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A. Proof of Theorem 4.10
Left inequality
As shown in (Bauer et al., 2015), dI

�
R,S

�
 dFD

�
Rf , Sg

�

and, since the functional distortion distance on Reeb graphs
corresponds to the first part of the functional distortion
distance of barcode transforms (Definition 4.9), we
obviously get dFD

�
Rf , Sg

�
 dFD

�
BF,BG

�
.

Right inequality
Let S✏ : Fun(O(R),PVec) ! Fun(O(R),PVec) be the
smoothing functor, defined by S✏F(U) := F(U ✏) and
◆ : F ! S✏F be defined by ◆(U) := F(U ✓ U ✏). In the
following we denote an object of PVec by a tuple (I,D)
representing a set I and a functor D : I ! Vec. Suppose
F and G are ✏-interleaved, i.e. we have the following com-
mutative diagram:

F S✏F S2✏F

G S✏G S2✏G

◆

(↵,⌘)

◆✏

(↵✏,⌘✏)

◆

(�,⇢) (�✏,⇢✏)

◆✏

(4)

where ↵ denotes the morphisms between the parameter-
izing sets and ⌘ denotes the morphisms between the pa-
rameterized vector spaces. Let dom : PVec ! Set
be a forgetful functor defined on an object (I,D) 2
PVec by dom

�
(I,D)

�
:= I and on a morphism

(↵, ⌘) : (I,D) ! (I 0, D0) by dom
�
(↵, ⌘)

�
:= ↵.

If we postcompose F with dom we obtain dom �
F(U) = dom(F(U)) = ⇡0(f�1(U)) and dom �
F(U ✓ V ) = ⇡0(f�1(U) ✓ f�1(V )). Hence, we get
dom � F = R the categorical Reeb graph correspond-
ing to (R, f). Denote by R : concreteReebgraphs !
categoricalReebgraphs the functor that sends a con-
crete Reeb graph (R, f) to the corresponding categorical
Reeb graph R (see (de Silva et al., 2016)). We now apply
dom on Equation (4) and obtain the following commutative
diagram of Set-valued functors:

R(R, f) S✏R(R, f) S2✏R(R, f)

R(S, g) S✏R(S, g) S2✏R(S, g)

◆

↵

◆✏

↵✏

◆

� �✏

◆✏

(5)

By Proposition 4.29 in (de Silva et al., 2016), the smooth-
ing of open sets S✏ is equivalent to the smoothing of the
underlying geometric Reeb graphs. Let T✏(R, f) be the
✏-thickening of (R, f) defined by T✏R := R ⇥ [�✏, ✏] and
U✏(R, f) be the Reeb graph of T✏(R, f) (the ✏-smoothing of
(R, f)). These spaces can be summarized by the following

commutative diagram:

R T✏R U✏R

R
f

p1

f̂✏

q

f✏

(6)

where p1 is the projection to the first factor and q is the
quotient map to the Reeb space. The map p1 induces a
natural isomorphism RT✏ =) S✏R such that

⇣
RT✏(R, f)(U) �! S✏R(R, f)(U)

⌘

=
⇣
⇡0(f̂

�1

✏ (U))
⇡0(p1)����! ⇡0(f

�1(U ✏))
⌘

; (de Silva et al., 2016) Theorem 4.2. Moreover, the map q
induces a natural isomorphism RT✏ =) RU✏ such that

⇣
RT✏(R, f)(U) ! RU✏(R, f)(U)

⌘

=
⇣
⇡0(f̂

�1

✏ (U))
⇡0(q)���! ⇡0(f

�1

✏ (U))
⌘

; (de Silva et al., 2016) Theorem 3.15. Let h denote the
composition of the following natural isomorphisms:

h : S✏R RT✏ RU✏

h(U) : ⇡0(f�1(U ✏)) ⇡0(f�1

✏ (U))

⇡0(f̂�1

✏ (U))

⇡0(p1)
�1 ⇡0(q)

(7)

Applying h to Equation (5) yields

R(R, f) RU✏(R, f) RU2✏(R, f)

R(S, g) RU✏(S, g) RU2✏(S, g)

h(◆)

h(↵)

h(◆✏)

h(↵✏)

h(◆)

h(�) h(�✏)

h(◆✏)

(8)

By Theorem 3.20 in (de Silva et al., 2016), the functor
R is one part of an equivalence between the categories of
concrete Reeb graphs and categorical Reeb graphs. If we
apply the inverse functor R�1 (the display locale functor)
to Equation (8) we obtain the following ✏-interleaving of
Reeb graphs:

