factorizes across time given the CIF, which we can compute if we condition
on the past spike train window. Related to this, we can generate spike trains from this model by using
an initial spike-history segment and sampling autoregressively using the CIF.

B.5 Bayesian nonparametric non-renewal processes

B.5.1 Time warping

For time warping in Eq. 12, we set τw as the empirical mean ISI from the training dataset. The
time-warped mean function Eq. 14 becomes in the warped domain

m(τ̃) = am (1− τ̃)
τw/τm + bm (71)

B.5.2 Computing conditional ISI distributions and tuning curves

To compute the conditional ISI distribution Eq. 15, we need to compute the integrals appearing
in Eq. 21, now conditioned on inputs denoted by λ(t| . . .), to obtain a normalized conditional ISI
distribution. We define the integral Λ(t, ti| . . .) which we transform into the warped time domain

Λ(t, ti| . . .) =
∫ t

ti

λ(t′| . . .) dt′ =
∫ t̃

t̃i

λ(t̃′| . . .) dt̃′ =
∫ τ̃(t−ti)

0

ef(τ̃
′,...) dτ̃ ′ (72)

where for t → ∞, τ̃(t− ti) → 1. This then allows us to write the normalized Eq. 15

g(τ | . . .) = λ(t| . . .) e−Λ(t,ti|...)

1− e−Λ(∞,ti|...)
(73)

The integrals are evaluated using rescaled Gauss-Legendre quadrature points, as the integral limits
cannot exceed [0, 1] using the time warping transform. Standard Gauss-Legendre quadratues is
defined for the interval [0, 1], and for smaller intervals we linearly scale the quadrature locations

8

time t

re
sc

al
ed

 ti
m

e
̃ t

r(t)
∫r(t) dt

0

1

am
pl

itu
de

 (a
.u

.)

raised cosine basis (RCB)

0

2
RCB filter samples

−150 −125 −100 −75 −50 −25

lag (ms)

−1
0
1

DSE GP filter samples

A B S

Figure 5: Details on baseline models. (A) Rate-rescaling procedure. The cumulative integral
(orange) of a non-negative rate function (blue) define the monotonic mapping between real time t and
warped time t̃. (B) Spike-history filters in conditional point processes. The raised cosine basis (top)
is used to construct filters describing interactions with past spikes (middle). Nonparametric GP filters
using the DSE kernel encode a similar temporal structure without explicit parameterization (bottom).

while multiplying the weights by the inverse scaling factor. Note the normalization factor in the
denominator is independent of τ and simply uses the standard Gauss-Legendre quadrature method.

For a given set of target values τ∗ where we want to evaluate g(τ), we need to compute the integrals at
a different set of rescaled quadrature points for each target value. This requires us to evaluate a single
GP posterior sample f(τ̃ , . . .) at many locations, which we achieve using pathwise conditioning
(see Appendix B.1 for details). In particular, to compute samples of g(τ) we need to use the same
posterior sample for both the numerator and denominator in Eq. 73.

We generally have many τ∗ values that may only be slightly different, which leads to a large number
of rescaled quadrature point locations that are very close to each other. To make this computationally
more efficient, we compute the GP posterior samples f(τ̃ , . . .) on a regular grid [0, 1] with G grid
points and store this as a buffer of pre-computed posterior sample values. We then use linear
interpolation to obtain f(τ̃ , . . .) at all the required quadrature locations. Overall, this reduces the
required GP posterior function sample evaluations to the G grid locations as well as the standard
quadrature locations for the normalization factor in Eq. 73. Using a fine enough grid will lead to
more accurate values from the interpolation at the cost of a computing and storing a larger buffer.

The moments of g(τ) can be computed by using an outer loop of rescaled Gauss-Legendre quadratures
similar to above with the integrand as given in Eq. 16. Tuning curves of the moments as shown
in Fig. 3F and Fig. 4F were computed from joint tuning curve samples, which require evaluating
the same posterior ISI distribution sample conditioned on different covariate values. Obtaining all
required GP posterior function sample evaluations in a single call would lead to out-of-memory
issues, and instead we achieved this using multiple GP posterior function sample evaluation calls
while keeping the same pseudo-random number generator key.

