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ABSTRACT

We consider bandits with anytime knapsacks (BwAK), a novel version of the BwK
problem where there is an anytime cost constraint instead of a total cost budget.
This problem setting introduces additional complexities as it mandates adherence
to the constraint throughout the decision-making process. We propose SUAK, an
algorithm that utilizes upper confidence bounds to identify the optimal mixture of
arms while maintaining a balance between exploration and exploitation. SUAK is
an adaptive algorithm that strategically utilizes the available budget in each round
in the decision-making process and skips a round when it is possible to violate the
anytime cost constraint. In particular, SUAK slightly under-utilizes the available
cost budget to reduce the need for skipping rounds. We show that SUAK attains
the same problem-dependent regret upper bound of O(K log T ) established in
prior work under the simpler BwK framework. Finally, we provide simulations to
verify the utility of SUAK in practical settings.

1 INTRODUCTION

Multi-armed bandits (MAB) is one of the fundamental problems in the field of sequential decision-
making under uncertainty. In its essence, it is a problem setting where an agent must strategically al-
locate resources among the arms to maximize cumulative reward over time, navigating the trade-off
between gathering information about uncertain arms (exploration) and exploiting known information
to optimize immediate rewards (exploitation). This problem finds applications across diverse do-
mains, including reinforcement learning (Intayoad et al., 2020), online advertising (Slivkins, 2013),
clinical trials (Villar et al., 2015), and resource allocation (Soare, 2015).

The Bandits with Knapsacks (BwK) problem, introduced by Badanidiyuru et al. (2013), is an exten-
sion of the classical multi-armed bandit problem, with the additional constraint of limited resource
capacity akin to the knapsack problem (Tran-Thanh et al., 2012). In this scenario, an agent is con-
fronted with a set of arms, each associated with an unknown reward and cost distribution. Unlike the
traditional bandit setting, selecting an arm incurs both a reward and a cost here, and the agent’s ob-
jective is to maximize the total reward while respecting the total capacity constraint of the knapsack.
The BwK problem encapsulates the trade-off between exploration and exploitation while manag-
ing resource constraints, presenting a rich framework with applications such as online advertising
(Avadhanula et al., 2021; Badanidiyuru et al., 2018), dynamic resource allocation (Kumar & Klein-
berg, 2022), and personalized recommendation engines (Yu et al., 2016).

In this paper, we consider a specific variant of this problem, which we name as the bandits with
anytime knapsacks (BwAK) problem; where instead of a total cost budget, there is an anytime
constraint on the average cost. This problem setting introduces an additional level of complexity
as a mixture strategy needs to be employed to be able to pull arms with mean costs higher than
the average cost budget without violating the anytime constraint. The main goal of our work is to
develop new algorithms for this framework that achieve as much cumulative reward as possible.

1.1 APPLICATIONS

The formulation of the anytime constraint considered here has broad applications across various
fields. A notable example is inventory management, where a factory produces goods at a constant
rate and seeks to maximize revenue by selling to buyers in a marketplace, where bids consisting of
price and order size are placed. Our anytime constraint is especially relevant in such scenarios since
having a negative inventory is not possible. An important aspect of this constraint is that it introduces
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the trade-off between exploiting the available inventory, and skipping a round to accumulate more
inventory in an effort to capture bids with higher order sizes. This highlights the added complexity
of our problem setting and underscores its broader applicability across a range of settings beyond
the standard BwK framework.

Another example is online advertising, where an advertiser sets a daily budget limit to prevent over-
spending. In this context, the ’arms’ represent different ad campaigns or strategies, each with varying
costs that can be selected for the day. The reward can be modeled as the daily revenue generated
from clicks or the number of users who subscribe. Further, in portfolio management, our anytime
constraint can represent the maximum amount that the customer is willing to invest in a month, and
arms can model different investment options. One last example is in satellite systems, where solar
panels generate energy and excess energy can be stored in a battery. Here, c can correspond to the
energy generated per unit time, and arms can correspond to different tasks that need to be performed,
with their rewards reflecting the importance or outcome of the tasks. The costs associated with each
arm can than represent the energy consumed to complete the task.

1.2 CONTRIBUTIONS

1. Formulation: To our knowledge, this work is the first to consider a multi-armed bandit with
knapsacks (BwK) setting with an anytime cost constraint.

2. SUAK Algorithm: SUAK utilizes the upper confidence bounds to explore the best base that
solves the problem, and also strategically under-utilizes the available budget to limit the number
of rounds that are skipped when satisfying the anytime cost constraint.

3. Regret Upper Bound for SUAK: We provide upper bounds on the expected cumulative regret
of SUAK for this problem setting, and establish that it scales as O(K log T ).

Related works is provided in §3.4.

2 PROBLEM STATEMENT

2.1 THE BANDITS WITH ANYTIME KNAPSACKS (BWAK) MODEL

We consider a K-armed stochastic bandit problem with the set of base arms [K], where pulling arm
i ∈ [K] in round t is associated with a random cost, ρi(t); drawn from a probability distribution
supported in [0, 1] with mean ρi, that is independent of the costs of other arms. After pulling arm i in
round t, the agent receives a random reward, ri(t); drawn from a probability distribution supported
in [0, 1] with mean µi, that is independent of the rewards of other arms. At each round t, the agent
has the option of skipping by not pulling any of the K arms. We model this decision by introducing
an arm which has a cost and reward of 0, as arm K + 1, which is known as the null arm in BwK
literature. We let ρ = [ρ1, · · · , ρK , 0]T and µ = [µ1, · · · , µK , 0]T denote the mean cost vector and
the mean reward vector of the arm set [K + 1], respectively. Throughout this paper, we use bold
symbols to denote vectors or matrices. ∆K+1 is used to denote the K + 1-dimensional probability
simplex. We let i∗ := argmaxi∈[K] µi/ρi denote the arm with highest mean reward per cost, and
let i∗∗ := argmaxi∈[K] µi denote the arm with the highest mean reward. For simplicity, we assume
that there is only one arm with highest mean reward per cost and also there is only one arm with
highest mean reward.

Let i(t) be the arm pulled by the agent in round t, r(t) represent the reward received in round t, and
c(t) represent the cost incurred in round t. Also let Ni(t) denote the total number of times arm i has
been pulled up to round t. Further, define Sc(t) =

∑t
s=1 c(s) and c̄(t) = Sc(t)/t as the cumulative

cost and the average cost incurred until round t. Let ρ̄i(t) =
∑t

s=1 ρi(s) ·1 {i(t) = i}/Ni(t) be the
empirical average cost of arm i at round t, and similarly let µ̄i(t) =

∑t
s=1 1 {i(t) = i}·µi(s)/Ni(t)

be the empirical average reward. We assume that there is an average cost budget of c per round that
cannot be exceeded at any round, which we refer to as the anytime cost constraint. The agent aims
to maximize cumulative reward received under this constraint. This can formally be expressed as:

maximize F (t) = E

[
1

t

t∑
s=1

r(s)

]
s.t.

∑u
s=1 c(s)

u
≤ c ,∀ u ≤ t.
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This setting represents many practical applications as discussed in §1.1.

Linear Relaxation. Following the prior work, we consider the following linear relaxation:

OPTLP (T ) = max
π

T · µTπ (1)

s.t. ρTπ < c,

πi ≥ 0,∀i ∈ [K + 1].

where the vector π represents the policy which defines the fraction of time an arm will be pulled. In
any policy, there will be at most two arms that have nonzero πi values since there are two constraints
in the problem. We refer to a set consisting of at most two arms as a base. We denote the set of all
possible valid bases (where valid means that the average cost less than or equal to c can be reached
through a mixture of arms in the base) as V. Note that for simplicity, we assume that the arms
in a base are ordered so that the higher cost arm appears first. We let Ii := {I ∈ V : i ∈ I}
denote the set of valid bases that include the arm i. We let π∗ denote the optimal solution to (1),
and let r∗ := µTπ∗ be the optimal reward per round. We also define I∗ := {i : π∗

i > 0} as the
optimal base. The optimal solution of this problem can be divided into three cases. First, if the arm
with the highest mean reward has cost less than c, i.e. ρi∗∗ ≤ c; then the optimal base consists of
only this arm; hence I∗ = {i∗∗}, and π∗

i∗∗ = 1. In the second case, if ρi∗∗ > c, ρi∗ > c, then
I∗ = {i∗,K + 1} , and the optimal solution is π∗

i∗ = c/ρi∗ , and π∗
K+1 = 1− π∗

i∗ . In third case, if
ρi∗∗ > c, ρi∗ < c, then optimal base includes two arms which might or might not include i∗ or i∗∗.

Let OPT denote the total expected reward of a dynamic policy in T rounds that conforms to a total
budget constraint in a total of T rounds as in the standard BwK literature instead of the anytime
budget constraint we consider here. It was shown that OPTLP ≥ OPT (Badanidiyuru et al., 2013).

Let REF be denote the total expected reward of a dynamic policy in T rounds that conforms to the
average cost constraint. This constraint is stricter than the total budget constraint. This can easily
be seen as satisfying the anytime constraint in the last round T with c = B/T produces the total
budget constraint of B in T rounds. Hence, it holds that OPTLP ≥ OPT ≥ REF . While regret
could be defined as the difference expected cumulative reward of SUAK and REF , we choose a
stronger regret definition by defining it with respect to OPTLP as RT = OPTLP − E [F (T )] =
Tr∗ − E [F (T )] so that our results can be compared with prior work on the total budget setting.

3 THE SUAK ALGORITHM

3.1 THE NAIVE APPROACH

Before presenting the SUAK Algorithm, to demonstrate the additional complexities of our problem
formulation over the standard BwK setting, and also to serve as a baseline, we present a naive
approach which makes it possible to convert any BwK algorithm to our BwAK setting. In this
trivial approach, in a given round t, we first simply check if it is possible to violate the anytime
constraint, and skip the round if it is the case. Otherwise, we let the BwK algorithm pull an arm.
To demonstrate this more concretely, we use the One Phase Algorithm in Li et al. (2021), and add
skipping behaviour such that a round is t skipped if Sc(t− 1) + 1 > c · t. The implementation with
this skipping rule, which we call as the One Phase Skip (OPS) Algorithm, is given in Algorithm 1.

