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A. Proof of Theorem 4.10

Left inequality

As shown in (Bauer etal., 2015), d; (R, S) < dpp(Ry, Sy)
and, since the functional distortion distance on Reeb graphs
corresponds to the first part of the functional distortion
distance of barcode transforms (Definition 4.9), we
obviously get dpp (Rf, Sg) <dpp (BF, BG).

Right inequality

Let S.: Fun(O(R),PVec) — Fun(O(R),PVec) be the
smoothing functor, defined by S.F(U) = F(U€) and
t: F — S.F be defined by +(U) = F(U C U¢). In the
following we denote an object of PVec by a tuple (I, D)
representing a set I and a functor D: I — Vec. Suppose
F and G are e-interleaved, i.e. we have the following com-
mutative diagram:

F L S.F e S F

(ak (B.p) (ae,nx (Berpe) (4)
\ \

S - S.S

5269

where o denotes the morphisms between the parameter-
izing sets and 7 denotes the morphisms between the pa-
rameterized vector spaces. Let dom: PVec — Set
be a forgetful functor defined on an object (I,D) €
PVec by dom((I,D)) := I and on a morphism
(,m): (I,D) — (I',)D') by dom((a,n)) = o
If we postcompose F with dom we obtain dom o
FU) = dom(F(U)) = mo(f~Y(U)) and dom o
FU C V) =m(f~HU) € f~1(V)). Hence, we get
dom o F = R the categorical Reeb graph correspond-
ing to (R, f). Denote by R: concreteReebgraphs —
categoricalReebgraphs the functor that sends a con-
crete Reeb graph (R, f) to the corresponding categorical
Reeb graph R (see (de Silva et al., 2016)). We now apply
dom on Equation (4) and obtain the following commutative
diagram of Set-valued functors:

R(R, f) —— S.R(R, f) —>Sge

/ / (5)

R(S,9) —— S.R(S,9) —=— SR

By Proposition 4.29 in (de Silva et al., 2016), the smooth-
ing of open sets S¢ is equivalent to the smoothing of the
underlying geometric Reeb graphs. Let T.(R, f) be the
e-thickening of (R, f) defined by T.R := R X [—¢, €] and
U (R, f) be the Reeb graph of T, (R, f) (the e-smoothing of
(R, f)). These spaces can be summarized by the following

commutative diagram:

R+ TR —% SUR
: (6)
\ Jfg/
R

where p; is the projection to the first factor and q is the
quotient map to the Reeb space. The map p; induces a
natural isomorphism R7, = SR such that

(RT.(R. )(©) = SRR, /)(U))
mo(fH(U)))

; (de Silva et al., 2016) Theorem 4.2. Moreover, the map ¢
induces a natural isomorphism R7, =—> R, such that

=(mo(/ (U)) =

(RT.(R, )(U) — RU(R, /(1))
=(mo(f21 ) " w171 (V)

; (de Silva et al., 2016) Theorem 3.15. Let h denote the
composition of the following natural isomorphisms:

h: SS R ——= RT. — R,

h(U): mo(f~H(UF)) m(fHU) D

wO(plr\ A(q)

mo(fH(U))

Applying h to Equation (5) yields

R(R, f) % RU(R, f) —Ls RUa(R, f)
h& h(B) h(a& n(Be) (8)

N o~

R(S,9) — RU(S, g) —“Ls RUse(S, g)

By Theorem 3.20 in (de Silva et al., 2016), the functor
R is one part of an equivalence between the categories of
concrete Reeb graphs and categorical Reeb graphs. If we
apply the inverse functor R™! (the display locale functor)
to Equation (8) we obtain the following e-interleaving of
Reeb graphs:

f) —5= U(R, f) —=— Uac(R, f)

\/ / ©))

(S,9) —— U(S,g) *>u2559
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Note that by the proof of Theorem 3.20 in (de Silva et al.,

2016) and the following discussion the functors R and R™!
are actually inverse to each other, i.e. R o R~! = id and
R~!oR = id. In particular, we have that R(¢) = R o
R (h(a)) = h(a),ie.,forall U, we obtain the following
commutative diagram:

ro(fHU) —2 (g1 (1))

ro(fLU) — s mo(g )y  (0)

= h(U)~!

mo(f7HU)) ———— mo(g~ 1 (U"))
using the inverse of the isomorphism h(U) in Equation (7).

By the proof of Lemma 15 in (Bauer et al., 2015), there
exist ®: R — S and ¥: S — R sucht that

1
sup  o|dg(r,r') —

(r,r"),(s,8")
eC(®,v)

dy(s,s")] <3(e+96)

(11
||f_go(1>||oc <e+d
Hg_fo\llnoo §6+5

for all sufficiently small 6 > 0. For » € R, we now show
that BF(r) is close to BG o ®(r) in the interleaving dis-
tance.

