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Abstract

Attention mechanisms average a data representation with respect to probability
weights. Recently, [23–25] proposed continuous attention, focusing on unimodal
exponential and deformed exponential family attention densities: the latter can
have sparse support. [8] extended to multimodality via Gaussian mixture attention
densities. In this paper, we propose using kernel exponential families [4] and our
new sparse counterpart, kernel deformed exponential families. Theoretically, we
show new existence results for both families, and approximation capabilities for
the deformed case. Lacking closed form expressions for the context vector, we
use numerical integration: we prove exponential convergence for both families.
Experiments show that kernel continuous attention often outperforms unimodal
continuous attention, and the sparse variant tends to highlight time series peaks.

1 Introduction

Attention mechanisms [3] are weighted averages of data representations used to make predictions.
Discrete attention 1) cannot easily handle irregularly spaced observations, and 2) attention maps may
be scattered, lacking focus. [23, 24] proposed continuous attention, showing that attention densities
maximize the regularized expectation of a function of the data location (i.e. time). Special cases
lead to exponential and deformed exponential families: the latter has sparse support. They form a
continuous data representation and take expectations with respect to attention densities. In [25] they
apply this to a transformer architecture.

[23–25] used unimodal attention densities, giving importance to one data region. [8] extended this to
multimodal Gaussian mixture attention densities. However 1) Gaussian mixtures lie in neither the
exponential nor deformed exponential families, and are difficult to study in the context of [23, 24];
and 2) they have dense support. Sparse support can say that certain regions of data do not matter: a
region of time has no effect on class probabilities, or a region of an image is not some object. We
would like to use multimodal exponential and deformed exponential family attention densities, and
understand how [8] relates to the framework of [23, 24].

This paper makes three contributions: 1) we introduce kernel deformed exponential families, a sparse
multimodal density class, and apply it along with the multimodal kernel exponential families [4]
as attention densities. The latter have been used for density estimation, but not weighting data
importance; 2) we theoretically analyze kernel exponential and deformed exponential family i)
normalization, ii) approximation and iii) context vector numerical integration properties; 3) we apply
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them to real world datasets, showing that multimodal continuous attention outperforms unimodal,
and that kernel deformed exponential family densities often highlight the peaks of time series.
Approximation properties for the kernel deformed case are challenging: similar kernel exponential
family results [33] relied on exponential and logarithm properties to bound the difference of the
log-partition functional at two functions: these do not hold for deformed analogues. We provide
similar bounds by using a mean value inequality and bounding a functional derivative.

We first review unimodal continuous attention [23, 24]. We motivate multimodal continuous attention
via time warping. We next describe kernel exponential families and give a novel normalization
condition relating kernel growth to the base density’s tail decay. We then propose kernel deformed
exponential families, new densities with support over potentially disjoint regions. We describe
normalization and approximation capabilities. Next we describe using these densities for continuous
attention, including numerical integration convergence analysis. We show experiments comparing
unimodal and multimodal attention, and conclude with limitations and future work.

2 Related Work

Attention Mechanisms closely related are [23–25, 8]. [23, 24] frame continuous attention as an
expectation of a value function with respect to a density, where the density solves an optimization
problem. They only used unimodal (deformed) exponential family densities: we extend this to the
multimodal setting by leveraging kernel exponential families and proposing a deformed counterpart.
[8] proposed a multimodal continuous attention mechanism via a Gaussian mixture. We show in
Appendix A that this solves a slightly different optimization problem from [23, 24]. A limitation
of Gaussian mixtures is lack of flexible tail decay. Finally, [25] apply continuous attention within
a transformer architecture to model long context. This is a new application of continuous attention
rather than an extension of specific continuous attention mechanisms.