In this algorithm, the initialization phase consists of sampling each arm once while using skips to
prevent violation of the constraint. After this phase, we utilize a skipping mechanism in lines 5 - 6,
and if the round is not skipped, the algorithm proceeds to solving the linear programming problem
in line 8. In this LP, µU (t) is the UCB of arm reward at round t, ρL(t) is the LCB of arm cost at
round t, and Br(t) = cT −Sc(t− 1) is the total remaining budget in round t. Since UCB values are
used, the solution of LP gives the optimistically best policy according to the UCB principle. This
policy is normalized to a probability distribution, and the arm is selected using this probability.

To show that this naive approach might suffer a large regret due to large number of skips, we run
simulations on the following problem instance with K + 1 = 4 arms where µ = [0.45, 0.7, 0.8, 0];
and ρ = [0.25, 0.75, 0.8, 0]. Except for the null arm, the arm reward and cost values are indepen-
dently sampled from a Beta distribution with parameters α = µ ∗ 10, β = (1−µ) ∗ 10. The average
cost budget per round is c = 0.5. For SUAK, we take ω = 0.143. We average results from 20 sim-
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Algorithm 1 The Naive Approach: One Phase Skip Algorithm

1: Input: Average cost target c, number of
rounds T

2: Initialize: Sample each arm once while
skipping accordingly so that ∀t ≤ tinit,
Sc(t− 1) + 1 ≤ c · t

3: Set t = 1
4: for each round t > tinit do
5: if Sc(t− 1) + 1 > c · t then
6: Skip the round
7: else

8: Solve the following LP:
π̃ = argmaxπ ⟨µU (t− 1),π⟩

s.t. ⟨ρL(t− 1),π⟩ ≤ Br(t)
π ≥ 0

9: Normalize π̃ into a probability and
randomly play an arm from this probability

10: end if
11: Update ρL(t),µU (t), and B(t)

12: Update t = t+ 1
13: end for
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Figure 1: The plots of cumulative empirical regret (Left), number of skips (Middle), and cumulative
number of skips (Right); averaged over 20 different trials.

ulation runs, each with 100, 000 rounds. We compare the results with results from SUAK which we
propose in §3.2. The simulation results are given in Figure 1. The shaded areas in the plots represent
error bars with one standard deviation. It can be seen that the number of skips of One Phase Skip
algorithm exhibits sublinear growth and it is much higher than the number of skips of SUAK, which
results in higher regret compared to SUAK. Hence, this demonstrates that merely adding skips to a
BwK algorithm and treating it as a BwAK algorithm is not a viable solution. In view of this, in the
next section, we present SUAK, an algorithm that strategically under-utilizes the available budget to
reduce the number of skips needed, and achieve smaller regret.

3.2 THE SUAK ALGORITHM

We propose an algorithm called Strategic Under-utilization for Anytime Knapsacks (SUAK) that
utilizes upper and lower confidence bounds of the arm rewards and costs using the UCB principle
to upper bound the reward that can be obtained from a particular base. SUAK also uses skipping a
round to satisfy the anytime cost constraint, and targets an average cost of c−log t/(ω2t) to limit the
number of skips, where ω is defined in Assumption 2. The pseudo-code is provided in Algorithm 2.

The algorithm works as follows. First, SUAK is initialized by sampling each arm once. To prevent
SUAK from exceeding the targeted average of c − log t/(ω2t) during initialization, skipping is
employed in rounds t ≤ tinit whenever Sc(t−1)+1 > c · t− log(t)/ω2. We define tinit as the round
where initialization ends (when a sample is obtained from each arm). After this initialization step,
the algorithm works as follows. In every round, first the anytime budget constraint is checked. The
round is skipped (null arm is pulled) and the algorithm proceeds to the next round if Sc(t−1)+1 >
c · t, i.e. if pulling an arm at that round can violate the constraint. Secondly, if there is uncertainty
on whether the mean cost of an arm is less than or greater than c, i.e. ∃l : ϱLl (t) ≤ c ≤ ϱUl (t) where

ϱLl (t) := ρ̄l(t)− 7
√

1.5 log t/Nl(t), and ϱUl (t) := ρ̄l(t) + 7
√
1.5 log t/Nl(t);

then that arm is pulled and SUAK proceeds to the next round. This step is needed for the anytime
cost constraint; it ensures whether the mean cost of arm is above or below c is correctly known,
which in turn ensures that the base that SUAK selects for that round includes an arm with cost less
than c. This step is also needed to establish tighter bounds on the number of times a suboptimal
base is selected in the theoretical analysis. To prevent this step from using more than c cost budget
per round on average, we define Sp(t) as the sum of all the cost incurred from this step until round
t+1, and define Np(t) as the total number of arm pulls due to this step until round t+1. The round

4
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Algorithm 2 SUAK: Strategic Under-utilization for Anytime Knapsacks

1: Input: Average cost target c
2: Initialize: Sample each arm once

while skipping accordingly so that ∀t ≤
tinit, Sc(t− 1) + 1 ≤ c · t− log(t)/ω2

3: for each round t > tinit do
4: if Sc(t− 1) + 1 > c · t then
5: Skip round t
6: continue
7: end if
8: if Sp(t− 1) + 1 > c ·Np(t− 1) then
9: Skip round t

10: continue
11: end if
12: if ∃l : ϱLl (t) ≤ c ≤ ϱUl (t) then
13: Pull arm i(t) = l, observe ri(t)(t),

ρi(t)(t)
14: Sp(t) = Sp(t− 1) + ρi(t)(t)
15: Np(t) = Np(t− 1) + 1
16: continue
17: end if
18: St={π:π ∈ ∆K+1, ⟨π,ρL(t−1)⟩≤ c}
19: π(t) = argmaxπ∈St

⟨µU (t− 1),π⟩

20: It = {i : πi(t) > 0}
21: if |It| = 1, i.e. It = {j(t)} then
22: Pull arm j(t)
23: continue
24: end if
25: j(t), k(t) = j(t), k(t) ∈ It : ρ̄j(t)(t) >

ρ̄k(t)(t)

26: b(t) = c · t− Sc(t− 1)− log t/ω2

27: if b(t) > ρ̄j(t) then
28: p(t) = 1− ω
29: else if b(t) < ρ̄k(t) then
30: p(t) = ω
31: else
32: p1(t) = max

(
b(t)−ρ̄k(t)(t)

ρ̄j(t)(t)−ρ̄k(t)(t)
, ω
)

33: p(t) = min(p1(t), 1− ω)

34: i(t) =

{
j(t) with probability p(t),

k(t) otherwise
35: end if
36: Pull arm i(t), observe ri(t)(t), ρi(t)(t)
37: Update ρL(t) and µU (t)
38: end for

t is skipped if Sp(t − 1) + 1 > c · Np(t − 1). The main objective of this skipping mechanism is
to decouple the skips needed to satisfy the anytime cost constraint due to regular arm pulls and the
skips needed to satisfy the constraint from this step for ease of theoretical analysis; in practice this
skipping mechanism can be ignored. Since the expected number of arm pulls from this step is upper
bounded by O(log T ), the skips due to this step will also be O(log T ). After this step, the constraint
set is constructed as St = {π : π ∈ ∆K+1, ⟨π,ρL(t− 1)⟩ ≤ c}; where

µL
i (t) := proj[0,1] (µ̄i(t)− ϵi(t)) , µU

i (t) := proj[0,1] (µ̄i(t) + ϵi(t)) ,

ρLi (t) := proj[0,1] (ρ̄i(t)− ϵi(t)) , ρUi (t) := proj[0,1] (ρ̄i(t) + ϵi(t)) ,

are the UCB and LCB values of arm costs and rewards; and ϵi(t) =
√

3 log T/Ni(t) is the confi-
dence interval. Hence, the constraint set St includes all policies that have an average cost less than
c using the optimistic estimates of arm costs (LCB values of arm costs). The empirically best policy
at round t is then found using a linear program (LP) as π(t) = argmaxπ∈St⟨µU (t − 1),π⟩. Note
that using the UCB of the empirical arm reward along with the LCB of empirical arm costs in St

produces an upper confidence bound on the reward of a base. The arms that have nonzero πi(t)
values are selected as the empirically optimal base arm set for that round, denoted as It.
If It consists of a single arm, that arm is pulled. Otherwise, It = {j(t), k(t)} will consist of two
arms; we denote them as j(t), and k(t); where wlog we assume j(t) is the arm with mean cost
above c. The available budget at that round with respect to the targeted average cost is found as
b(t) = c · t − Sc(t − 1) − log t/ω2. If the available budget b(t) is greater than ρ̄j(t)(t), arm j(t)
is pulled with probability 1 − w, and arm k(t) is pulled otherwise. If b(t) is less than ρ̄k(t)(t), arm
j(t) is pulled with probability w, and arm k(t) is pulled otherwise. If ρ̄k(t)(t) ≤ b(t) ≤ ρ̄j(t)(t),

arm j(t) is pulled with probability p(t) =
b(t)−ρ̄k(t)(t)

ρ̄j(t)(t)−ρ̄k(t)(t)
clipped at w from below and 1− w from

above; and arm k(t) is pulled otherwise. With this design, each arm in a base is pulled with at least
w probability to help explore all arms in a base.

Note that this algorithm is non-stationary as it is adaptive to the available budget at that round. This
design is essential as it was shown in Flajolet & Jaillet (2015, Lemma 2) that a non-adaptive design
suffers regret of order Ω(

√
T ) even if the optimal solution π∗ is known unless all arms consume the

same deterministic amount of resources at every round. The main intuition behind this result is that
the fluctuation of the available budget around its mean at a round t can be as high as Ω(1/

√
t).
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3.3 ANALYSIS OF SUAK

We now characterize the performance of the SUAK by providing the theoretical upper bound on
the expected cumulative regret. We first provide definitions of arm gaps and state a set of mild
assumptions that are required for the theoretical analysis. We refer the readers to the Appendix for
detailed proofs of the results presented in this section.
Definition 3.1. The reward gap of an arm is defined as ∆i = µi∗∗ − µi.
Definition 3.2. The gap of a base I is defined as ∆I = r∗ − rI , where rI is the reward value of
the solution of (1) when only arms in I are allowed. We also define ∆min,i := minI∈Ii\I∗ ∆I as
the minimum reward gap of bases that include the arm i.
Definition 3.3. The cost gap of an arm is defined as δi = |ρi − c|.
Assumption 1. We define δmin = mini∈[K] δi as the minimum cost gap, and assume δmin > 0.

