## A. Proof of Theorem 4.10

## Left inequality

As shown in (Bauer et al., 2015), $d_{I}(R, S) \leq d_{F D}\left(R_{f}, S_{g}\right)$ and, since the functional distortion distance on Reeb graphs corresponds to the first part of the functional distortion distance of barcode transforms (Definition 4.9), we obviously get $d_{F D}\left(R_{f}, S_{g}\right) \leq d_{F D}(B F, B G)$.

## Right inequality

Let $S_{\epsilon}: \operatorname{Fun}(\mathcal{O}(\mathbb{R}), \mathbf{P V e c}) \rightarrow \operatorname{Fun}(\mathcal{O}(\mathbb{R}), \mathbf{P V e c})$ be the smoothing functor, defined by $S_{\epsilon} \mathcal{F}(U):=\mathcal{F}\left(U^{\epsilon}\right)$ and $\iota: \mathcal{F} \rightarrow S_{\epsilon} \mathcal{F}$ be defined by $\iota(U):=\mathcal{F}\left(U \subseteq U^{\epsilon}\right)$. In the following we denote an object of PVec by a tuple $(I, D)$ representing a set $I$ and a functor $D: I \rightarrow$ Vec. Suppose $\mathcal{F}$ and $\mathcal{G}$ are $\epsilon$-interleaved, i.e. we have the following commutative diagram:

where $\alpha$ denotes the morphisms between the parameterizing sets and $\eta$ denotes the morphisms between the parameterized vector spaces. Let dom: PVec $\rightarrow$ Set be a forgetful functor defined on an object $(I, D) \in$ PVec by $\operatorname{dom}((I, D)):=I$ and on a morphism $(\alpha, \eta):(I, D) \quad \rightarrow \quad\left(I^{\prime}, D^{\prime}\right)$ by $\operatorname{dom}((\alpha, \eta)) \quad:=\alpha$. If we postcompose $\mathcal{F}$ with dom we obtain dom $\circ$ $\mathcal{F}(U)=\operatorname{dom}(\mathcal{F}(U))=\pi_{0}\left(f^{-1}(U)\right)$ and $\operatorname{dom} \circ$ $\mathcal{F}(U \subseteq V)=\pi_{0}\left(f^{-1}(U) \subseteq f^{-1}(V)\right)$. Hence, we get dom $\circ \mathcal{F}=\mathcal{R}$ the categorical Reeb graph corresponding to $(R, f)$. Denote by $\mathbf{R}$ : concreteReebgraphs $\rightarrow$ categoricalReebgraphs the functor that sends a concrete Reeb graph $(R, f)$ to the corresponding categorical Reeb graph $\mathcal{R}$ (see (de Silva et al., 2016)). We now apply dom on Equation (4) and obtain the following commutative diagram of Set-valued functors:


By Proposition 4.29 in (de Silva et al., 2016), the smoothing of open sets $S_{\epsilon}$ is equivalent to the smoothing of the underlying geometric Reeb graphs. Let $T_{\epsilon}(R, f)$ be the $\epsilon$-thickening of $(R, f)$ defined by $T_{\epsilon} R:=R \times[-\epsilon, \epsilon]$ and $\mathcal{U}_{\epsilon}(R, f)$ be the Reeb graph of $T_{\epsilon}(R, f)$ (the $\epsilon$-smoothing of $(R, f))$. These spaces can be summarized by the following
commutative diagram:

where $p_{1}$ is the projection to the first factor and $q$ is the quotient map to the Reeb space. The map $p_{1}$ induces a natural isomorphism $\mathbf{R} T_{\epsilon} \Longrightarrow S_{\epsilon} \mathbf{R}$ such that

$$
\begin{aligned}
& \left(\mathbf{R} T_{\epsilon}(R, f)(U) \rightarrow S_{\epsilon} \mathbf{R}(R, f)(U)\right) \\
= & \left(\pi_{0}\left(\hat{f}_{\epsilon}^{-1}(U)\right) \xrightarrow{\pi_{0}\left(p_{1}\right)} \pi_{0}\left(f^{-1}\left(U^{\epsilon}\right)\right)\right)
\end{aligned}
$$