B.5.3 Generative model structure

Sampling from the generative model. Since the history dependence is now contained in the input
covariates ∆, inference is the same as for inhomogeneous Poisson point processes when conditioned
on the full input, and the corresponding loss Eq. 18 is naturally amenable to temporal mini-batching.
Note that time warping is a feedforward transformation on the input and hence does not affect
temporal batching.

B.6 Code

The code is written in Python and utilizes JAX [6] for performing automatic differentiation and
numerical optimization for model fitting. All models were implemented from scratch, and we utilize
equinox [17] for maintaining readability and elegance of the code. In our code base repository, we
provide the code and scripts for reproducing all results in this paper.

9

C Further details on experiments

C.1 General information

Vectorization across neurons Even though our model is designed for single neuron spike trains,
we fit neural populations in parallel by vectorizing over all neurons. Each neuron has its own copy of
model (hyper)parameters. This implementation also allows straight-forward incorporation of shared
latent variables for modeling neural correlations.

Optimization hyperparameters We use the Adam [18] optimizer, where the learning rate is set
to 10−2 at the start and annealed down to 10−4 with a decay factor per epoch of 0.998 for synthetic
experiments and 0.98 for real data experiments. The stopping criterion for model fitting is when
100 epochs have elapsed and the average training loss in each epoch has decreased less than 100 for
synthetic and rat data experiments, and 101 for mouse data experiments. We also set a maximum
number of 3000 epochs, though in practice most experiments finish before this maximum is reached.
We use a temporal batch size of 10000 time points (10 s) for all models except rate-rescaled models
where we use a batch size of 30000 time points (30 s). Experiments are run with single floating point
precision, and a jitter of 10−6 is used to stabilize the Cholesky decomposition in GPs.

Parameter constraints Kernel lengthscales, variances and other positive parameters are parameter-
ized as unconstrained parameters pushed through softplus or exponential transformations. Variational
distribution covariances are parameterized with a lower triangular matrix where we enforce positive
diagonal elements at least as big as the jitter value used. Shape parameters for renewal densities were
additionally constrained to be α ≥ 10−1 for gamma and µ ≥ 10−5 for inverse Gaussian renewal
densities to ensure numerical stability.

Variational expectation evaluation During training, we use 20 Gauss-Hermite quadrature points
to evaluate the variational expectation for all models except rate-rescaled renewal processes. There,
we use one Monte Carlo sample from the marginal posterior of the GP rate function to estimate the
variational expectation of the likelihood (see Appendix B.3 for a discussion on the GP marginal
versus joint posterior sampling for rate-rescaling). For evaluating models on test data, we use 50
Gauss-Hermite quadrature points to evaluate the variational expectation terms and 10 Monte Carlo
samples for the rate-rescaled renewal processes.

Inducing point initialization Randomly initialized inducing points by picking random locations
without replacement from a D-dimensional regular grid on the input covariate space. Inducing
point locations are learned as part of the hyperparameters. Note that sparse GPs can suffer from
numerical instabilities when some inducing points get very close to each other and cause problematic
conditioning numbers, which tend to arise when the total number of inducing points is high [32].

Conditional process hyperparameters For the raised cosine filters in conditional processes
(Appendix B.4), we follow [35] and use a 150 ms window with the parameters a = 4.5, c = 9,
and ϕ = {10, 10 + 1/7, 10 + 2/7, . . . , 20} for defining our raised cosine basis consisting of 8 basis
functions (Fig. 5B top). Note these parameters are fixed and not optimized during training. The
nonparametric conditional Poisson process models spike-history filters using the GP defined in
Appendix B.4. Hyperparameters of the kernel are learned during model fitting. We use 6 inducing
points initialized uniformly along the 150 ms time lag axis of the spike-history filter.

Computing resources and reproducibility Experiments were ran for training each model or
performing analysis of fitted models on single NVIDIA GeForce RTX 2080 Ti GPUs with 11 GB of
memory. Each model fitting run can take up to 6 hours on this hardware, but is generally a lot shorter
due to the termination criterion. Analysis scripts of fitted models were also run on the same hardware
and can take up to 8 hours for the most compute-intensive tasks. The code provided contains a
bash script with the exact commands and random seeds that were run to generate the results in this
paper. Datasets were taken from the public online database https://crcns.org/, with specific
instructions on which datasets to use and preprocessing scripts provided in the code repository.