Note that regret depends on the cost gap δi since the algorithm needs to be able to correctly identify
if the true mean cost of an arm is above or below c. This is in turn needed for the adaptive design
since if the empirical average cost is above the targeted cost and if an arm with cost more than c is
identified as an arm with cost less than c, pulling that arm might lead to over-consuming the targeted
budget. Since regret depends on δmin, δmin > 0 is needed so that the regret bound is not unbounded.
Assumption 2. We assume that we are given an ω > 0 such that ω ≤ δmin/(2 + δmin − c).

Note that for any δmin or c value, δmin/(2 + δmin − c) ≥ δmin/3. Assumption 2 is necessary for
the adaptive design of the algorithm in meeting the anytime cost constraint, as we use a cost budget
under-utilization of log t/ω2 at round t in SUAK to be able to achieve theoretical guarantees. Also,
in SUAK, we set the minimum fraction of time an arm in a base will be pulled to ω. With this
use, ω can be understood as the minimum triggering probability (p∗), in the probabilistic triggering
literature discussed in §3.4. Since the fraction of pulls of a particular arm in a given base can be as
low as ω, our regret bounds depend on ω as in the worst case a base needs to be selected 1/ω times
in expectation to acquire one sample of each arm in the base.

Under these assumptions stated above, we obtain the following upper bound on expected regret.
Theorem 3.1 (Upper Bound on Expected Regret). Under Assumption 1 and 2; when SUAK is run
with a given average cost budget 0 < c ≤ 1, its cumulative expected regret is upper bounded as

RT ≤
K∑
i=1

96r∗( δi+1
δi

)2 log T

ω∆2
min,i

+
202Kr∗ log T

cω2
+

3π2r∗

δ2min
+RK+ r∗tin = O(K log T ) +O(1) (2)

where RK = 5π2K2/3, and tin = −W
(
−ω2ce−ω2K

)
/(ω2c) = O(1) is the upper bound on the

number of rounds needed for the initialization phase of SUAK; and W (·) is the Lambert function.
Also recall that ∆min,i is the minimum reward gap among the bases that include the arm i, δi is the
cost gap of an arm, r∗ is the optimal reward, and ω is defined in Assumption 2.

Note that the first term in (2) is related to regret from arm pulls due to selecting a suboptimal base in
the round; the second term is related to arm pulls that are used to learn whether the true mean cost
of an arm is greater than or less than c, and also the regret resulting from under-utilizing the budget;
the third term is due to expected number of times the anytime constraint may be violated; the fourth
term is due to suboptimal arm pulls that occur if the confidence bounds do not hold; and the last
term is regret from the initialization phase. The proof of Theorem 3.1 is given in §D, and we also
provide a brief proof sketch in §3.5.

Note that this problem-dependent upper bound order-wise matches the O(K log T ) problem-
dependent bound of prior work for the regular BwK setting. However, SUAK is not optimal
for a problem-independent bound since regret can be large when the value of ω is small, i.e. if
ω ≤ 1/ log(T ) assuming the time horizon T is known. For this case, prior work such as Bernasconi
et al. (2024b) can be used to achieve O(

√
KT ) problem-independent regret in our setting.

3.4 RELATED WORKS

In this section, we provide some of the works that are related to our problem setting. We provide
additional related works in Appendix §B.
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Bandits with Knapsacks: The BwK problem has been studied before and algorithms that achieve
optimal problem-independent regret bounds on the order of O(

√
K ·OPT ) have already been de-

veloped (Badanidiyuru et al., 2013; Agrawal & Devanur, 2014). However, deriving a problem-
dependent lower bound and developing algorithms that achieve this bound are still open questions.
One prior work in this regard is by Sankararaman & Slivkins (2021), in which the BwK problem is
studied under only one constraint; a one-dimensional cost, and no constraint on time. In this simple
setting, there is a single unique optimal arm. They propose an algorithm that achieves a regret bound
of O(KG−1

LAG log T ), where GLAG is defined as the Lagrangian gap of an arm. Compared to this
work, our setting is more complex as we have two constraints.

Another notable work in this field is by Flajolet & Jaillet (2015), in which the BwK problem is
considered under three different cases of 1, 2; and d constraints. For 2 constraints, which represents
a constraint on the total number of rounds and a constraint on total budget where costs of arms
are one-dimensional, a regret bound of O

(
λ2K2 log T/(δ3min∆) +K2σ log T/δ3min

)
is achieved

with additional problem-dependent constants where K is the number of arms; δmin is the minimum
distance between the mean cost of arms and the average budget b; σ is the minimum 1/µ value;
λ = 1 + 2κ; and κ is a constant assumed to be known a priori such that |µi − µj | ≤ κ|ρi − ρj | for
any i, j. For the d constraint setting, a regret bound of O(2K+d log T ) is achieved. The 2-constraint
setting is similar to our work, as we also have one-dimensional costs, and our anytime cost constraint
can be viewed as a total budget constraint that needs to be satisfied in all rounds. It can be seen that
the O(K2 log T ) regret bound in this work is not optimal for its dependence on K2. In our work, we
reduce this dependence on K2 to K while considering the more complex BwAK problem. However,
our work has an increased dependence on the gap with 1/∆2 compared to the 1/∆ dependence here.

Another notable prior work is by Li et al. (2021), where a d-dimensional cost vector is considered,
with one of the dimensions of the cost vector being time. The optimal solution in this d-dimensional
setting can be a base consisting of at most d different arms. They propose a two-phase algorithm
where the first phase of the algorithm pulls each arm the same number of times until the suboptimal
arms are eliminated. In the second phase, the base with highest upper confidence bound is chosen.
This two-phase approach greatly simplifies the theoretical analysis as the number of pulls of each
individual arms is the same in the first phase. With this approach, they achieve a regret bound of
O(Kd log T/(b3∆2) + d4/(b2 min{χ2,∆2}min{1, σ2})), where ∆ in their setting is defined as
the gap between the reward of the optimal solution per round and the maximum reward that can be
obtained per round when one arm (except the null arm) is removed; b is the average cost budget per
round; χ is the minimum nonzero value in the optimal policy; σ is a problem dependent constant
related to the linear dependency between arms across different constraints. In our work while we
have similar dependence on ∆ and K, we have 1/ωδ2 additional dependence on cost gaps of arms.
However, our setting (BwAK) is more complicated and we conjecture that these additional terms ω
and δ2 are needed to satisfy the anytime constraint. The BwK setting has also been studied under
different problem settings, such as in the adversarial setting (Immorlica et al., 2022), in contextual
bandits (Agrawal & Devanur, 2016), under nonstationary distributions (Liu et al., 2022), and in
combinatorial bandits (Sankararaman & Slivkins, 2018).

Bandits with Replenishable Knapsacks: In this setting, cost of an arm is allowed to be neg-
ative, which allows the knapsack to be replenished. One notable prior work is by Slivkins et al.
(2024), where the contextual bandits with linear constraints (CBwLC), a more generalized version
of the contextual bandits with knapsacks (CBwK) problem, which allows packing and covering con-
straints, as well as positive and negative resource consumption, is considered. Their algorithm also
works when the initial budget is B = Ω(T ), or B = o(T ), compared to the prior work which
mostly restricts the initial budget to B = Ω(T ). This is similar to our setting since our problem
setting can be reduced to their problem setting by implementing the budget increase as subtracting
c from the costs of all arms (this also makes the skip arm in our setting have negative cost c and
function as the resource replenishing arm). However, their algorithm is suboptimal in our problem
setting with a zero initial budget, as they remark in the discussion of (Slivkins et al., 2024, Theo-
rem 3.6), their proposed algorithm LagrangeCBwLC achieves optimal O(

√
KT ) regret when the

initial budget B > Ω(T ); and when B = o(T ) its regret is suboptimal. This is as expected since
Lagrange-based algorithms generally require knowing the ratio T/B, which goes to infinity when
B = o(T ). In our work, we are only interested in the case where the initial budget is zero, and
we consider gap-dependent results instead of the gap-independent results considered here, and we
propose an algorithm that achieves an order-optimal O(K log T ) gap-dependent regret bound.
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In Bernasconi et al. (2024a), a more general BwK formulation with long-term constraints is consid-
ered where the costs can be negative as well as positive. The long-term constraint is defined such
that the total consumption of each resource at round T should be less than zero up to small sublinear
violations. This is again similar to this setting if we do not allow any violation of the constraint as our
problem setting can be reduced to this setting again by subtracting c from the costs of all arms. They
show that regret is upper bounded by O(

√
KT log(KT )) when the EXP3-SIX algorithm is used

with the Primal-Dual algorithm based framework that they propose for their problem setting. They
also remark that initial o(T ) rounds can be skipped to cover the potential violations and implement
the long-term constraint as a hard constraint like in our setting. However, they provide an upper
bound of O(

√
KT ) constraint violations in (Bernasconi et al., 2024a, Corollary 8.2), which sug-

gests that the initial O(
√
KT ) rounds would need to be skipped to achieve hard constraints, which

would lead to O(
√
KT ) gap-independent regret in our problem setting. In our work, we show that

we achieve O(K log T ) gap-dependent regret for the same problem setting. In Bernasconi et al.
(2024c), they consider the same problem setting as in their prior work Bernasconi et al. (2024a).
Instead of a Prior-Dual algorithm based approach, they use a UCB-based approach to optimistically
estimate the constraints through a weighted empirical mean of past samples. This approach lets them
provide O(

√
T ) regret in stochastic settings without assuming Slater’s condition. The upper bound

on constraint violations is still O(
√
KT ), which would again lead to a O(

√
KT ) gap-independent

regret in our problem setting.

In Bernasconi et al. (2024b), there exists an arm with a negative expected cost that allows to replenish
the budget. This is very similar to our setting as our case can be considered a special case of this
setting that starts with zero budget. However, their work cannot be used in our setting as they assume
B = Ω(T ) such that B = Tρ, and they use the parameter ρ in the Lagrangian function of the Primal-
Dual algorithm template that they provide. Further, they only consider instance-independent bounds
of O(

√
KT ), and do not consider the O(K log T ) instance-dependent bounds that we consider here.