(R, f) U✏(R, f) U2✏(R, f)

(S, g) U✏(S, g) U2✏(S, g)

◆

'

◆✏

'✏

◆

  ✏

◆✏

(9)
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Note that by the proof of Theorem 3.20 in (de Silva et al.,
2016) and the following discussion the functors R and R�1

are actually inverse to each other, i.e. R � R�1 = id and
R�1 � R = id. In particular, we have that R(') = R �
R�1

�
h(↵)

�
= h(↵), i.e. , for all U , we obtain the following

commutative diagram:

⇡0(f�1(U)) ⇡0(g�1

✏ (U))

⇡0(f�1(U)) ⇡0(g�1

✏ (U))

⇡0(f�1(U)) ⇡0(g�1(U ✏))

⇡0(')

= =

h(↵)

= h(U)
�1

↵

(10)

using the inverse of the isomorphism h(U) in Equation (7).
By the proof of Lemma 15 in (Bauer et al., 2015), there
exist � : R ! S and  : S ! R sucht that

sup
(r,r0),(s,s0)
2C(�, )

1

2
|df (r, r0)� dg(s, s

0)|  3(✏+ �)

||f � g � �||1  ✏+ �

||g � f � ||1  ✏+ �

(11)

for all sufficiently small � > 0. For r 2 R, we now show
that BF (r) is close to BG � �(r) in the interleaving dis-
tance.

Let  > 0, t 2 R�0 and B(f(r), t) ✓ R be an open ball of
radius t around f(r). Since |f(r) � g � �(r)|  ✏ + �, if
 > ✏+ �, we get:

B
�
f(r), t

�
✓ B

�
g � �(r), t+ 

�

✓ B
�
g � �(r), t+ + 2✏

�

✓ B
�
f(r), t+ 2(+ ✏)

�
.

(12)

Therefore, by functoriality of F and the ✏-interleaving be-
tween F and G in Equation (4) we obtain:

F

⇣
B
�
f(r), t

�⌘
F

⇣
B
�
f(r), t+ 2(+ ✏)

�⌘

F

⇣
B
�
g � �(r), t+ 

�⌘ ⇣
B
�
g � �(r), t+ + 2✏

�⌘

G

⇣
B
�
g � �(r), t+ + ✏

�⌘

F(◆)

F(◆)

F(◆)

(↵t+ ,⌘t+)

F(◆)

(�t++✏ ,⇢t++✏)

(13)

If we apply dom to Equation (13) we obtain:

⇡0

⇣
f�1

�
B(f(r), t)

�⌘

⇡0

⇣
f�1

�
B(f(r), t+ 2(+ ✏))

�⌘

⇡0

⇣
f�1

�
B(g � �(r), t+ )

�⌘

⇡0

⇣
f�1

�
B(g � �(r), t+ + 2✏)

�⌘

⇡0

⇣
g�1

�
B(g � �(r), t+ + ✏)

�⌘

⇡0(◆)

⇡0(◆)

⇡0(◆)

↵t+

⇡0(◆)

�t++✏

(14)
Let Bdf (r, t) be the open ball of radius t around r in
R. Since, Bdf (r, t) ✓ f�1(B(f(r), t)) is by definition

path-connected, Bdf (r, t) 2 ⇡0
⇣
f�1

�
B(f(r), t)

�⌘
and,

since r 2 Bdf (r, t), we have Bdf (r, t) = [r] the path-
component of r in f�1(B(f(r), t)). By the same argu-
ment, Bdg (�(r), t +  + ✏) = [�(r)] 2 ⇡0

⇣
g�1

�
B(g �

�(r), t+ + ✏)
�⌘

. Moreover, ⇡0(◆)([r]) = [◆(r)] = [r] 2

⇡0
⇣
f�1

�
B(g ��(r), t+ )

�⌘
. By using Equation (10) for

U = B(g � �(r), t+ ) we obtain:

⇡0
�
f�1(B(g � �(r), t+ ))

�

⇡0
�
g�1

✏ (B(g � �(r), t+ ))
�

⇡0
�
g�1(B(g � �(r), t+ + ✏))

�

⇡0(')

↵

h�1

(15)
By Equation (7), h�1 := ⇡0(p1) � ⇡0(q)�1 and, by
(Bauer et al., 2015) Section 3.2, � := p1 � '̃�. Since
'̃�(r) 2 '(Bdf (r, �)) = q�1