; (de Silva et al., 2016) Theorem 4.2. Moreover, the map $q$ induces a natural isomorphism $\mathbf{R} T_{\epsilon} \Longrightarrow \mathbf{R} \bigcup_{\epsilon}$ such that

$$
\begin{aligned}
& \left(\mathbf{R} T_{\epsilon}(R, f)(U) \rightarrow \mathbf{R} \cup_{\epsilon}(R, f)(U)\right) \\
= & \left(\pi_{0}\left(\hat{f}_{\epsilon}^{-1}(U)\right) \xrightarrow{\pi_{0}(q)} \pi_{0}\left(f_{\epsilon}^{-1}(U)\right)\right)
\end{aligned}
$$

; (de Silva et al., 2016) Theorem 3.15. Let $h$ denote the composition of the following natural isomorphisms:

$$
\begin{gather*}
h: S_{\epsilon} \mathbf{R} \Longrightarrow \mathbf{R} T_{\epsilon} \Longrightarrow \mathbf{R} \mathcal{U}_{\epsilon} \\
h(U): \pi_{0}\left(f^{-1}\left(U^{\epsilon}\right)\right)  \tag{7}\\
\left.\pi_{0}\left(p_{1}\right)^{-1} \pi_{\epsilon}^{-1}(U)\right) \\
\pi_{0}\left(\hat{f}_{\epsilon}^{-1}(U)\right)
\end{gather*}
$$

Applying $h$ to Equation (5) yields


By Theorem 3.20 in (de Silva et al., 2016), the functor $\mathbf{R}$ is one part of an equivalence between the categories of concrete Reeb graphs and categorical Reeb graphs. If we apply the inverse functor $\mathbf{R}^{-1}$ (the display locale functor) to Equation (8) we obtain the following $\epsilon$-interleaving of Reeb graphs:


Note that by the proof of Theorem 3.20 in (de Silva et al., 2016) and the following discussion the functors $\mathbf{R}$ and $\mathbf{R}^{-1}$ are actually inverse to each other, i.e. $\mathbf{R} \circ \mathbf{R}^{-1}=\mathrm{id}$ and $\mathbf{R}^{-1} \circ \mathbf{R}=$ id. In particular, we have that $\mathbf{R}(\varphi)=\mathbf{R} \circ$ $\mathbf{R}^{-1}(h(\alpha))=h(\alpha)$, i.e., for all $U$, we obtain the following commutative diagram:

using the inverse of the isomorphism $h(U)$ in Equation (7). By the proof of Lemma 15 in (Bauer et al., 2015), there exist $\Phi: R \rightarrow S$ and $\Psi: S \rightarrow R$ sucht that

$$
\begin{align*}
\sup _{\substack{\left(r, r^{\prime}\right),\left(s, s^{\prime}\right) \\
\in C(\Phi, \Psi)}} \frac{1}{2}\left|d_{f}\left(r, r^{\prime}\right)-d_{g}\left(s, s^{\prime}\right)\right| & \leq 3(\epsilon+\delta)  \tag{11}\\
\|f-g \circ \Phi\|_{\infty} & \leq \epsilon+\delta \\
\|g-f \circ \Psi\|_{\infty} & \leq \epsilon+\delta
\end{align*}
$$

for all sufficiently small $\delta>0$. For $r \in R$, we now show that $B F(r)$ is close to $B G \circ \Phi(r)$ in the interleaving distance.

Let $\kappa>0, t \in \mathbb{R}_{\geq 0}$ and $B(f(r), t) \subseteq \mathbb{R}$ be an open ball of radius $t$ around $f(r)$. Since $|f(r)-g \circ \Phi(r)| \leq \epsilon+\delta$, if $\kappa>\epsilon+\delta$, we get:

$$
\begin{align*}
B(f(r), t) & \subseteq B(g \circ \Phi(r), t+\kappa) \\
& \subseteq B(g \circ \Phi(r), t+\kappa+2 \epsilon)  \tag{12}\\
& \subseteq B(f(r), t+2(\kappa+\epsilon))
\end{align*}
$$