BwK with non-monotonic resource utilization: It is a generalization of the BwK problem where
in each round, a vector of resource drifts that can be positive, negative, or zero is observed along
with the reward; and the budget of each resource is incremented by this drift amount (Kumar &
Kleinberg, 2022). In Kumar & Kleinberg (2022), a three phase algorithm that combines the ideas
in Flajolet & Jaillet (2015) and Li et al. (2021) is provided. The algorithm uses the phase one
of Li et al. (2021) to identify the optimal arms, then in phase two arms are pulled to shrink the
confidence intervals further, and in the third phase, the optimal arms are exploited by sampling
from a perturbed distribution to ensure that the budget of each resource stays close to a decreasing
sequence of thresholds. While the idea of decreasing sequence of thresholds can be seen as similar
to under-budgeting in our algorithm, their problem setting assumes time horizon T to be known,
and threshold decays to zero over time as uncertainty decreases; however, in our setting we do not
assume knowing T , and we incur regret from under-budgeting as we always under-budget. Their
algorithm achieves O(Km2 log T/(∆2 · min{δ2drift, σ

2
min})), where K is the number of arms, m is

the dimension of the cost vector, δdrift > 0 is the smallest magnitude of the drifts, and σmin is the
smallest singular value of the constraint matrix.

Comparison of our work with the prior work is summarized in Table 1. Due to different gap defi-
nitions, and different problem-dependent parameters used, we would like to note that these results
are not directly comparable. Also note that a problem-dependent lower bound does not exist for the
BwK problem or our BwAK problem. We remark that deriving a lower bound for BwK or BwAK
would be an important future work; yet it would be challenging due to the variety of problem-
dependent parameters that can be used to define the problem instance.

3.5 PROOF SKETCH

We now present a brief outline of the regret analysis of SUAK, which is provided in §D. In the proof,
the regret is first decomposed as follows.

RT ≤ Ra(T ) +Rb(T ) +Rc(T ) +Rd(T ) +

T∑
t=tinit+1

(P (Gc(t)) + P (Fc(t))) + r∗tinit

where Ra(T ) is the regret from skips that are used to satisfy the anytime constraint in line 5 of
Algorithm 2, and Rb(T ) is the regret from skips that are needed while reducing the confidence
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Table 1: Comparison of our work with prior work on bandits with knapsacks
Work Model Regret Bound

(Li et al., 2021) Total budget O
(

Kd log T
b3∆2 + d4

b2 min{χ2,∆2}min{1,σ2}

)
Flajolet & Jaillet (2015) Total budget O

(
λ2K2 log T

δ3min∆
+ K2σ log T

δ3min

)
Kumar & Kleinberg (2022) Total budget

and drift O
(

Km2 log T
∆2·min{δ2drift,σ

2
min}

)
Our work Average

budget O
(

K log T
ωδ2∆2 + K log T

w2

)
+O(1)

intervals of the arm costs due to the condition in line 9 of Algorithm 2. Rc(T ) is due to pulls needed
while reducing the confidence intervals of the arm costs (pulls from line 13 of Algorithm 2), and
Rd(T ) is due to pulls of arms after selecting a base (pulls from line 36 of Algorithm 2); which
includes the selection of suboptimal bases and regret from under-utilization of the cost budget. The
terms

∑T
t=tinit+1(P (Gc(t))+P (Fc(t))) are due to the probability of confidence bounds not holding,

and can be upper bounded as 5π2K2/3. The r∗tinit term is regret due to the initialization phase, we
upper bound tinit by considering K cost can be incurred in the initialization step in the worst case,
and also noticing that the regret per round is upper bounded by r∗.

To upper bound Ra(T ), we define te as the time the algorithm exceeds the targeted cost of c−log t/t,
and we define tf+1 as the time instant where the algorithm skips. Due to the design of the algorithm,
the arm with the lower cost will be pulled with probability 1 − ω between rounds te ≤ t ≤ tf , and
the total incurred cost between rounds te ≤ t ≤ tf needs to exceed the c by at least log(te). We
upper bound the probability of this event using standard concentration bounds, and apply a union
bound over all possible te and tf values to establish that Ra(T ) ≤ 3π2r∗/(δ2min). We upper bound
Rb(T ) and Rc(T ) as follows. Using standard techniques in bandit literature, we show that an arm
i will be sampled at most 96 log T/δ2i times to reduce the uncertainty in its cost estimate, and the
expected regret per round will be r∗−µi. Note that µi can be greater than r∗ for some arms, but this
is balanced by skips. For arms with cost larger than c, we derive 104 log T/(cδi) skips are needed.

We upper bound Rd(T ) as follows. For selections of a suboptimal base, using the fact that arms
are sufficiently sampled by line 13 of Algorithm 2, we show that a subobtimal base I = (i, j)

can be selected at most
∑K

i=1 48(
δi+1
δi

)2 log T/(∆2
i,j) times if it is assumed that selection of the

base yields a sample of both arms in it. Due to partial observability, it will take 1/ω rounds in
expectation to obtain one sample for both arms. Taking this into account, we show that at most∑K

i=1 48(
δi+1
δi

)2 log T/(ω∆2
min,i) pulls of arm i will occur to satisfy the upper bound on the number

of pulls of all bases that include arm i. Using the technique in (Kveton et al., 2015), we derive the
worst case regret from this upper bound on the samples of arms. We also upper bound regret from
cost under-utilization as 2r∗ log T/(cω2) using r∗/c, the optimal reward per cost.

4 SIMULATIONS

We now evaluate the performance of the proposed SUAK Algorithm through simulations. For com-
parison, we have included the Primal Dual and One Phase Algorithms in Li et al. (2021); and the
UCB Simplex Algorithm in Flajolet & Jaillet (2015). We would like to note that while the authors
in Li et al. (2021) believe that the One Phase Algorithm would be optimal, they leave providing
theoretical regret bounds for that algorithm as an open question claiming it would be challenging to
do so. Instead, they provide theoretical guarantees for the Primal Dual Algorithm, which similar
yet expected to have much worse empirical performance compared to the One Phase Algorithm.
We implement the skip versions of these algorithms as described in §3.1, and we refer them by
appending ’ skip’ after their names.

We perform simulations on the following setting with K + 1 = 11 arms where the mean
reward and cost vectors are µ = [0.2, 0.25, 0.45, 0.4, 0.7, 0.75, 0.8, 0.9, 0.8, 0.7, 0]; and ρ =
[0.2, 0.25, 0.3, 0.4, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9, 0]. Except for the null arm, the arm reward and
cost values are independently sampled from a Beta distribution with parameters α = µ ∗ 10, β =

9
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Figure 2: The plots of cumulative empirical regret (Left), number of skips (Middle), and cumulative
number of skips (Right); averaged over 20 different trials.

(1 − µ) ∗ 10, where µ represents the mean of the distribution. The average cost budget per round
is c = 0.5. We perform the simulations for 2.5 million rounds, and average over 20 different trials.
The simulation results for this setting are given in Figure 2. The shaded areas in the plots represent
error bars with one standard deviation. We use ω = 0.0625 for SUAK.

It can be seen from the top left plot in Figure 2 that the Primal Dual Skip Algorithm performs the
worst. This is as expected since the Primal Dual Algorithm is designed for theoretical performance,
and pulls every arm the same number of times until finding the optimal solution. The UCB Simplex
Skip also performs poorly in simulations. This is since the algorithm assumes knowledge of a
constant κ a priori such that |µi − µj | ≤ κ|ρi − ρj | for any i, j; and the confidence intervals for
the arm rewards are multiplied by a factor of λ = 1 + 2κ. In the simulation setting, λ = 9; which
increases the number of samples needed for exploration.

It can be seen that SUAK performs better compared to the Primal Dual or UCB Simplex algorithms,
and also exceeds the performance of One Phase Skip (OPS) after around round 1.7 × 106. This is
since the regret of SUAK concentrates primarily on the initial rounds, which is due to two factors.
Skips needed for the under-utilization of the budget by log t/ω2, and also pulls from the line 13 of
Algorithm 2 mostly concentrate on the initial rounds. After these initial rounds, SUAK can catch
up to and eventually surpass the performance of OPS due to higher regret OPS experiences from its
high number of skips, verifying the practical utility of SUAK.

In terms of the number of skips, it can be seen from the bottom middle plot in Figure 2 that the
number of skips is sublinear for all algorithms, and SUAK has the least number of skips. This
demonstrates the effectiveness of SUAK in reducing the number of skips by under-utilizing the
available budget. Note that pulls of the null arm originating from the condition in line 5 or line 9
of Algorithm 2 are counted as skips, yet pulls of the null arm when it is in the selected base is not
counted as a skip. The plot on the right of Figure 2 shows the incurred average cost. As expected,
SUAK starts from a smaller average cost value and approaches the per round cost budget of 0.5 over
time due to under-utilization of the budget, and other algorithms are very close to the constraint, and
except the UCB Simplex Skip, need to utilize skips to avoid exceeding the constraint.

5 CONCLUDING REMARKS

In this paper, we introduce a previously unexplored setting for the BwK problem, which we call
the bandits with anytime knapsacks (BwAK) problem; where we employ a stricter anytime cost
constraint instead of a total cost budget. We provide SUAK, a novel algorithm that under-utilizes
the available cost budget and uses skipping to limit the probability of violating the anytime cost
constraint, and also uses upper confidence bounds to balance exploration and exploitation. SUAK
achieves a regret upper bound of O(K log T ) compared to the optimal solution of the linear re-
laxation version of the problem which does not necessarily obey the anytime cost constraint. This
bound is better than the regret upper bound of prior work for the BwK setting on problem-dependent
terms in a wide range of problem instances. We provide simulation results to demonstrate the empir-
ical performance of SUAK. Our work opens multiple directions for future research. One interesting
future direction is to extend our bandit results to the case where the cost of an arm is a d-dimensional
vector. This is a challenging problem as the anytime cost constraint needs to be satisfied in every
dimension, which can introduce additional skips, and hence additional regret. Another interesting
open direction is the case where the distribution of rewards and costs of arms are stochastic. In this
case, satisfying the anytime cost constraint would again be challenging but we conjecture it may be
accomplished using a more conservative cost budget under-utilization.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shipra Agrawal and Nikhil Devanur. Linear contextual bandits with knapsacks. Advances in Neural
Information Processing Systems, 29, 2016.

Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks. In Pro-
ceedings of the fifteenth ACM conference on Economics and computation, pp. 989–1006, 2014.

Vashist Avadhanula, Riccardo Colini Baldeschi, Stefano Leonardi, Karthik Abinav Sankararaman,
and Okke Schrijvers. Stochastic bandits for multi-platform budget optimization in online adver-
tising. In Proceedings of the Web Conference 2021, pp. 2805–2817, 2021.

Ashwinkumar Badanidiyuru, Robert D. Kleinberg, and Aleksandrs Slivkins. Bandits with knap-
sacks. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 207–216,
2013.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks.
Journal of the ACM (JACM), 65(3):1–55, 2018.