�
'(Bdf (r, �))

�
, '(Bdf (r, �))

is path-connected and '(r) 2 '(Bdf (r, �)), we have
that ['(r)] = [q('̃�(r))] = ⇡0(q)(['̃�(r)]). Hence,
⇡0(q)�1(['(r)]) = ['̃�(r)]. By definition of �, we have
[�(r)] = [p1 � '̃�(r)] = ⇡0(p1)(['̃�(r)]). Therefore, h�1 �
⇡0(')([r]) = h�1(['(r)]) = ⇡0(p1) � ⇡0(q)�1(['(r)]) =
⇡0(p1)(['̃�(r)]) = [�(r)] = ↵t+([r]). By com-
mutativity of Equation (14), �t++✏ � ↵t+([r]) =
�t++✏([�(r)]) = ⇡0(◆)([r]) = [r]. As a consequence,
↵t+ � ⇡0(◆)(Bdf (r, t)) = Bdg (�(r), t +  + ✏) and
⇡0(◆)��t++✏(Bdg (�(r), t++✏)) = Bdf (r, t+2(+✏)).
Thus, the interleaving in Equation (13) yields the following
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commutative diagram in Vec:

F
�
Bdf (r, t)

�
F
�
Bdf (r, t+ 2(+ ✏))

�

F ([r]) F ([r])

G
�
Bdg (�(r), t+ + ✏)

�

F (◆)

F (◆)

⌘t+([r])

F (◆)

F (◆)

⇢t++✏([�(r)])

(16)
where [r] and [�(r)] denote the topological path-
components in the respective preimages.

We now start with �(r). Similar to Equation (12) we obtain
the following inclusions of open intervals in R:

B
�
g � �(r), t

�
✓ B

�
f(r), t+ 

�

✓ B
�
f(r), t+ + 2✏

�

✓ B
�
g � �(r), t+ 2(+ ✏)

�
(17)

for every  > ✏+ �. Therefore, by functoriality of G and the
✏-interleaving between F and G in Equation (4) we obtain:

G

⇣
B
�
g � �(r), t

�⌘
G

⇣
B
�
g � �(r), t+ 2(+ ✏)

�⌘

G

⇣
B
�
f(r), t+ 

�⌘
G

⇣
B
�
f(r), t+ + 2✏

�⌘

F

⇣
B
�
f(r), t+ + ✏

�⌘

G(◆)

G(◆)

G(◆)

(�t+ ,⇢t+)

G(◆)

(↵t++✏ ,⌘t++✏)

(18)
and, by applying dom, we get:

⇡0

⇣
g�1

�
B(g � �(r), t)

�⌘

⇡0

⇣
g�1

�
B(g � �(r), t+ 2(+ ✏))

�⌘

⇡0

⇣
g�1

�
B(f(r), t+ )

�⌘

⇡0

⇣
g�1

�
B(f(r), t+ + 2✏)

�⌘

⇡0

⇣
f�1

�
B(f(r), t+ + ✏)

�⌘

⇡0(◆)

⇡0(◆)

⇡0(◆)

�t+

⇡0(◆)

↵t++✏

(19)
As in the previous case, we have that Bdg (�(r), t) ✓
g�1

�
B(g � �(r), t)

�
is the path-component of �(r), i.e.

[�(r)] = Bdg (�(r), t) 2 ⇡0
⇣
g�1

�
B(g � �(r), t)

�⌘
and,

analogously, [r] = Bdf (r, t++✏) 2 ⇡0
⇣
f�1

�
B(f(r), t+

 + ✏)
�⌘

. We now use the analog of Equation (10) for
U = B(f(r), t+),  from the interleaving in Equation (9)
and � to obtain:

⇡0
�
g�1(B(f(r), t+ ))

�

⇡0
�
f�1

✏ (B(f(r), t+ ))
�

⇡0
�
f�1(B(f(r), t+ + ✏))

�

⇡0( )

�

h�1

(20)
By Equation (7), h�1 := ⇡0(p1) � ⇡0(q)�1

and, by (Bauer et al., 2015) Section 3.2,  :=
p1 �  ̃�. Since  ̃�(�(r)) 2  (Bdg (�(r), �)) =
q�1

�
 (Bdg (�(r), �))