Neural data preprocessing Electrophysiological neural recordings typically provide spike times
at higher temporal resolution than animal behavior, the latter being inferred from video recordings

10

https://crcns.org/

of the animal. To match the input covariates and spike trains in our discrete time point process, we
upsample the behavior using Akima interpolation, which suffers less from oscillations when sharp
changes are present in the time series [2]. This leads to data sampled at 1 ms regular intervals. From
the spike trains, we also compute lagging ISIs at this temporal resolution. Note they include a section
at the start of the neural recording where we have undefined lagging ISIs of higher order. To obtain
the dataset segment we use, we cut out the section at the start until we have defined lagging ISIs up
and until order K = 4. We also correct for duplicate spike counts in the 1 ms bins, which are artifacts
of spike sorting errors. The number of such duplicate spike counts was minimal, as we also selected
for cells which had a fraction of 2 ms refractory period violations less than 5%.

C.2 Validation on synthetic data

For the synthetic population shown in Fig. 2A, the densities used were (each column, top to bottom)
the gamma with α = {0.5, 1.0, 1, 5}, the log normal with µ = {0.5, 1.0, 1, 5}, and the inverse
Gaussian with σ = {0.5, 1.0, 1, 5} (equations given in Appendix A.3). Though the Poisson case (left
middle dark green) stricly has no past spike dependence in the CIF (i.e. independent of τ), the time
warping shape requires nonlinear tuning of the CIF to τ̃ .

We use 16 GP inducing points for baseline models and 48 for our NPNR process. Firing rates and
CVs from the NPNR model were computed using 30 posterior samples. For computing the condition
ISI distributions, we used G = 1000 grid points and 100 Gauss-Legendre quadrature points (see
Appendix B.5).

C.3 Neural data

Violin plots of KS p-values in Fig. 3A and Fig. 4A show kernel density estimates using the Silverman
method [29]. Instantaneous firing rates and CVs as well as tuning curves of the NPNR model
are computed using 50 posterior samples. For computing the condition ISI distributions, we use
G = 1000 grid points and 100 Gauss-Legendre quadrature points (see Appendix B.5). For calculating
the coefficient of determination shown in Fig. 3E and Fig. 4E, we use linear regression on the
instantaneous rate and CV estimates (posterior means)... Standard SVGP regression [16] using
8 inducing points with a squared exponential kernel is applied to the log rate and CV, where the
logarithmic transform helps to account for the non-stationary lengthscale of CV-rate scatter cloud
shapes along the rate axis.

Neuron selection criteria For selecting putative neurons in the neural recordings, we use the
mutual information (MI) per spike, tuning curve coherence and tuning curve sparsity measures [38],
which are computed from simple histograms of spiking activity and occupancy over binned relevant
covariates. For each bin i, we compute the number of time steps Ti when the covariates xt are located
in that bin. We also compute the total number of spikes Ni. Now we can compute the average rate ri
and relative occupancy distribution Pi

ri =
Ni

∆t Ti
, Pi =

Ti∑
i Ti

(74)

with time bin size ∆t. From the rate map ri, we obtain a smoothed rate map rsi which is given by the
convolution of a smoothing kernel with ri. Using these quantities, we get the tuning measures

MI =
∑
i

Pi ri log
ri∑

j Pj rj
, coherence =

⟨rirsi ⟩
σrσrs

, sparsity = 1−
(
∑

i Pi Ni)
2∑

i Pi N2
i

(75)

where ⟨. . .⟩ denotes the average and σ... is the standard deviation. Note the coherence is identical to
the Pearson correlation coefficient between the smoothed and original histogram rate maps.