Martino Bernasconi, Matteo Castiglioni, and Andrea Celli. No-regret is not enough! bandits
with general constraints through adaptive regret minimization. arXiv preprint arXiv:2405.06575,
2024a.

Martino Bernasconi, Matteo Castiglioni, Andrea Celli, and Federico Fusco. Bandits with replenish-
able knapsacks: the best of both worlds. In The Twelfth International Conference on Learning
Representations, 2024b.

Martino Bernasconi, Matteo Castiglioni, Andrea Celli, and Federico Fusco. Beyond primal-dual
methods in bandits with stochastic and adversarial constraints. arXiv preprint arXiv:2405.16118,
2024c.

Arthur Flajolet and Patrick Jaillet. Logarithmic regret bounds for bandits with knapsacks. arXiv
preprint arXiv:1510.01800, 2015.

Yunlong Hou, Vincent YF Tan, and Zixin Zhong. Probably anytime-safe stochastic combinatorial
semi-bandits. In International Conference on Machine Learning, pp. 13353–13409. PMLR, 2023.
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Lille 1-Sciences et Technologies, 2015.

Long Tran-Thanh, Archie Chapman, Alex Rogers, and Nicholas Jennings. Knapsack based optimal
policies for budget–limited multi–armed bandits. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 26, pp. 1134–1140, 2012.

Sofı́a S Villar, Jack Bowden, and James Wason. Multi-armed bandit models for the optimal design
of clinical trials: benefits and challenges. Statistical science: a review journal of the Institute of
Mathematical Statistics, 30(2):199, 2015.

Qinshi Wang and Wei Chen. Improving regret bounds for combinatorial semi-bandits with proba-
bilistically triggered arms and its applications. Advances in Neural Information Processing Sys-
tems, 30, 2017.

Yifan Wu, Roshan Shariff, Tor Lattimore, and Csaba Szepesvári. Conservative bandits. In Interna-
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A TABLE OF NOTATIONS

Below, we provide the notations of some of the terms commonly used throughout the paper.

Table 2: Notations
K number of arms
[K + 1] set of arms including the null arm
ρ mean cost vector of the arm set [K + 1]
µ mean reward vector of the arm set [K + 1]
V the set of all possible valid bases
ci(t) cost of pulling arm i in round t
ρi mean cost of arm i
ρ̄i(t) empirical average cost of arm i in round t

ϵi(t) ϵi(t) =
√

3 log t
Ni(t)

, the confidence interval of arm i in round t

ρLi (t) ρLi (t) = ρ̄i(t)− ϵi(t), the lower confidence bound (LCB) of the cost of
arm i in round t

µU
i (t) ρLi (t) = µ̄i(t)+ ϵi(t), the upper confidence bound (UCB) of the reward

of arm i in round t
ri(t) reward obtained from pulling arm i in round t
rI reward of base I
rUI (t) upper confidence bound of the reward of base I
µi mean reward of arm i
π∗ optimal solution of the problem under the linear relaxation
i∗ i∗ := argmaxi∈[K]

µi

ρi

i∗∗ i∗∗ := argmaxi∈[K] µi

Sc(t) Sc(t) :=
∑t

s=1 c(s) cumulative cost amassed until round t
c̄(t) c̄(t) = Sc(t)/t average cost obtained at round t
Ni(t) Total number of times arm i is pulled until round t+ 1
N(i,j)(t) The number of times base (i, j) is selected until round t+ 1
∆min,i ∆min,i := minI∈V\I∗ s.t. i∈I (∆I)

B ADDITIONAL RELATED WORKS

Conservative and safe bandits: Conservative bandits is a framework where an action is considered
safe at round t if it keeps the cumulative reward up to round t above a given fraction of a baseline
policy. In Wu et al. (2016), a baseline safe arm is given, and they provide an algorithm that utilizes
the UCB principle where the baseline arm is pulled if the arm chosen by the UCB principle is not
safe. In Moradipari et al. (2020), an anytime constraint is used instead of a constraint on cumulative
reward that demands the expected reward of the pulled arm to be greater than a given threshold with
high probability. They provide an algorithm that starts with a safe baseline and utilizes confidence
regions to explore the other safe arms. Safe bandits is a similar framework to conservative bandits
where in each round, the agent is required to select an arm with a given property no less than a
predetermined (safe) threshold with high probability. For example, in Hou et al. (2023), the agent
needs to choose at most K items from a set of L items; and with probability at least 1 − δ, the
sum of variances of the selected items should not exceed a given threshold, which they call as the
anytime-safe constraint. They propose a two step approach where first a set of arms is selected
according to the UCB principle, and if this selection exceeds the threshold, the selected arms are
split and pulled over multiple rounds. Our work is also similar in the sense that we also implement
constraint checking as an additional separate step in SUAK.

Relation to Probabilistic Triggering in Combinatorial Bandits: The feedback obtained from the
selected mixture of arms in BwAK problem resembles the feedback model in combinatorial bandits
with probabilistically triggered arms. Probabilistic triggering is a special feedback model where
when an action is played, a random subset of arms is triggered according to a triggering probability
distribution, and the rewards of triggered arms are observed (Wang & Chen, 2017). Since the rewards
of arms in a chosen super arm are only observed when that arm is triggered p∗ > 0 is defined as
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the minimum probability that an arm is triggered by any action; it is shown in Wang & Chen (2017,
Theorem 3) that the regret lower bound scales with the factor 1

p∗ for the general combinatorial
bandits with probabilistically triggered arms, unless some additional assumptions are made. One
such additional assumption is the triggering probability modulated bounded smoothness assumption
that is used in Wang & Chen (2017). The main rationale behind this assumption is that an arm
with a low triggering probability does not have a significant weight on the overall reward of an
action, and perturbing its expected mean by a small amount would only cause a marginal change
in the expected reward of an action. Leveraging this assumption, they prove regret bounds that are
independent of p∗; but are dependent on B, the bounded smoothness constant. This assumption is
also used in many other subsequent work, such as in Hüyük & Tekin (2020). We also have partial
observability of arms in our work since the frequency with which an arm is pulled within a given
base is contingent upon the costs associated with each arm, such that the average cost of the base
converges to c. However, we cannot use the triggering probability modulated bounded smoothness
assumption in our work, as triggering probabilities of arms are dependent on empirical costs of
arms, and subject to change every round. As a result of this, while the actual triggering probabilities
are unknown, we have added the additional condition of pulling an arm in a base with at least ω
probability in SUAK, and as such, our regret bounds depend on ω as the triggering probability.
While time-varying triggering probabilities are considered in Liu et al. (2023) to derive instance-
independent bounds that do not depend on the triggering probability, these results are not directly
applicable for the instance-dependent bounds that we consider here.

C PRELIMINARIES AND AUXILIARY RESULTS

The following well known properties are used throughout the proofs:
Fact C.1 (Hoeffding’s Inequality). Let Z1, Z2, · · · , Zn be independent random variables bounded
between ai ≤ Zi ≤ bi, then for any δ > 0, we have

P
(∑n

i=1 Zi

n
− E[Z] ≥ δ

)
≤ e

− 2n2δ2∑n
i=1

(bi−ai)
2
.

Fact C.2 (Conditional Probabilities). The probability of an event A can be upper bounded by con-
ditioning on an event B as follows

P (A) = P (A,B) + P (A,Bc) = P (A|B)P (B) + P (A|Bc)P (Bc) ≤ P (A|B) + P (Bc) .

Upper bounds of similar form are used throughout the proof.

C.1 OPTIMAL BASE OF THE OPTIMIZATION PROBLEM

The constrained optimization version of our problem that ignores the anytime cost budget constraint
is expressed as follows:

OPT = max
π

µTπ

s.t. ρTπ < c,

K+1∑
i=1

πi = 1

πi ≥ 0,∀i ∈ [K + 1].

Letting i∗∗ := argmaxi∈[K] µi, and i∗ := argmaxi∈[K]
µi

ρi
, the solution of the problem can be

found under three different cases as follows.

Case 1: If ρi∗∗ ≤ c, then I∗ = {i∗∗}. Since the cost of the arm with the highest mean reward is less
than the cost constraint c, a mixture strategy is not needed and the optimal base includes only this
arm.

Case 2: If ρi∗∗ > c, ρi∗ > c, then the optimal solution is mixing the arm with the highest mean
reward per cost with the null arm. Hence, I∗ = {i∗,K + 1}, and the optimal solution is π∗

i∗ = c
ρi∗

,
and π∗

K+1 = 1− c
ρi∗

. The optimal reward per round is r∗ = cµi∗
ρi∗

.
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Case 3: If ρi∗∗ > c, ρi∗ < c, then the optimal base will be of the form I∗ = (i, j) where
ρi > c > ρj ; and can be found as:

I∗ = arg max
i,j∈[K+1],i̸=j

r(i,j)

where

r(i,j) = max
πi,πj

µiπi + µjπj

s.t. ρiπi + ρjπj < c,

πi + πj = 1

πi ≥ 0, πj ≥ 0.

is the mean reward of base (i, j). Note that the optimal base might or might not include i∗ or i∗∗.

C.2 CONCENTRATION INEQUALITIES FOR THE CONFIDENCE INTERVALS

In this section, we derive concentration inequalities for the confidence intervals that we use through-
out the paper.

Corollary C.3. For an arm i that is sampled u times up to round t, the following results hold:

P
(
µL
i (t, u) ≥ µi

)
≤ t−6

P
(
µU
i (t, u) ≤ µi

)
≤ t−6

P
(
ρLi (t, u) ≥ ρi

)
≤ t−6

P
(
ρUi (t, u) ≤ ρi

)
≤ t−6

P
(
ρ̄i(t, u) ≥ ρi +

√
1.5 log t/u

)
≤ t−3

P
(
ρ̄i(t, u) ≤ ρi −

√
1.5 log t/u

)
≤ t−3.

where µL
i (t, u) is the lower confidence bound of arm i at round t when arm i is sampled u times up

to round t; and other variables are defined similarly.

Proof.