Letx > 0,t € R>¢ and B(f(r),t) C R be an open ball of
radius ¢ around f(r). Since |f(r) — go ®(r)| < e+ 4, if
K > €+ 4§, we get:

B(F(0)11) € Blgo o).+ 1)
C B(go®(r),t + k + 2¢)
CB(f(r),t+2(k+e).

(12)

Therefore, by functoriality of F and the e-interleaving be-
tween J and G in Equation (4) we obtain:

?(B(f(r),t)) IO

?(L)l

F(Blgo@(r),t+r))

?(B(f(r),t—i—Z(m—&-e)))

T?m

t+K+2€))

(bt Mttrs) (Bt4rtePttrte)

13)

If we apply dom to Equation (13) we obtain:

mo(e)

o (f_l(B(g o d(r),t+ H)))

mo(¢)

Atttk

wo(f Y(B(go®(r), t—|—l€—|—2€)))

%ﬂ+e

o (g_l(B(g od(r),t+x+ e))

SN—

(14)
Let By, (r,t) be the open ball of radius ¢ around r in
R. Since, By, (r,t) € f~'(B(f(r),t)) is by definition

path-connected, Bq,(r,t) € mo (f_l( (f(r)7t))) and,

t) = [r] the path-

since 7 € By, (r,t), we have By, (r,
). By the same argu-

component of 7 in f~Y(B(f(r),t)
ment, By (®(r),t + K +¢€) = [®(r)] € Wo(g Y(B(g o

O(r),t+ Kk + e))) Moreover, 7o(¢)([r]) = [e(r)] = [r] €

o (f_1 (B(go®(r),t+ m))) By using Equation (10) for
U = B(go®(r),t+ x) we obtain:

mo(f~H(B(go ®(r),t + K)))

W

a mo(g: H(B(g o ®(r),t + r)))

Bl
mo(9~ (Blgo ®(r),t + £ +¢)))

15
By Equation (7), h™t = mo(p1) o mo(q)~? and,( b3)/
(Bauer et al., 2015) Section 3.2, ® := p; o @s. Since
955( ) € @(Bdf(r 6)) B ( (Bdf( 6))) (Bdf(r7 6))
is path-connected and (r) ©(Byg,(r,0)), we have
that [p(r)] = fa(ps(r)] = mola)([2s(r)). Hence

)]
([p()]) = [@s(r)]-
[@(r)] = [p1o@s(r)] = mo(p1) (@
mo(@)([r]) = L= ([p(r)]) = mo(p1) © mo(q) ™ ([(r)]) =
mo(p)([Ps(r)])) = [@(r)] = awx([r]). By com-
mutativity of Equation (14), Bitpie © arin([r]) =
Birnte([P(r)]) = mo(¢)([r]) = [r]. As a consequence,
Qe © To(L)(Ba,(r,t)) = Ba,(®(r),t + k + €) and
70(1)0 Bt se(Bay (®(1), t41-+6)) = Bay (1, t+2(k+¢)).
Thus, the interleaving in Equation (13) yields the following

m0(q) By definition of ®, we have
1)(

s5(r)]). Therefore, h~1 o
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commutative diagram in Vec:

F(Ba, () —— s F(Ba, (r,t +2(s +€)))

F(L)l TF(L)

F([r])

’/tﬂm) % ([2(r
G(Ba

(B(r), t+ 5+ €))

(16)
where [r] and [®(r)] denote the topological path-
components in the respective preimages.

We now start with ®(r). Similar to Equation (12) we obtain
the following inclusions of open intervals in R:

B(go ®(r),t) € B(f(r),t+ k)
C B(f(r),t+ 1+ 2e) (17)
C B(go®(r),t+2(k+¢))

for every k > €+ 0. Therefore, by functoriality of G and the
e-interleaving between F and G in Equation (4) we obtain:

§(B(go@(r),t)) —> (B(go®(r)t+2(x + )

S“)l Tsw

S(B(f(r),t+r)) —— G(B(S0),t +r+2¢) )

%H Mt trte)

t—|—/€—|—e))

(Bttr-Pt+r)

B(f

(18)
and, by applying dom, we get:

o (gf1 (B(g o ®(r), t)))

W

m@|  mo(g7 (Blgo ®(r),t + 2 + )

0 (g*l(B(f r),t+ n))) mo(t)
Xw(})
se| w97 (BUM). 5+ 20)))
Cpprite
Wo(f_l( tJr/erﬁ)))

19)
As in the previous case, we have that By, (®(r), t) Q
g~ (B(g o ®(r),t)) is the path-component of <I>( ), i

[@(r)] = Ba, (®(r),t) € o (g H(B(g o ®(r ) and,

analogously, [r] = Bq, (r,t+r+¢€) € mo (f—l(B(f(r),zH—

A+e))).