Mouse head direction cell data We pick the wake portion in session "140313" of mouse "28"
from the mouse dataset [21, 22], which involves a freely moving mouse foraging for food with neural
recordings from anterodorsal nucleus post-subiculum. Putative head direction cells are selected based
on refractory violation fraction < 2%, head direction mutual information > 0.5 bits per spike and
head direction tuning curve sparsity > 0.2. These tuning measures are computed using a binning of
head direction into 60 equal bins. Overall, we end up with 1085970 time points for training data. As

11

10
0

10
1

10
2

learned τw

neuron index
10

0

10
1

10
2

 k
er

ne
l t

im
es

ca
le

s
fixed τw= ⟨ISI⟩

lag 0
lag 1

lag 2
lag 3

GT
P

G

CP

NPNR

A B S

Figure 6: Additional results from synthetic experiments. (A) Comparing history-dependence
ARD for fixed and learned time warping parameter τw. The interference between τw and the kernel
timescales in our model causes failure of ARD when learning τw, as kernel timescales are not longer
identifiable with effective temporal fluctuations in the log CIF. (B) Estimated rat maps from fitted
models. Each subpanel shows rate maps (brighter is higher) for one synthetic neuron, with the ground
truth (GT) on the left and grouped on the right inferred maps from the Poisson (P), conditional
Poisson with raised cosine filters (CP), rate-rescaled Gamma (G) and the NPNR model.

we have one dimension (head direction) for our behavioural covariates, we use 8 GP inducing points
for baseline model GPs and 40 for our NPNR process (additional K = 3 lagging ISI dimensions plus
the τ dimension).

Rat place cell data We pick session "ec014.468" from the rat dataset, which involves the animal
running along a linear track of 250 cm with neural recordings from hippocampal area CA1 using
silicon-based electrodes [20]. Putative place cells are selected based on refractory violation fraction
< 2%, joint x-θ mutual information > 0.5 bits per spike and joint x-θ tuning curve sparsity > 0.6,
coherence > 0.4, minimum number of spikes > 900 and more than 5 spikes in the first 100 s of the
dataset segment used. These tuning measures are computed using a binning of x and θ into 40 and
30 equal bins, respectively. The smoothing kernel for computing the coherence is a 2D factorized
Gaussian with standard deviations of 2 bins in each dimension. Overall, we end up with 1934126
time points for training data. We use 32 inducing points for baseline model GPs and 64 for our
NPNR process (additional K = 3 lagging ISI dimensions plus the τ dimension). Note that this uses
slightly more than 8 inducing points per dimension of x, which we choose to help the model capture
potentially more complicated tuning curves relevant to θ-phase precession patterns. The GP jitter is
increased to 10−5 for the nonparametric conditional Poisson process as it is less stable numerically
on this dataset.

D Additional results

D.1 Validation on synthetic data

Test expected log likelihoods On synthetic data, the expected log likelihood (ELL) values on test
data consisting of 5 different held-out synthetic datasets generated from the same ground truth model
are shown in Table 1. This shows that our model outperforms the (conditional) Poisson baselines,
while performing comparable to the Gamma renewal process (which is within model class for three
of the synthetic neurons) within dataset variability. Overall, these numbers are consistent with the
goodness-of-fit results shown in Fig. 2C.

Automatic relevance determination The time warping component of our model has a parameter
τw, which sets the time range of τ that is mapped into the range of τ̃ where the stationary GP can
meaningfully model temporal fluctuations. In the main text, we propose to look at kernel timescales

12

Table 1: Test expected log likelihoods of models on synthetic data.

Model Test ELL (nats / s)

Poisson 40.55± 2.09
Gamma renewal 47.07± 2.10
conditional Poisson 40.82± 2.22
NPNR (ours) 44.93± 2.30

to determine relevance of lagging ISI dimensions. However, τw also interferes with the effect of the
kernel timescales on the effective timescale in the τ and ∆ dimensions of the log CIF. Indeed, we see
that learning τw generally leads to loss of interpretability for the GP kernel timescales in Fig. 6A. By
fixing it to the empirical mean ISI for each neuron, we obtain a suitably normalized time warping
scheme where the GP kernel lengthscales are identifiable with temporal fluctuations of the log CIF,
and hence the relevance of lagging ISI dimensions.

Rate map estimation Visually, the inferred rat maps for the Poisson, rate-rescaled Gamma and
nonparametric non-renewal (NPNR) models are quite close to the ground truth. The conditional
Poisson model has estimated rate maps that do not match the truth, showing the complicated effects
of the spike-history filter on the effective firing rate and smoothness of the rate profile.