Also relevant are [40, 30, 31]. [30] provide an attention mechanism for irregularly sampled time
series by use of a continuous-time kernel regression framework, but do not take an expectation of
a data representation over time with respect to a continuous pdf. Instead they evaluate the kernel
regression model at fixed time points. This describes importance of data at a set of points rather than
over continuous regions. [31] extend this to incorporate uncertainty quantification. Other papers
connect attention and kernels, but focus on discrete attention [40, 5]. Also relevant are temporal
transformer papers, including [45, 15, 17, 32]. However, none have continuous attention densities.

Kernel Exponential Families [4] proposed kernel exponential families: [33] analyzed theory for
density estimation. [44] parametrized the kernel with a deep neural network. Other density estimation
papers include [1, 6, 36]. We apply kernel exponential families as attention densities to weight a
value function which represents the data, rather than for density estimation. Further, [44] showed a
condition for an unnormalized kernel exponential family density to have a finite normalizer. However,
they used exponential power base densities. We instead relate kernel growth rates to the base density
tail decay, allowing non-symmetric base densities.

To summarize our theoretical contributions: 1) showing that multimodal continuous attention is
required to represent time warping 2) introducing kernel deformed exponential families with approxi-
mation and normalization analysis 3) improved kernel exponential family normalization results 4)
stability and convergence analysis of numerical integration for kernel-based continuous attention 5)
characterizing [8] in terms of the framework of [23, 24].

3 Continuous Attention Mechanisms

An attention mechanism has: 1) a value function: a raw or learned data representation 2) an attention
density chosen to be ‘similar’ to another data representation, encoding it into a density 3) a context c
[23] taking an expectation of the value function with respect to the attention density:

c = ET∼p[V (T )]. (1)

The value function V : S → RD is a data representation, T ∼ p(t) is the random variable or vector
for locations (temporal, spatial, etc) in domain S, and p(t) is the attention density (potentially with
respect to a discrete measure). For discrete attention, one could have V (t) be a time series where
t ∈ S a finite set of time points. One then weights the time series with a probability vector to
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obtain the context vector. An example of this for irregularly sampled time series is [30]. For each
attention mechanism (eqn. 3 in their paper), S is the set of observed time points, the value function
maps the observed time points to their respective observation values, and the attention probability
mass function is the output of normalized kernel evaluations between observation time points and a
reference time point.

In the continuous setting V (t) could be a curve or realization of a continuous-time stochastic process,
and S could be [0, τ ] where τ is a study end time. One then weights it with a continuous probability
density. If S is a set of spatial locations and one has image data, then the value function could be a
raw image or learned representation of an image. Finally, for self-attention [18, 42], V is a linear
transformation of a sequence, and the expectation is conditional on a transformation of a specific
token (query).

To choose p, one takes a data representation f and finds p ‘similar’ to f , but regularizing p. [23, 24]
did this, formalizing attention mechanisms. Given a measure space (S,A, Q), let M1

+(S) be the
set of probability densities with respect to Q. Assume Q is dominated by a σ-finite measure ν (i.e.
Lebesgue) and that it has Radon Nikodym derivative q0 = dQ

dν with respect to ν. Let S ⊆ RD, F be a
function class, and Ω : M1

+(S) → R be a lower semi-continuous, proper, strictly convex functional.
Given f ∈ F , an attention density [23] p̂ : S → R≥0 solves

p̂[f ] = arg max
p∈M1

+(S)

∫
S

p(t)f(t)dQ(t)− Ω(p). (2)

This maximizes regularized L2 similarity between p and a data representation f . If Ω(p) =∫
S
p(t) log p(t)dQ(t) is the negative differential entropy, the attention density is Boltzmann Gibbs

p̂[f ](t) = exp(f(t)−A(f)), (3)

where A(f) ensures
∫
S
p̂[f ](t)dQ = 1 (see [23] for proof). If f(t) = θTϕ(t) for parameters and

statistics θ ∈ RM , ϕ(t) ∈ RM respectively, Eqn. 3 becomes an exponential family density. For f in
a reproducing kernel Hilbert space (RKHS) H, it becomes a kernel exponential family density [4],
which we propose as an alternative attention density.