Therefore, by functoriality of $\mathcal{F}$ and the $\epsilon$-interleaving between $\mathcal{F}$ and $\mathcal{G}$ in Equation (4) we obtain:

$$
\begin{align*}
& \mathcal{F}(B(f(r), t)) \xrightarrow{\mathcal{F}(\iota)} \mathcal{F}(B(f(r), t+2(\kappa+\epsilon))) \\
& \mathcal{F}(\iota) \downarrow \quad \uparrow_{\mathcal{F}(\iota)} \\
& \mathcal{F}(B(g \circ \Phi(r), t+\kappa)) \xrightarrow{\mathcal{F}(\iota)}(B(g \circ \Phi(r), t+\kappa+2 \epsilon)) \\
& \left(\alpha_{t+\kappa}, \eta_{t+\kappa}\right) \searrow \\
& \mathcal{G}(B(g \circ \Phi(r), t+\kappa+\epsilon)) \tag{13}
\end{align*}
$$

If we apply dom to Equation (13) we obtain:


Let $B_{d_{f}}(r, t)$ be the open ball of radius $t$ around $r$ in $R$. Since, $B_{d_{f}}(r, t) \subseteq f^{-1}(B(f(r), t))$ is by definition path-connected, $B_{d_{f}}(r, t) \in \pi_{0}\left(f^{-1}(B(f(r), t))\right)$ and, since $r \in B_{d_{f}}(r, t)$, we have $B_{d_{f}}(r, t)=[r]$ the pathcomponent of $r$ in $f^{-1}(B(f(r), t))$. By the same argument, $B_{d_{g}}(\Phi(r), t+\kappa+\epsilon)=[\Phi(r)] \in \pi_{0}\left(g^{-1}(B(g \circ\right.$ $\Phi(r), t+\kappa+\epsilon))$. Moreover, $\pi_{0}(\iota)([r])=[\iota(r)]=[r] \in$ $\pi_{0}\left(f^{-1}(B(g \circ \Phi(r), t+\kappa))\right)$. By using Equation (10) for $U=B(g \circ \Phi(r), t+\kappa)$ we obtain:


By Equation (7), $h^{-1}:=\pi_{0}\left(p_{1}\right) \circ \pi_{0}(q)^{-1}$ and, by (Bauer et al., 2015) Section 3.2, $\Phi:=p_{1} \circ \tilde{\varphi}_{\delta}$. Since $\tilde{\varphi}_{\delta}(r) \in \bar{\varphi}\left(B_{d_{f}}(r, \delta)\right)=q^{-1}\left(\varphi\left(B_{d_{f}}(r, \delta)\right)\right), \varphi\left(B_{d_{f}}(r, \delta)\right)$ is path-connected and $\varphi(r) \in \varphi\left(B_{d_{f}}(r, \delta)\right)$, we have that $[\varphi(r)]=\left[q\left(\tilde{\varphi}_{\delta}(r)\right)\right]=\pi_{0}(q)\left(\left[\tilde{\varphi}_{\delta}(r)\right]\right)$. Hence, $\pi_{0}(q)^{-1}([\varphi(r)])=\left[\tilde{\varphi}_{\delta}(r)\right]$. By definition of $\Phi$, we have $[\Phi(r)]=\left[p_{1} \circ \tilde{\varphi}_{\delta}(r)\right]=\pi_{0}\left(p_{1}\right)\left(\left[\tilde{\varphi}_{\delta}(r)\right]\right)$. Therefore, $h^{-1} \circ$ $\pi_{0}(\varphi)([r])=h^{-1}([\varphi(r)])=\pi_{0}\left(p_{1}\right) \circ \pi_{0}(q)^{-1}([\varphi(r)])=$ $\pi_{0}\left(p_{1}\right)\left(\left[\tilde{\varphi}_{\delta}(r)\right]\right)=[\Phi(r)]=\alpha_{t+\kappa}([r])$. By commutativity of Equation (14), $\beta_{t+\kappa+\epsilon} \circ \alpha_{t+\kappa}([r])=$ $\beta_{t+\kappa+\epsilon}([\Phi(r)])=\pi_{0}(\iota)([r])=[r]$. As a consequence, $\alpha_{t+\kappa} \circ \pi_{0}(\iota)\left(B_{d_{f}}(r, t)\right)=B_{d_{g}}(\Phi(r), t+\kappa+\epsilon)$ and $\pi_{0}(\iota) \circ \beta_{t+\kappa+\epsilon}\left(B_{d_{g}}(\Phi(r), t+\kappa+\epsilon)\right)=B_{d_{f}}(r, t+2(\kappa+\epsilon))$. Thus, the interleaving in Equation (13) yields the following
commutative diagram in Vec:

where $[r]$ and $[\Phi(r)]$ denote the topological pathcomponents in the respective preimages.