D.2 Neural data

Head direction cell data We plot tuning curves in Fig. 8 for the rate and CV for all neurons in
our processed dataset. Each time point of posterior mean estimated instantaneous rates and CVs is
plotted as a dot in Fig. 7, where we only show the estimates statistics per 10 ms interval.

Place cell data We perform the same analysis as for head direction cells, but now the tuning curves
are 2D maps over x-position and θ-phase. In addition, the animal can run left-to-right or vice versa,
which we model by including the head direction covariate of the animal. Tuning curves in Fig. 10
and Fig. 11 are then computed conditioned on the head direction for each run direction. Each time
point of posterior mean estimated instantaneous rates and CVs is plotted as a dot in Fig. 9, where we
only show the estimates statistics per 10 ms interval.

Temporal kernel selection We compare Matérn kernels of different order to use as temporal
kernels in our model, as well as fixing the time warping parameter τw. From Fig. 12, we see that the
differences in performance are small. Learning τw generally bumps up the predictive performance,
but has mixed effects on the KS p-value distributions. The choice made in the main paper (Matérn-3/2
for both k(τ̃) and k(∆̃)) gives good performance in both predictive power and KS p-values across
both neural datasets.

D.3 Additional ISI statistics and variability measures

Our method captures joint lagging ISI statistics from data into g(τ |∆, . . .). This provides a more
general approach to computing correlations between consecutive rate-rescaled ISIs [23]. As a specific
example, the local coefficient of variation [28] can be computed form our model as

LV = 3

〈(
∆(i−1) −∆(i)

∆(i−1) +∆(i)

)2
〉

→ 3

∫ ∞

0

Eg(τ |∆1)

[(
∆1 − τ

∆1 + τ

)2
]
d∆1 (76)

which we can perform using Gauss-Legendre quadratures and time warping similar to Eq. 16, but
using a 2D quadrature grid as we now deal with a double integral.

13

Figure 7: Spiking variability of head direction cells. Dots represent estimated instantaneous
statistics computed using the posterior conditional ISI distributions. Linear and GP regression fits are
shown overlaid on top of the dots. Note the one-dimensional trajectory that is traced out is due to the
fact that we have 1D covariates xt (head direction).

0

1

ra
te

 (H
z)

neuron 1

0

2

neuron 10

0

20

neuron 19

0

20

neuron 28

0

2

neuron 2

0

5

neuron 11

0

20

neuron 20

0

5

neuron 29

0

10
neuron 3

0

10

neuron 12

0

5
neuron 21

0

2

neuron 30

0

2

neuron 4

0

10
neuron 13

0

10

neuron 22

0

10

neuron 31

0

5
neuron 5

0

5

neuron 14

0

10

neuron 23

0

100
neuron 32

0

5

neuron 6

0

2

neuron 15

0

10

neuron 24

0

10
neuron 33

0

10
neuron 7

0

5

neuron 16

0

5

neuron 25

0

5

neuron 8

0

10

neuron 17

0

2

4

neuron 26

0

5

neuron 9

0

20
neuron 18

0

25

neuron 27

0 2π
0

2

C
V

0

1

0

2

0

2

0

2

0

1

0

2

0

1

0

2

0

1

0

1

0

1

0

2

0

1

0

1

0

2

0

1

0

2

0

2

0

2

4

0

1

0

2

0

2

0

2

0

1

0

1

0

1

0

2

0

2

0

1

0

2

0

2

0

2

4

head direction (radians)

Figure 8: Tuning curves of head direction cells. Spike train statistics are computed from conditional
ISI distribution samples. Lines show posterior medians, and shaded areas show 95% credible intervals.

14

Figure 9: Spiking variability of place cells. Dots represent estimated instantaneous statistics
computed using the posterior conditional ISI distributions. Linear and GP regression fits are shown
overlaid on top of the dots.