�
,  (Bdg (�(r), �)) is path-

connected and  (�(r)) 2  (Bdg (�(r), �)), we have that
[ (�(r))] = [q( ̃�(�(r)))] = ⇡0(q)([ ̃�(�(r))]). Hence,
⇡0(q)�1([ (�(r))]) = [ ̃�(�(r))]. By definition of  , we
have [ (�(r))] = [p1 �  ̃�(�(r))] = ⇡0(p1)([ ̃�(�(r))]).
Therefore, h�1 � ⇡0( )([�(r)]) = h�1([ (�(r))]) =
⇡0(p1) � ⇡0(q)�1([ (�(r))]) = ⇡0(p1)([ ̃�(�(r))]) =
[ (�(r))] = �t+([�(r)]).

From Equation (11) we get 1

2
|df (r, � �(r))|  3(✏+ �).

If  + ✏ > 6(✏ + �), then Bdf (r, 6(✏ + �)) ✓ Bdf (r, t +
 + ✏) ✓ f�1

�
B(f(r), t +  + ✏)

�
. Hence, since r and

 ��(r) 2 Bdf (r, t+ + ✏) and Bdf (r, t+ + ✏) is path-
connected, [r] = [ ��(r)] 2 ⇡0

�
f�1(B(f(r), t++✏))

�
.

Therefore, starting with Bdg (�(r), t) = [r], we obtain
�t+ � ⇡0(◆)([�(r)]) = �t+([�(r)]) = [ � �(r)] =
[r] = Bdf (r, t +  + ✏). This implies that we can extract
the following commutative diagram from Equation (18):

G
�
Bdg (�(r), t)

�
G
�
Bdg (�(r), t+ 2(+ ✏))

�

G([�(r)]) G([�(r)])

F
�
Bdf (r, t+ + ✏)

�

G(◆)

G(◆)

⇢t+([�(r)])

G(◆)

G(◆)

⌘t++✏([r])

(21)
Now we define

µt : F
�
Bdf (r, t)

�
! G

�
Bdg (�(r), t+ + ✏)

�

µt := ⌘t+ � F (◆)

⌫t : G
�
Bdg (�(r), t)

�
! F

�
Bdf (r, t+ + ✏)

�

⌫t := ⇢t+ �G(◆)

(22)

Since F and G are ✏-interleaved we have the following com-
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mutative diagram

F
�
B(f(r), t)

�
F
�
B(g � �(r), t+ )

�

G
�
B(f(r), t+ ✏)

�
G
�
B(g � �(r), t+ + ✏)

�

F(◆)

(↵t,⌘t) (↵t+,⌘t+)

G(◆)

(23)
Following the component Bdf (r, t) we get

F
�
Bdf (r, t)

�
F
�
[r]

�

G
�
. . .

�
G
�
Bdg (�(r), t+ + ✏)

�

F (◆)

⌘t ⌘t+

G(◆)

(24)
This implies that the map µt = ⌘t+ � F (◆) = G(◆) � ⌘t.
Analogously we obtain that ⌫t = ⇢t+ �G(◆) = F (◆) � ⇢t.
Moreover, for s < t 2 R�0, the following diagram and its
analog for ⌫ obviously commute:

F
�
Bdf (r, s)

�
F
�
Bdf (r, t)

�

G
�
Bdg (�(r), s+ + ✏)

�
G
�
Bdg (�(r), t+ + ✏)

�

F (◆)

µs µt

G(◆)

(25)
Combining these results with Equation (16) and Equa-
tion (21), we obtain the following (+ ✏)-interleaving:

F
�
Bdf (r, t)

�
G
�
Bdg (�(r), t)

�

F
�
Bdf (r, t+ + ✏)

�
G
�
Bdg (�(r), t+ + ✏)

�

F
�
Bdf (r, t+ 2(+ ✏))

�
G
�
Bdg (�(r), t+ 2(+ ✏))

�

F (◆) µt G(◆)⌫t

F (◆) µt++✏ G(◆)⌫t++✏

(26)
Hence, BF (r) and BG(�(r)) are ( + ✏)-interleaved
for every  > 5✏ + 6�. Since inf{ + ✏ |
 > 5✏ + 6� and � > 0} = 6✏, we finally obtain
dI
�
BF (r), BG(�(r))

�
 6✏. By symmetry, we analo-

gously obtain dI
�
BF ( (s)), BG(s)

�
 6✏. Together with

Equation (11), these bounds imply the theorem.