U = B(f(r),t+k), ¢ from the interleaving in Equation (9)
and f to obtain:

We now use the analog of Equation (10) for

T

)
o ()
5 mo(foH(B(f(r),t + 5)))
Bt
)

/

(9~ (B(f(r),t+x
)yt+rK+e

mo(fHB(f(r
(20)

By Equation (7), h™! = wo(p1) o mo(q)™!
and, ‘tzy (Bauer et al., 2015) Sgction 32, ¥ =
pr o Gy Since Us(B(r) € (Ba,(®(r),8) =
¢ ((Ba, (B(r),5))).  $(Ba,(®(r).8) is path-
connected ‘and Y(P(r)) € ¥(By (<I>(r) J)), we have that

o(0) ([55(2(r))). Hence,

[ (@] = la(vs(®(r)))] = mo

mo(q) "' ([¥(®(r))]) = [¥s(2(r))]. By definition of ¥, we
have [¥(®(r))] = [p1 0 ¥s(®(r))] = 7ro(201)([1/J<s(<1>(7“))])-
Therefore, h™" o mo()([2(r)]) = A ([Y(2(r))]) =
mo(p1) © mo(q)” ([ (@(r))) = ( D([Ws(@(r))]) =
[U(2(r))] = Bear ([2(r)])-

From Equation (11) we get 2|ds(r, ¥ o ®(r))| < 3(e + 6).
If K + € > 6(e + ), then By, (r,6(c +6)) C By, (r,t +
k+e€) C fTHB(f(r),t + K + ¢€)). Hence, since r and
Vod(r) € By, (r,t+r+e¢)and By, (r,t + £ + €) is path-
connected, [r] = [¥o®(r)] € mo (f~H(B(f(r), t+r+e€))).

Therefore, starting with By (®(r),t) = [r], we obtain
Birr 0 mo()([R(r)]) = Biyr([B(r)]) = [¥o &(r)] =

[r] = By, (r,t + K + €). This implies that we can extract
the following commutative diagram from Equation (18):

O G (Ba, (@), +2(k + €))

TG@)

G([@(r)])

Pt ([2(1)]) %ﬂ(["])

F (B, (r,t+ £ +¢))

G (Bg,(®(r),1))

G( )J

o(r))

G(v)

(21)
Now we define
pe: F(Bg,(r,t)) = G(Ba, (®(r),t + £ +€))
[t = Negr © F(0) 22)

vi: G(Bq, (®(r),t)) = F(Ba,(r,t + £ +€))
Vi = pryr 0 G(1)

Since J and G are e-interleaved we have the following com-



Submission and Formatting Instructions for ICML 2023

mutative diagram

(f(r),t)) B (B(g o ®(r),t+ n))
f)

F(1)
(bt roMttr)
S(

5(B
(cve,me
S(B(f(r),t +e)) S0, S(B(go®(r),t+r+e))

(23)
Following the component By, (r,t) we get

F(u)

F (B, (r,1)) F([r])

ml J'flwn

G(...) — 2 G(By, (@), t+ i+ )
(24
This implies that the map p; = 14 © F(1) = G(1) o 1.
Analogously we obtain that v; = p;1,; 0 G(t) = F(¢) o p.
Moreover, for s < t € R, the following diagram and its
analog for v obviously commute:

F(Ba,(r,5)) ——— s F(Ba,(r,t)

ba| L

G(Bay (B(r),s + 5+ ) 2 G(Ba, (B(r),t + 5 +¢)

(25)
Combining these results with Equation (16) and Equa-
tion (21), we obtain the following (x + €)-interleaving:

F(Bay (r,1)) G(Ba, (®(r), 1))
\ J/
F(u) v e G(v)
J \;
F(Ba,(r,t+ £ +¢)) G(Ba, (®(r),t+ £ +e¢))
\ J/
F(u) Vitrte Httrte G(v)
J K
F(Ba; (r,t+2(k +€))) G(Ba, (®(r),t + 2(k + €)))
(26)

Hence, BF(r) and BG(®(r)) are (x + €)-interleaved
for every kK > b5e + 60. Since inf{k + € |
k > be + 65andd > 0} = 6¢ we finally obtain
d;(BF(r), BG(®(r))) < 6e. By symmetry, we analo-
gously obtain d; (BF (¥(s)), BG(s)) < 6e. Together with
Equation (11), these bounds imply the theorem.