0

2π
neuron 1

2.8 Hz

neuron 10
0.8 Hz

neuron 19
17.3 Hz

neuron 28
0.4 Hz

neuron 2
37.1 Hz

neuron 11
7.7 Hz

neuron 20
9.9 Hz

neuron 29
12.4 Hz

neuron 3
7.8 Hz

neuron 12
6.1 Hz

neuron 21
0.8 Hz

neuron 30
1.0 Hz

neuron 4
1.3 Hz

neuron 13
5.7 Hz

neuron 22
9.4 Hz

neuron 31
0.4 Hz

neuron 5
1.5 Hz

neuron 14
31.0 Hz

neuron 23
0.5 Hz

neuron 32
1.3 Hz

neuron 6
1.3 Hz

neuron 15
2.3 Hz

neuron 24
14.4 Hz

neuron 33
6.1 Hz

neuron 7
6.9 Hz

neuron 16
8.4 Hz

neuron 25
0.7 Hz

neuron 34
1.1 Hz

neuron 8
18.7 Hz

neuron 17
3.2 Hz

neuron 26
1.1 Hz

neuron 35
8.4 Hz

neuron 9
7.2 Hz

neuron 18
16.6 Hz

neuron 27
1.4 Hz

0

max
 rate

1.3 0.8

3.2 0.3

3.3 0.3

3.5 0.3

2.2 0.4

2.1 0.5

3.2 0.3

4.1 0.2

3.1 0.3

3.5 0.3

3.2 0.3

4.2 0.2

2.4 0.4

3.0 0.3

3.2 0.3

1.7 0.6

2.5 0.4

6.7 0.1

2.5 0.4

3.2 0.3

3.2 0.3

2.4 0.4

3.0 0.3

1.9 0.5

4.1 0.2

4.6 0.2

3.0 0.3

2.0 0.5

4.4 0.2

2.3 0.4

2.2 0.4

1.8 0.6

3.0 0.3

4.9 0.2

2.5 0.4

min

1

max
 CV

50 cm
x position along linear track

LF
P
θ-

ph
as

e

Figure 10: Tuning curves of place cells for rat running left-to-right. Heat maps show posterior
mean values of spike train statistics computed from the conditional ISI distribution samples.

15

0

2π
neuron 1

2.8 Hz

neuron 10
0.7 Hz

neuron 19
3.1 Hz

neuron 28
0.2 Hz

neuron 2
2.4 Hz

neuron 11
1.2 Hz

neuron 20
0.7 Hz

neuron 29
67.1 Hz

neuron 3
25.0 Hz

neuron 12
2.4 Hz

neuron 21
1.3 Hz

neuron 30
2.0 Hz

neuron 4
1.2 Hz

neuron 13
1.0 Hz

neuron 22
0.9 Hz

neuron 31
0.1 Hz

neuron 5
1.8 Hz

neuron 14
8.9 Hz

neuron 23
0.6 Hz

neuron 32
4.7 Hz

neuron 6
0.1 Hz

neuron 15
33.0 Hz

neuron 24
18.6 Hz

neuron 33
13.8 Hz

neuron 7
15.4 Hz

neuron 16
1.5 Hz

neuron 25
6.1 Hz

neuron 34
0.4 Hz

neuron 8
2.8 Hz

neuron 17
1.9 Hz

neuron 26
4.6 Hz

neuron 35
7.5 Hz

neuron 9
7.9 Hz

neuron 18
0.8 Hz

neuron 27
1.2 Hz

0

max
 rate

1.3 0.8

2.8 0.4

3.3 0.3

1.8 0.6

2.1 0.5

2.2 0.4

2.6 0.4

4.0 0.3

3.3 0.3

2.8 0.4

3.6 0.3

2.5 0.4

2.5 0.4

2.9 0.3

1.4 0.7

1.3 0.8

2.2 0.4

5.2 0.2

2.6 0.4

2.4 0.4

2.0 0.5

3.1 0.3

3.0 0.3

2.1 0.5

4.1 0.2

4.3 0.2

3.8 0.3

1.5 0.7

4.5 0.2

2.3 0.4

1.7 0.6

2.0 0.5

3.0 0.3

3.1 0.3

2.8 0.4

min

1

max
 CV

50 cm
x position along linear track

LF
P
θ-

ph
as

e

Figure 11: Tuning curves of place cells for rat running right-to-left. Heat maps show posterior
mean values of spike train statistics computed from the conditional ISI distribution samples.