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 ri(ti,s)

u
−
√

3 log t

u
≥ µi

)

where ti,s denotes the round in which sth sample of arm i is obtained. Since the samples of arm i
are independent across time, this expression can also be written independent of the time instant the
sample from arm i was obtained as:

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 µi,s

u
− µi ≥

√
3 log t

u

)

where µi,s is the sth sample of arm i. The result follows using Fact C.1:

P
(
µL
i (t, u) ≥ µi

)
= P

(∑u
s=1 µi,s

u
− µi ≥

√
3 log t

u

)
≤ e−

2u2
(√

3 log t
u

)2

u = t−6

The other results are proved similarly.
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Corollary C.4. For a base I = (i, j) if the arm i is sampled r times; and arm j is sampled s times
up to round t, the following results hold:

P
(
rLI (t, r, s) > rI

)
≤ 4t−6

P
(
rUI (t, r, s) < rI

)
≤ 4t−6.

where we define r(i,j)(t, r, s) as the empirical mean of the base I = (i, j) at round t when arm i

has been sampled r times, and arm j has been sampled s times up to round t; rU(i,j)(t, r, s) as the
upper confidence bound of the base I = (i, j) at round t when arm i has been sampled r times, and
arm j has been sampled s times up to round t; and rL(i,j)(t, r, s) as the lower confidence bound of
the base I = (i, j) at round t when arm i has been sampled r times, and arm j has been sampled s
times up to round t.

Proof. Recall that r(i,j) is the optimal LP solution when only arms in the base I = (i, j); i.e. i and
j; are allowed. Hence, r(i,j) can be found as:

r(i,j) = max
πi,πj

µiπi + µjπj

s.t. ρiπi + ρjπj < c,

πi + πj = 1

πi ≥ 0, πj ≥ 0.

Similar to this, rUI (t, r, s) is the solution to the equation below.

rU(i,j)(t, r, s) = max
βi,βj

µU
i (t, r) · βi + µU

j (t, s) · βj

s.t. ρLi (t, r) · βi + ρLj (t, s) · βj < c,

βi + βj = 1

βi ≥ 0, βj ≥ 0.

Using the fact that P
(
µU
i (t, r) ≥ µi ∧ µU

j (t, s) ≥ µj

)
≥ 1−2t−6 from Corollary C.3, the following

holds with at least 1− 2t−6 probability:

rU(i,j)(t, r, s) = µU
i (t, r) · βi + µU

j (t, s) · βj

≥ µiβi + µjβj

Using the fact that P
(
ρLi (t, r) ≤ ρi ∧ ρLj (t, s) ≤ ρj

)
≥ 1 − 2t−6 from Corollary C.3, it can be

seen that with probability at least 1 − 2t−6, {πi, πj : ρiπi + ρjπj < c} ⊂ {βi, βj : ρiβi +
ρjβj < c}; i.e. the constraint on πi and πj is more restrictive than the constraint on βi and βj .
Hence, it holds that P (µiβi + µjβj ≥ µiπi + µjπj) ≥ 1− 2t−6. Combining this with the fact that

P
(
rU(i,j)(t, r, s) ≥ µiβi + µjβj

)
≥ 1 − 2t−6, the result follows. Note that the same result also

follows if the base I contains only one arm. This is since a base with only one arm can be viewed
as a base with that arm and the null arm where the null arm is never pulled.

D PROOF OF THEOREM 3.1

Proof. To prove Theorem 3.1, we start by defining the events where the confidence bounds hold,
which are also known as the good events in the bandit literature. First, define

GI(t) :=

{
min

r≤t,s≤t
rUI∗(t, r, s) ≥ r∗ ∧ max

u≤t,v≤t
rLI (t, u, v) ≤ rI

}
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as the good event for base I at round t. Hence, GI(t) denotes the event where the confidence
intervals of both base I and the optimal base I∗ hold. The events G(t) and GT are defined as

G(t) := ∩I∈VGI(t),

GT := ∩T
t=1G(t).

Further, define

Fi(t) :=

{
min
r≤t

(
ρ̄i(t, r) +

√
1.5 log t/r

)
≥ ρi ∧max

r≤t

(
ρ̄i(t, r)−

√
1.5 log t/r

)
≤ ρi

}
,

F(t) := ∩K
i=1Fi(t), and

FT := ∩T
t=1F(t)

as the good events for determining the confidence bounds of arm costs for line 13 of Algorithm 2.
Using these events, the regret of SUAK can be decomposed as follows.

RT = OPTLP − E [F (T )]

= T · µTπ∗ − E

[
T∑

t=1

r(t)

]

= E

[
T∑

t=1

r∗ − r(t)

]

≤ E

[
T∑

t=1

r∗ − r(t)
∣∣∣GT ,FT

]
+

T∑
t=1

(P (Gc(t)) + P (Fc(t)))

We define the following four events based on the behaviour of SUAK:

E1(t): The round is skipped to satisfy the anytime constraint in line 5 of Algorithm 2
E2(t): Round is skipped so that the average cost incurred during pulls that are needed to reduce the
confidence interval of the arm cost stay below c in line 9 of Algorithm 2
E3(t): An arm is pulled to reduce the confidence interval of the arm cost in line 13 of Algorithm 2
E4(t): A base is selected and an arm from this base is pulled in line 36 of Algorithm 2.

Using these events, regret can be decomposed as

RT ≤ Ra(T ) +Rb(T ) +Rc(T ) +Rd(T ) +

T∑
t=tinit+1

(P (Gc(t)) + P (Fc(t))) + tinit

where

Ra(T ) :=E

[
T∑

t=tinit+1

1 {E1(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rb(T ) :=E

[
T∑

t=tinit+1

1 {E2(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rc(T ) :=E

[
T∑

t=tinit+1

1 {E3(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

Rd(T ) :=E

[
T∑

t=tinit+1

1 {E4(t), Ec
3(t)} · (r∗ − r(t))

∣∣∣GT ,FT

]

Note that these four events E1(t), · · · , E4(t) are mutually exclusive, any pair of these events cannot
happen at the same time. Also note that in the definition of Rd(T ), we explicitly define the event
as 1 {E4(t), Ec

3(t)} to highlight that E4(t) can happen only under Ec
3(t), i.e. when the confidence
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intervals of arm costs have been reduced enough that whether the cost of an arm is greater or less
than c is correctly known. This property is essential in satisfying the anytime constraint as it enables
to pull an arm whose true mean cost is less than c if the targeted cost budget is exceeded.

Each term in the regret can be upper bounded as below.

Corollary D.1. tinit ≤ − 1
ω2cW

(
−ω2ce−ω2K

)
= O(1), where W (·) is the Lambert function.

Proof of this result is provided in §D.2.

Lemma D.2. The regret from skips needed to prevent violating the anytime constraint can be upper
bounded as

Ra(T ) ≤
3π2r∗

δ2min
.

Proof of this result is provided in §D.6.

Lemma D.3. The regret from pulls needed to reduce the confidence intervals of arm costs can be
upper bounded as

Rb(T ) +Rc(T ) ≤
K∑
i=1

96(r∗ − µi) log T

δ2i
+
∑

i:ρi>c

104r∗ log T

cδi
≤ 200Kr∗ log T

cδ2min

Proof of this result is provided in §D.5.

Lemma D.4. The regret from arm pulls due to line 36 of Algorithm 2, i.e. regret from pulls of an
arm in a selected base, can be upper bounded as

Rd(T ) ≤
K∑
i=1

96r∗ log T

ω∆2
min,i

·
(
1 +

1

δi

)2

+
2r∗ log T

cω2

Proof of this result is provided in §D.4.

Corollary D.5. It holds that
T∑

t=tinit+1

P (Gc(t)) ≤ 4π2K2

3

Proof of this result is provided in §D.1

Corollary D.6. It holds that
T∑

t=tinit+1

P (Fc(t)) ≤ π2K

3

Proof of this result is provided in §D.3.

Note that to present the main result in a simpler way, we use define RK as

T∑
t=tinit+1

P (Gc(t)) +

T∑
t=tinit+1

P (Fc(t)) ≤ π2K

3
+

4π2K2

3
≤ RK :=

5π2K2

3

Combining all these results, it can be seen that

RT ≤
K∑
i=1

96( δi+1
δi

)2 log T

ω∆min,i
+

200Kr∗ log T

cδ2min

+
2r∗ log T

cω2
+

3π2r∗

δ2min
+RK + r∗tin

18
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≤
K∑
i=1

96( δi+1
δi

)2 log T

ω∆min,i
+

202Kr∗ log T

cδ2min

+RK + r∗tin

= O(K log T ) +O(1)

D.1 PROOF OF COROLLARY D.5

Proof.
T∑

t=1

1 {Gc
I(t)} =

T∑
t=1

1

{
min

r≤t,s≤t
rUI∗(t, r, s) < r∗ ∨ max

u≤t,v≤t
rLI (t, u, v) > rI

}

≤
T∑

t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

1
{
rUI∗(t, r, s) < r∗ ∨ rLI (t, u, v) > rI

}
By the monotonicity of expectation, it holds that

T∑
t=1

Gc
I(t) ≤

T∑
t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

P
(
rUI∗(t, r, s) < r∗ ∨ rLI (t, u, v) > rI

)
≤

T∑
t=1

t∑
r=1

t∑
s=1

t∑
u=1

t∑
v=1

8t−6 (3)

≤
T∑

t=1

8t−2 ≤ 4π2

3

where we used Corollary C.4 in (3). The result follows using G(t) = ∩I∈VGI(t).
T∑

t=1

G(t) =
T∑

t=1

⋃
I∈V

Gc
I(t)

≤
∑
I∈V

T∑
t=1

Gc
I(t) =

4π2K2

3

D.2 PROOF OF COROLLARY D.1

Proof. At round tinit, each arm will have been sampled once, and the incurred average cost will be
less than or equal to the targeted average cost c− log t

ω2t . Hence,∑K
i=1 ρi(tinit,i)

tinit
≤ c− log tinit

tinitω2

needs to hold. ∑K
i=1 ρi(tinit,i)

tinit
≤ K

tinit
≤ c− log tinit

tinitω2

From this expression, it can be seen that tinit ≤ tin, where tin is the solution of

tin =
K

c
+

log tin

ω2c
,

which can be written explicitly as

tin = − 1

ω2c
W
(
−ω2ce−ω2K

)
where W is the Lambert function.
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D.3 PROOF OF COROLLARY D.6

Proof.