We now start with $\Phi(r)$. Similar to Equation (12) we obtain the following inclusions of open intervals in $\mathbb{R}$ :

$$
\begin{align*}
B(g \circ \Phi(r), t) & \subseteq B(f(r), t+\kappa) \\
& \subseteq B(f(r), t+\kappa+2 \epsilon)  \tag{17}\\
& \subseteq B(g \circ \Phi(r), t+2(\kappa+\epsilon))
\end{align*}
$$

for every $\kappa>\epsilon+\delta$. Therefore, by functoriality of $\mathcal{G}$ and the $\epsilon$-interleaving between $\mathcal{F}$ and $\mathcal{G}$ in Equation (4) we obtain:

$$
\begin{gather*}
\mathcal{G}(B(g \circ \Phi(r), t)) \xrightarrow{\mathcal{G}(\iota)} \mathcal{G}(B(g \circ \Phi(r), t+2(\kappa+\epsilon))) \\
\mathcal{G}(B(f(r) \downarrow \\
\mathcal{G}\left(\beta_{t+\kappa}, \rho_{t+\kappa}\right) \\
\mathcal{F}(B(f(r), t+\kappa+\epsilon)) \xrightarrow{\mathcal{G}(\iota)} \mathcal{G}(B(f(r), t+\kappa+2 \epsilon))
\end{gather*}
$$

and, by applying dom, we get:

$$
\begin{aligned}
& \pi_{0}\left(g^{-1}(B(g \circ \Phi(r), t))\right)
\end{aligned}
$$

$$
\begin{align*}
& \pi_{0}\left(f^{-1}(B(f(r), t+\kappa+\epsilon))\right) \tag{19}
\end{align*}
$$

As in the previous case, we have that $B_{d_{g}}(\Phi(r), t) \subseteq$ $g^{-1}(B(g \circ \Phi(r), t))$ is the path-component of $\Phi(r)$, i.e. $[\Phi(r)]=B_{d_{g}}(\Phi(r), t) \in \pi_{0}\left(g^{-1}(B(g \circ \Phi(r), t))\right)$ and,
analogously, $[r]=B_{d_{f}}(r, t+\kappa+\epsilon) \in \pi_{0}\left(f^{-1}(B(f(r), t+\right.$ $\kappa+\epsilon))$ ). We now use the analog of Equation (10) for $U=B(f(r), t+\kappa), \psi$ from the interleaving in Equation (9) and $\beta$ to obtain:

$$
\begin{equation*}
\pi_{0}\left(f^{-1}(B(f(r), t+\kappa+\epsilon))\right) \tag{20}
\end{equation*}
$$