10−8 10−4 100
KS p-values

matern12 -matern12

matern12 -matern32

matern32 -matern52

matern32 -matern32

matern12 -matern12

matern12 -matern32

matern32 -matern52

matern32 -matern32

420 440
test ELL (nats/s)

10−8 10−4 100
KS p-values

12.5 15.0 17.5
test ELL (nats/s)

mouse thalamus rat hippocampus

le
ar

ne
d
τ w

fix
ed

 τ
w
=
⟨IS

I⟩

Figure 12: Comparison of kernel selection for the non-renewal process. We show measures of
model fits to real data similar to the model in the main text for various temporal kernel choices in the
format k(τ̃)-k(∆̃), and fixed or learned time warping scale τw (green or blue, respectively).

16

References
[1] Adam, V., Chang, P., Khan, M. E. E., and Solin, A. (2021). Dual parameterization of sparse

variational gaussian processes. Advances in Neural Information Processing Systems, 34:11474–
11486.

[2] Akima, H. (1970). A new method of interpolation and smooth curve fitting based on local
procedures. Journal of the ACM (JACM), 17(4):589–602.

[3] Berman, M. (1981). Inhomogeneous and modulated gamma processes. Biometrika, 68(1):143–
152.

[4] Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh,
R., Szerlip, P., Horsfall, P., and Goodman, N. D. (2019). Pyro: Deep universal probabilistic
programming. The Journal of Machine Learning Research, 20(1):973–978.

[5] Borovitskiy, V., Terenin, A., Mostowsky, P., et al. (2020). Matérn gaussian processes on
riemannian manifolds. Advances in Neural Information Processing Systems, 33:12426–12437.

[6] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs.

[7] Burt, D., Rasmussen, C. E., and Van Der Wilk, M. (2019). Rates of convergence for sparse
variational gaussian process regression. In International Conference on Machine Learning, pages
862–871. PMLR.

[8] Coleman, T. P. and Sarma, S. S. (2010). A computationally efficient method for nonparametric
modeling of neural spiking activity with point processes. Neural Computation, 22(8):2002–2030.

[9] Cox, D. R. (1972). The statistical analysis of dependencies in point processes. Stochastic Point
Processes. Wiley: New York, pages 55–66.

[10] Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2007). Inferring neural firing rates
from spike trains using gaussian processes. Advances in neural information processing systems,
20.

[11] Dowling, M., Zhao, Y., and Park, I. M. (2020). Non-parametric generalized linear model. arXiv
preprint arXiv:2009.01362.

[12] Ge, H., Xu, K., and Ghahramani, Z. (2018). Turing: a language for flexible probabilistic
inference. In International conference on artificial intelligence and statistics, pages 1682–1690.
PMLR.

[13] Gerhard, F. and Gerstner, W. (2010). Rescaling, thinning or complementing? on goodness-of-
fit procedures for point process models and generalized linear models. In Advances in neural
information processing systems, pages 703–711.

[14] Gerstner, W., Kistler, W. M., Naud, R., and Paninski, L. (2014). Neuronal dynamics: From
single neurons to networks and models of cognition. Cambridge University Press.

[15] Haslinger, R., Pipa, G., and Brown, E. (2010). Discrete time rescaling theorem: determin-
ing goodness of fit for discrete time statistical models of neural spiking. Neural computation,
22(10):2477–2506.

[16] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. In Nichol-
son, A. E. and Smyth, P., editors, Proceedings of the Twenty-Ninth Conference on Uncertainty in
Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013. AUAI Press.

[17] Kidger, P. and Garcia, C. (2021). Equinox: neural networks in jax via callable pytrees and
filtered transformations. arXiv preprint arXiv:2111.00254.

[18] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

17

[19] Kucukelbir, A., Ranganath, R., Gelman, A., and Blei, D. (2015). Automatic variational inference
in stan. Advances in neural information processing systems, 28.

[20] Mizuseki, K., Sirota, A., Pastalkova, E., Diba, K., and Buzsáki, G. (2013). Multiple single
unit recordings from different rat hippocampal and entorhinal regions while the animals were
performing multiple behavioral tasks. CRCNS org.

[21] Peyrache, A. and Buzsáki, G. (2015). Extracellular recordings from multi-site silicon probes in
the anterior thalamus and subicular formation of freely moving mice. CRCNS.