T∑
t=1

1 {Fc
i (t)} =

T∑
t=1

1

{
min
r≤t

(
ρ̄i(t, r) +

√
1.5 log t/r

)
< ρi ∨max

r≤t

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

}

≤
T∑

t=1

t∑
r=1

1
{(

ρ̄i(t, r) +
√
1.5 log t/r

)
< ρi ∨

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

}

By the monotonicity of expectation, it holds that

T∑
t=1

1 {Fc
i (t)} ≤

T∑
t=1

t∑
r=1

P
((

ρ̄i(t, r) +
√
1.5 log t/r

)
< ρi ∨

(
ρ̄i(t, r)−

√
1.5 log t/r

)
> ρi

)

≤
T∑

t=1

t∑
r=1

2t−3 (4)

≤
T∑

t=1

2t−2 ≤ π2

3

where we used Corollary C.4 in (4). The result follows using F(t) = ∩K
i=1Fi(t).

T∑
t=1

F(t) =

T∑
t=1

K⋃
i=1

Fc
i (t)

≤
K∑
i=1

T∑
t=1

Fc
i (t) =

π2K

3

D.4 PROOF OF LEMMA D.4

Regret will be incurred in Rd(T ) under two different ways; one is selecting a suboptimal base; and
the other is the under-utilization of the cost budget. Under-utilization causes regret since even if the
selected base is optimal, less reward can be obtained when the targeted average budget is less than
c. First, we start by ignoring under-utilization (assume we target an anytime cost budget of ct), the
regret from under-utilization will be added separately.

For SUAK to select a suboptimal base I = (i, j) in round t, the following needs to hold.

rUI (t) ≥ rUI∗(t)

Under the good event G(t), r∗ ≤ rUI∗(t); rI ≥ rLI (t); and hence rUI (t) ≤ rU,U
I (t) holds where

rU,U
I (t) = max

βi(t),βj(t)
(µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

s.t. (ρi − 2ϵi(t))βi(t) + (ρj − 2ϵj(t))βj(t) < c,

βi(t) + βj(t) = 1

βi(t) ≥ 0, βj(t) ≥ 0.

Hence, the condition for SUAK to select a suboptimal base I = (i, j) in round t can be written as:

r∗ ≤ rUI∗(t) ≤ rUI (t) ≤ rU,U
I (t)
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This means that the suboptimal base I = (i, j) would not be selected in round t if rU,U
I (t) ≤ r∗. To

analyze this, we note that when ρi − 4ϵi(t) > c > ρj , the value of rU,U
(i,j)(t) can be written as:

rU,U
(i,j)(t) = (µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

where

βi(t) =
c− ρj + 2ϵj(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))
, βj(t) =

ρi − c− 2ϵi(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))

Note that given Fi(t), ρi − 4ϵi(t) > c holds whenever SUAK selects a base due to the design of
SUAK. If this was not the case, SUAK would pull arm i due to condition in line 13 and would not
select a base at that round. Also note that we only consider the case where the arms i, j in the base
satisfy ρi > c > ρj . The proof for the case where I contains a single arm i with ρi < c is much
simpler and can be done similarly. Furthermore, under the event Fi(t)∧Fj(t), it is not possible for
SUAK to select a base I = (i, j), where ρi > c, ρj > c.

rU,U
(i,j)(t) can be written in terms of r(i,j) as follows:

rU,U
(i,j)(t) = (µi + 2ϵi(t))βi(t) + (µj + 2ϵj(t))βj(t)

= µiβi(t) + 2ϵi(t)βi(t) + µjβj(t) + 2ϵj(t)βj(t)

= µiβi(t) + µjβj(t) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= µiπi + µjπj + µi(βi(t)− πi) + µj(βj(t)− πj) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= µiπi + µjπj + µi(βi(t)− πi) + µj(1− βi(t)− 1 + πi) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

= r(i,j) + (µi − µj) · (βi(t)− πi) + 2ϵi(t)βi(t) + 2ϵj(t)βj(t)

The expression βi(t)− πi can be written as

βi(t)− πi =
c− ρj + 2ϵj(t)

ρi − ρj + 2(ϵj(t)− ϵi(t))
− c− ρj

ρi − ρj

=
2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)

Hence,

rU,U
(i,j)(t) = r(i,j) + (µi − µj) ·

2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)
+ 2ϵi(t) + 2ϵj(t).

Hence, the base I = (i, j) can be selected in round t if

r∗ − r(i,j) = ∆(i,j) ≤ (µi − µj) ·
2ϵj(t) · (ρi − c) + 2ϵi(t) · (c− ρj)

(ρi − ρj + 2ϵj(t)− 2ϵi(t)) · (ρi − ρj)
+ 2ϵi(t) + 2ϵj(t)

=
(2ϵj(t) · δi + 2ϵi(t) · δj) · (µi − µj)

(δi + δj + 2ϵj(t)− 2ϵi(t)) · (δi + δj)
+ 2ϵi(t) + 2ϵj(t)

where we used the cost gaps δi = |ρi − c|. Under the event Fi(t), it is known that ϵi(t) < δi/4
holds due to the design of SUAK. Hence, the condition can be written as

∆(i,j) ≤ 2
(2ϵj(t) · δi + 2ϵi(t) · δj) · (µi − µj)

(δj + δi) · (δi + δj)
+ 2ϵi(t) + 2ϵj(t)

Define N(i,j)(t) as the number of times the base I = (i, j) is selected by SUAK up to round t. Since
SUAK selects an arm in a base with at least ω probability, an individual arm in a base I = (i, j)
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will be pulled at least ω · N(i,j)(t) times in expectation (greater than is used as an arm can also be
pulled if through other bases that include that arm), hence

E [Ni(t)] ≥ ω ·N(i,j)(t)

E [Nj(t)] ≥ ω ·N(i,j)(t)

Defining

ϵ(i,j)(t) :=

√
3 log t

N(i,j)(t)
,

it can be seen that
√
ω · ϵi(t) ≤ ϵ(i,j)(t),

√
ω · ϵj(t) ≤ ϵ(i,j)(t). Using this

√
ω ·∆(i,j) ≤ 2

2ϵ(i,j)(t) · (δi + δj) · (µi − µj)

(δj + δi) · (δi + δj)
+ 4ϵ(i,j)(t)

≤
4ϵ(i,j)(t) · (µi − µj)

δj + δi
+ 4ϵ(i,j)(t)

= 4ϵ(i,j)(t) ·
(
1 +

µi − µj

δi + δj

)
= 4

√
3 log t

N(i,j)(t)

(
1 +

µi − µj

δi + δj

)
Using this, under the method described above, it can be seen that a suboptimal base I = (i, j) can
be pulled at most

N(i,j)(T ) ≤
48 log T

ω∆2
(i,j)

·
(
1 +

µi − µj

δi + δj

)2

times in T rounds under the good event ∩T
t=1G(t). Using the inequality above, it can also be seen

that the following two inequalities hold.

N(i,j)(T ) ≤
48 log T

ω∆2
(i,j)

·
(
1 +

1

δi

)2

N(i,j)(T ) ≤
48 log T

ω∆2
(i,j)

·
(
1 +

1

δj

)2

Note that information on an individual arm i can be obtained from any base I : i ∈ I, not just the
base I = (i, j). As selecting and pulling arms from one base might reduce the need to pull the other
base, simply summing the upper bounds of N(i,j)(T ) values of all bases to find the total number of
arm pulls needed would lead to an over-count. To prevent this kind of over-count, we consider an
upper bound on the number of pulls of individual arms; and for this regard, we define the following
event.

Bt = {It ∈ V \ I∗} ∩

{
∃i ∈ It : Ni(t) ≤

48 log t

ω∆2
(i,j)

·
(
1 +

1

δi

)2
}

It can be seen that the base It ∈ V \ I∗ cannot be chosen under the event Bc
t . Further, define

Bi,t := Bt ∩

{
i ∈ It, Ni(t) ≤

48 log t

ω∆2
(i,j)

·
(
1 +

1

δi

)2
}

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

as the event that the arm i is not observed sufficiently often under event Bt. Then, it can be seen that

1 {Bt,∆It > 0} ≤
K∑
i=1

1 {Bi,t,∆It > 0}.

Using this, regret can be bounded as:

Rd(T ) = E

[
T∑

t=tinit+1

1 {E4(t), Ec
3(t)} · (r∗ − r(t))

∣∣∣GT ,FT

]

≤ E

 T∑
t=tinit+1

∑
I∈V\I∗

1 {It = I} · r∗
∣∣∣∣G(T )


+ E

[
T∑

t=tinit+1

1 {E4(t), Ec
3(t)} · 1 {It = I∗} · (r∗ − r(t))

∣∣∣GT ,FT

]
:= Rd,1(T ) +Rd,2(T )

where Rd,1(T ) is the gap from selecting a suboptimal base, and Rd,2(T ) is the regret due to under-
budgeting. Starting with Rd,1(T ),

Rd,1(T ) = E

 T∑
t=tinit+1

∑
I∈V\I∗

1 {It = I} · r∗
∣∣∣∣G(T )

 ≤ E

[
T∑

t=tinit+1

K∑
i=1

1 {Bi,t} · r∗
∣∣∣∣G(T )

]

where the gap is taken as r∗. Let Si := {∆I : I ∈ V\{I∗}, i ∈ I} be the set of gaps of suboptimal
bases that include arm i. Also let σi,1 ≥ · · · ≥ σi,|Si| be the gaps of the bases in Si ordered from
the one with largest gap to the smallest one. Note that |Si| is the number of valid bases that contain
the arm i; and since two arms that have mean costs larger than c do not form a valid base, |Si| ≤ K
will hold.

Rd,1(T ) ≤ E

 T∑
t=tinit+1

K∑
i=1

|Si|∑
j=1

1 {Bi,t,∆It
= σi,j} · r∗

∣∣∣∣E(T )


≤ E

 T∑
t=tinit+1

 K∑
i=1

|Si|∑
j=1

1

{
i ∈ It, Ni(t) ≤

48 log t

ω∆2
(i,j)

·
(
1 +

1

δi

)2
}

· r∗
∣∣∣∣E(T )


To proceed, as in (Kveton et al., 2015), we consider the worst case, i.e. the way with which the
samples of arm i are obtained with the highest regret possible. The key idea is that this worst case
occurs when first the base with highest gap is repeatedly selected to obtain samples of arm i until
this base can no longer be selected, and then selecting the base with the highest gap among the
remaining bases, and then repeatedly selecting that base, and so on. Since all bases have the same
regret per sample, it can be seen that regret from samples for arm i will be bounded by

Rd,1,i(T ) ≤
96r∗ log T

ω∆2
min,i

·
(
1 +

1

δi

)2

We now upper bound Rd,2(T ), the regret from under-utilizing the cost budget. Note that we only
consider the regret for under-budgeting from the selections of the suboptimal base since the upper
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bound on the number of selections of a suboptimal base that we considered in Rd,1(T ) is not affected
by under-budgeting.