By Equation (7), $h^{-1}:=\pi_{0}\left(p_{1}\right) \circ \pi_{0}(q)^{-1}$ and, by (Bauer et al., 2015) Section 3.2, $\Psi:=$ $p_{1} \circ \tilde{\psi}_{\delta} . \quad$ Since $\tilde{\psi}_{\delta}(\Phi(r)) \in \bar{\psi}\left(B_{d_{g}}(\Phi(r), \delta)\right)=$ $q^{-1}\left(\psi\left(B_{d_{g}}(\Phi(r), \delta)\right)\right), \quad \psi\left(B_{d_{g}}(\Phi(r), \delta)\right) \quad$ is pathconnected and $\psi(\Phi(r)) \in \psi\left(B_{d_{g}}(\Phi(r), \delta)\right)$, we have that $[\psi(\Phi(r))]=\left[q\left(\tilde{\psi}_{\delta}(\Phi(r))\right)\right]=\pi_{0}(q)\left(\left[\tilde{\psi}_{\delta}(\Phi(r))\right]\right)$. Hence, $\pi_{0}(q)^{-1}([\psi(\Phi(r))])=\left[\psi_{\delta}(\Phi(r))\right]$. By definition of $\Psi$, we have $[\Psi(\Phi(r))]=\left[p_{1} \circ \tilde{\psi}_{\delta}(\Phi(r))\right]=\pi_{0}\left(p_{1}\right)\left(\left[\tilde{\psi}_{\delta}(\Phi(r))\right]\right)$. Therefore, $h^{-1} \circ \pi_{0}(\psi)([\Phi(r)])=h^{-1}([\psi(\Phi(r))])=$ $\pi_{0}\left(p_{1}\right) \circ \pi_{0}(q)^{-1}([\psi(\Phi(r))])=\pi_{0}\left(p_{1}\right)\left(\left[\tilde{\psi}_{\delta}(\Phi(r))\right]\right)=$ $[\Psi(\Phi(r))]=\beta_{t+\kappa}([\Phi(r)])$.
From Equation (11) we get $\frac{1}{2}\left|d_{f}(r, \Psi \circ \Phi(r))\right| \leq 3(\epsilon+\delta)$. If $\kappa+\epsilon>6(\epsilon+\delta)$, then $B_{d_{f}}(r, 6(\epsilon+\delta)) \subseteq B_{d_{f}}(r, t+$ $\kappa+\epsilon) \subseteq f^{-1}(B(f(r), t+\kappa+\epsilon))$. Hence, since $r$ and $\Psi \circ \Phi(r) \in B_{d_{f}}(r, t+\kappa+\epsilon)$ and $B_{d_{f}}(r, t+\kappa+\epsilon)$ is pathconnected, $[r]=[\Psi \circ \Phi(r)] \in \pi_{0}\left(f^{-1}(B(f(r), t+\kappa+\epsilon))\right)$.
Therefore, starting with $B_{d_{g}}(\Phi(r), t)=[r]$, we obtain $\beta_{t+\kappa} \circ \pi_{0}(\iota)([\Phi(r)])=\beta_{t+\kappa}([\Phi(r)])=[\Psi \circ \Phi(r)]=$ $[r]=B_{d_{f}}(r, t+\kappa+\epsilon)$. This implies that we can extract the following commutative diagram from Equation (18):


Now we define

$$
\begin{align*}
& \mu_{t}: F\left(B_{d_{f}}(r, t)\right) \rightarrow G\left(B_{d_{g}}(\Phi(r), t+\kappa+\epsilon)\right) \\
& \mu_{t}:=\eta_{t+\kappa} \circ F(\iota) \\
& \nu_{t}: G\left(B_{d_{g}}(\Phi(r), t)\right) \rightarrow F\left(B_{d_{f}}(r, t+\kappa+\epsilon)\right)  \tag{22}\\
& \nu_{t}:=\rho_{t+\kappa} \circ G(\iota)
\end{align*}
$$

Since $\mathcal{F}$ and $\mathcal{G}$ are $\epsilon$-interleaved we have the following com-
mutative diagram


Following the component $B_{d_{f}}(r, t)$ we get


This implies that the map $\mu_{t}=\eta_{t+\kappa} \circ F(\iota)=G(\iota) \circ \eta_{t}$. Analogously we obtain that $\nu_{t}=\rho_{t+\kappa} \circ G(\iota)=F(\iota) \circ \rho_{t}$. Moreover, for $s<t \in \mathbb{R}_{\geq 0}$, the following diagram and its analog for $\nu$ obviously commute:


Combining these results with Equation (16) and Equation (21), we obtain the following $(\kappa+\epsilon)$-interleaving:

(26)

Hence, $B F(r)$ and $B G(\Phi(r))$ are $(\kappa+\epsilon)$-interleaved for every $\kappa>5 \epsilon+6 \delta$. Since $\inf \{\kappa+\epsilon \mid$ $\kappa>5 \epsilon+6 \delta$ and $\delta>0\}=6 \epsilon$, we finally obtain $d_{I}(B F(r), B G(\Phi(r))) \leq 6 \epsilon$. By symmetry, we analogously obtain $d_{I}(B F(\Psi(s)), B G(s)) \leq 6 \epsilon$. Together with Equation (11), these bounds imply the theorem.