[22] Peyrache, A., Lacroix, M. M., Petersen, P. C., and Buzsáki, G. (2015). Internally organized
mechanisms of the head direction sense. Nature neuroscience, 18(4):569–575.

[23] Pillow, J. W. (2009). Time-rescaling methods for the estimation and assessment of non-poisson
neural encoding models. In Advances in neural information processing systems, pages 1473–1481.

[24] Pyke, R. and Schaufele, R. (1964). Limit theorems for markov renewal processes. The Annals
of Mathematical Statistics, pages 1746–1764.

[25] Rad, K. R. and Paninski, L. (2010). Efficient, adaptive estimation of two-dimensional firing rate
surfaces via gaussian process methods. Network: Computation in Neural Systems, 21(3-4):142–
168.

[26] Rahimi, A. and Recht, B. (2007). Random features for large-scale kernel machines. Advances
in neural information processing systems, 20.

[27] Rasmussen, J. G. (2018). Lecture notes: Temporal point processes and the conditional intensity
function. arXiv preprint arXiv:1806.00221.

[28] Shinomoto, S., Miura, K., and Koyama, S. (2005). A measure of local variation of inter-spike
intervals. Biosystems, 79(1-3):67–72.

[29] Silverman, B. W. (1986). Density estimation for statistics and data analysis, volume 26. CRC
press.

[30] Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The
annals of mathematical statistics, 19(2):279–281.

[31] Teh, Y. W. and Rao, V. (2011). Gaussian process modulated renewal processes. In Advances in
Neural Information Processing Systems, pages 2474–2482.

[32] Terenin, A., Burt, D. R., Artemev, A., Flaxman, S., van der Wilk, M., Rasmussen, C. E., and
Ge, H. (2022). Numerically stable sparse gaussian processes via minimum separation using cover
trees. arXiv preprint arXiv:2210.07893.

[33] Titsias, M. (2009). Variational learning of inducing variables in sparse gaussian processes. In
Artificial Intelligence and Statistics, pages 567–574.

[34] Tompkins, A. and Ramos, F. (2018). Fourier feature approximations for periodic kernels
in time-series modelling. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32.

[35] Weber, A. I. and Pillow, J. W. (2017). Capturing the dynamical repertoire of single neurons
with generalized linear models. Neural computation, 29(12):3260–3289.

[36] Williams, C. K. and Rasmussen, C. E. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

[37] Wilson, J., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. (2020). Efficiently
sampling functions from gaussian process posteriors. In International Conference on Machine
Learning, pages 10292–10302. PMLR.

[38] Zhang, S., Schönfeld, F., Wiskott, L., and Manahan-Vaughan, D. (2014). Spatial representations
of place cells in darkness are supported by path integration and border information. Frontiers in
behavioral neuroscience, 8:222.

18

	Introduction
	Background
	Temporal point processes
	Inhomogeneous renewal processes
	Conditional point processes

	Gaussian process modulated point processes

	Method
	Generative model
	Inference

	Results
	Validation on synthetic data
	Neural data
	Mouse head direction cell data
	Rat place cell data

	Discussion
	Limitations and further work
	Conclusion and impact

	Point process theory
	Point process definitions
	Time-rescaling and Kolmogorov-Smirnov goodness-of-fit test
	Time-rescaling
	Quantile-quantile plots and dispersion
	Kolmogorov-Smirnov test

	Renewal processes
	Firing rates and ISIs
	Parametric renewal density families
	Hazard functions and asymptotic limits

	Implementation details
	Sparse variational Gaussian processes
	Gaussian processes as priors over functions
	Sparse approximation
	Posterior sampling and Matheron's rule
	Random Fourier features
	Whitened posteriors

	General variational inference framework
	Constructing probabilistic models
	Data scaling

	Rate-rescaled renewal processes
	Relation to time-rescaling and modulated renewal processes
	Time discretization
	Generative model structure

	Conditional processes
	Raised cosine spike-history filters
	Nonparametric spike-history filters
	Generative model structure

	Bayesian nonparametric non-renewal processes
	Time warping
	Computing conditional ISI distributions and tuning curves
	Generative model structure

	Code

	Further details on experiments
	General information
	Validation on synthetic data
	Neural data

	Additional results
	Validation on synthetic data
	Neural data
	Additional ISI statistics and variability measures