Using similar arguments as in D.6, it can be shown that the probability that the empirical cost average
of the pulls from the optimal base at round T being less than c−2 log T/ω2T is a constant. Because
of this, the under-utilization of the cost budget is upper bounded by 2 log T/ω2T . Hence,

Rd,2(T ) ≤
2r∗ log T

cω2
.

This is since the playing the optimal action could have obtained 2r∗ log T
cω2 reward with the unspent

budget of 2 log T/ω2T as the optimal reward per unit cost is r∗/c.

Combining Rd,1(T ) and Rd,2(T ), the regret Rd(T ) can be upper bounded as

Rd(T ) = Rd,1(T ) +Rd,2(T )

≤
K∑
i=1

96r∗ log T

ω∆2
min,i

·
(
1 +

1

δi

)2

+
2r∗ log T

cω2

D.5 PROOF OF LEMMA D.3

In round t, arm i might be pulled due to line 13 of Algorithm 2 if ϱLl (t) ≤ c and c ≤ ϱUl (t).
Without loss of generality, we consider the case where ρi > c. The case where ρi < c can be
derived similarly. Under the good event F(t); ρi ≤ ρ̄i(t) +

√
1.5 log t/Ni(t), and ρi ≥ ρ̄i(t) −√

1.5 log t/Ni(t) holds. Hence, c ≤ ϱUl (t) will always hold under F(t) since

ϱUi (t) = ρ̄i(t) + 7

√
1.5 log t

Ni(t)
≥ ρ̄i(t) +

√
1.5 log t

Ni(t)
≥ ρi ≥ c.

Therefore, arm i will be pulled in round t if ϱLl (t) ≤ c. This condition can be written as

ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≤ c

Using ρi −
√
1.5 log t/Ni(t) ≤ ρ̄i(t), the following will hold under F(t).

ρi − 8

√
1.5 log t

Ni(t)
≤ ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≤ c

Hence, arm i will be pulled in round t if

ρi − c = δi ≤ 8

√
1.5 log t

Ni(t)

It can be concluded from here that the arm i can be pulled at most

Ni(T ) ≤
96 log T

δ2i
(5)

times in T rounds under the good event ∩T
t=1F(t). Also note that when

ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≥ c
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holds, using ρi +
√

1.5 log t
Ni(t)

≥ ρ̄i(t), it can be seen that

ρi − 6

√
1.5 log t

Ni(t)
≥ ρ̄i(t)− 7

√
1.5 log t

Ni(t)
≥ c

holds. Hence, the following holds at any round t under the event ∩T
t=1F(t).

δi
6

≥

√
1.5 log t

Ni(t)

Thus, it can be seen that δi
4 ≥ ϵi(t) at any round t. This outcome is used in the proof of Lemma D.4

in §D.4.

Using (5), the regret Rc(T ) can be upper bounded as

Rc(T ) =E

[
T∑

t=1

1 {E3(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

≤
K∑
i=1

96 log T

δ2i
· (r∗ − µi)

Note that for some arms ρi > c, this regret term might be negative if r∗ ≤ µi holds. However, these
arms will also cause skips, and the overall regret of these pulls will be reflected in Rb(T ) +Rc(T ).

Now, we upper bound Rb(T ). It can be seen that on expectation only pulls from arms ρi > c can
lead to skips due to exceeding the average budget c. First, the total cost incurred from pulling arm
an i : ρi > c can be expressed as

∑T
s=1 ci(s) · 1 {i(t) = i}. Skipping is used to reduce the average

cost incurred from these pulls to c. The number of skips needed to reduce the empirical average cost
of an arm i to c, which we denote as Ns

i (T ), can be found through the following relation

c =

∑T
s=1 ci(s) · 1 {i(t) = i}
Ni(T ) +Ns

i (T )

To proceed, note that Ni(T ) ≤ 96 log T
δ2i

by (5). If Ni(T ) = 96 log T
δ2i

, using Hoeffding’s Inequality
(Fact C.1); we can upper bound

P

(
T∑

s=1

ci(s) · 1 {i(t) = i} ≤ Ni(T ) · (ρi + δi/12)

)
≤ e

−2 96 log T

δ2
i

(
δi
12

)2

≤ 1

T

Hence, for the case where Ni(T ) =
96 log T

δ2i
,

c · (Ni(T ) +Ns
i (T )) =

T∑
s=1

ci(s) · 1 {i(t) = i} ≤
(
ρi +

δi
12

)
·Ni(T )

c ·Ns
i (T ) ≤

(
ρi +

δi
12

− c

)
·Ni(T ) =

13δi
12

·Ni(T )

From this equation, it can be concluded that

Ns
i (T ) ≤

104 log T

cδi
+ 1
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Note that we while used Ni(T ) = 96 log T
δ2i

to derive this result, the upper bound still holds for the

case Ni(T ) ≤ 96 log T
δ2i

as well since if Ni(T ) is decreased, it will also cause Ns
i (T ) to decrease. Also

note that the term 1 is for the case where the Hoeffding’s Inequality does not hold (with probability
upper bounded by 1/T ).

To derive the upper bound on regret, we multiply the upper bound on the number of skips with r∗,
hence

Rb(T ) ≤ r∗ ·Ns
i (T ) +O(1) ≤ 104r∗ log T

cδi
+ 1

And the total regret Rb(T ) +Rc(T ) can be upper bounded as

Rb(T ) +Rc(T ) ≤
∑

i:ρi>c

104r∗ log T

cδi
+

K∑
i=1

96 log T

δ2i
· (r∗ − µi) + 1

D.6 PROOF OF LEMMA D.2

Define Zt := {∃i ∈ It : ρi < c} as the event that the selected base is correctly identified, i.e.
there exists an arm that has a cost less than c in the base. Assume that tf is the round where
c̄(tf ) + 1/(tf + 1) > c, which means that round tf + 1 will be skipped due to the condition in
the algorithm. Also define te as the latest round te < tf where c̄(t) ≤ c − log t

ω2t . Given Zte,tf :=

∩tf
s=teZs, the algorithm will pull the arm with cost less than c in the base for all rounds te < t < tf ,

and it can be seen that tf − te ≥ log te
ω2(1−c) . This is since accumulated cost at round tf is ctf , and in

round te, it is cte − log te/ω
2. Also using the fact that cost observed in a round is upper bounded

by 1, it holds that c(tf − te) +
log te
ω2 ≤ tf − te. Note that we ignore the pulls that occur from

determining if the cost of an arm is greater than or less than c (line 10 in Algorithm 1) since that part
has its own skipping rule to limit the average cost attained from these pulls to c.

We define Zi as the cost observed in round i where te < i ≤ tf given the event Zi. This means that
E [Z] ≤ c − δmin since under these circumstances, the algorithm will pull the arm with empirical
average cost lower than c in the base with probability 1 − w; and given the event Ec

3(t), the true
mean cost of this arm will be less than c− δmin. Further, with probability w, the arm with the higher
cost will be pulled whose mean cost is bounded by 1. Defining Ste,tf , where tf ≥ te +

log te
ω2(1−c)

as the event that round tf is skipped when the target budget started to be exceeded at round te, its
probability can be upper bounded as:

P
(
Ste,tf

)
≤ P

( tf∑
s=te

Zs ≥ (tf − te) · c+ log(te)

)

= P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (c− E [Z]) + log(te)

)

≤ P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (c− E [Z])

)

Since only arms whose cost is less than or equal to c− δmin are pulled with probability 1− ω, and
with probability w the cost is bounded by 1; the expected mean of the random variable Zi will be
less than or equal to (c− δmin) · (1− ω) + ω, i.e. E [Z] ≤ c− δmin + ω(1 + δmin − c). Hence,

P
(
Stf

)
≤ P

( tf∑
s=te

Zs − (tf − te) · E [Z] ≥ (tf − te) · (δmin − ω · (1 + δmin − c))

)
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≤ e−2(δmin−ω·(1+δmin−c))2(tf−te)

Then, the total expected number of skips can be upper bounded as:

S(T ) ≤ E

 T∑
te=1

T∑
tf=te+

⌈
log te

ω2(1−c)

⌉1
{
Ste,tf

} (6)

=

T∑
te=1

T∑
tf=te+

⌈
log te

ω2(1−c)

⌉P
(
Ste,tf

)

≤
T∑

te=1

∞∑
r=

⌈
log te

ω2(1−c)

⌉ e−2(δmin−ω·(1+δmin−c))2r (7)

≤
T∑

te=1

e
−2(δmin−ω·(1+δmin−c))2· log te

ω2(1−c)

1− e−2(δmin/(2+δmin))2

≤
T∑

te=1

2(2 + δmin)
2

δ2min

e
−2(δmin−ω·(1+δmin−c))2· log te

ω2(1−c) (8)

The inequality in (6) is due to the fact that the upper limit of the summation over te is upper bounded
by T . Fact C.1 is used in (7), and the fact that e−2x ≤ 1− x/2, ∀ 0 ≤ x ≤ 1 is used in (8). Using
ω ≤ δmin

2+δmin−c , it can be seen that

S(T ) ≤
T∑

te=1

18

δ2min

e−2·log te

≤ 18

δ2min

T∑
te=1

1

t2e
≤ 3π2

δ2min

Using this, the result follows.

Ra(T ) =E

[
T∑

t=1

1 {E1(t)} · (r∗ − r(t))
∣∣∣GT ,FT

]

≤r∗ · E

[
T∑

t=1

1 {E1(t)}
∣∣∣GT ,FT

]

≤r∗ · S(T ) ≤ 3π2r∗

δ2min

27


	Introduction
	Applications
	Contributions

	Problem Statement
	The Bandits with Anytime Knapsacks (BwAK) Model

	The SUAK Algorithm
	The Naive Approach
	The SUAK Algorithm
	Analysis of SUAK
	Related Works
	Proof Sketch

	Simulations
	Concluding Remarks
	Table of Notations
	Additional Related Works
	Preliminaries and Auxiliary Results
	Optimal Base of the Optimization Problem
	Concentration Inequalities for the Confidence Intervals

	Proof of Theorem 3.1
	Proof of Corollary D.5
	Proof of Corollary D.1
	Proof of Corollary D.6
	Proof of Lemma D.4
	Proof of Lemma D.3 
	Proof of Lemma D.2 