One desirable class would be heavy or thin tailed exponential family like densities. In exponential
families, the support, or non-zero region of the density, is controlled by the measure Q. Letting Ω(p)
be the α-Tsallis negative entropy Ωα(p) [41],

Ωα(p) =

{
1

α(α−1)

(∫
S
p(t)αdQ− 1

)
, α ̸= 1;∫

S
p(t) log p(t)dQ, α = 1,

then p̂[f ] for f(t) = θTϕ(t) lies in the deformed exponential family [41, 27]

p̂Ωα [f ](t) = exp2−α(θ
Tϕ(t)−Aα(f)), (4)

where Aα(f) again ensures normalization and the density uses the β-exponential

expβ(t) =

{
[1 + (1− β)t]

1/(1−β)
+ , β ̸= 1;

exp(t), β = 1.
(5)

For β < 1, Eqn. 5 and thus deformed exponential family densities for 1 < α ≤ 2 can return 0 values.
Values α > 1 (and thus β < 1) give thinner tails than the exponential family, while α < 1 gives
fatter tails. Setting β = 0 is called sparsemax [22]. In this paper, we assume 1 < α ≤ 2, which is the
sparse case studied in [23]. We again propose to replace f(t) = θTϕ(t) with f ∈ H, which leads to
the novel kernel deformed exponential families.

Computing Eqn. 1’s context vector requires parametrizing V (t). [23] parametrize V : S → RD
with B ∈ RD×N as V (t;B) = BΨ(t) and estimate B ∈ RD×N via regularized multivariate linear
regression. Here Ψ = {ψn}Nn=1 is a set of basis functions. Let L be the number of observation
locations (times in a temporal setting), D be the observation dimension, andN be the number of basis
functions. Using Frobenius norm ∥ · ∥F , this involves regressing the observation matrix H ∈ RD×L

on a matrix F ∈ RN×L of basis functions {ψn}Nn=1 evaluated at observation locations {tl}Ll=1

B∗ = argmin
B

∥BF − H∥2F + λ∥B∥2F , (6)
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4 Time Warping

We now draw a connection to time warping [28] to show an advantage of our method. One summary
statistic for classification is a global weighted average pooling: an expectation of temporal features.
However in many processes features may not be aligned in time, and we only observe unaligned
curves due to a discrepancy between individual system times and clock time: this is known as
phase variation [21]. For instance, electrocardiogram (ECG) heartbeat curves have a P-wave, a QRS
complex and a T-wave. These have similar patterns between heartbeats, but may have different
durations and peak locations. Here we show that the expectation of a temporally aligned curve with
respect to a global density is equivalent to the expectation of the unaligned curve with respect to an
individualized density. However even if the global density is unimodal, the individualized density
may not be. We first define the function that aligns a set of features to common reference times.
Definition 4.1. (Time Warping Function) Given references times {t0k}Kk=1 and individualized times
{tik}Kk=1, both in [0, τ ], a time warping function hi : S → R for S ⊆ R≥0 is a strictly increasing,
differentiable, invertible function where

hi(0) = 0, hi(τ) = τ

hi(t0k) = tik, k = 1, . . . ,K

hi(t) = t if t ̸∈ [0, τ ]

Let {Xi}ni=1, Xi : S → R be observed curves, each with K features occurring at individualized
times {tik}Kk=1 ⊂ [0, τ ] increasing in k. A set of time warping functions {hi}ni=1 map reference
times to individualized feature times. One can then compute aligned X∗

i (t) = Xi(hi(t)). Each
X∗
i has relevant features at the same times {t0k}Kk=1. Classically, this requires handcrafting and

locating important features and estimating a warping function. We could then compute an expectation
of the time warped curve with respect to a global fixed density p(t) to obtain a summary statistic
ET∼pX

∗
i (T ) of the aligned curve. The following states that multimodal continuous attention can

represent such an expectation with an attention density pi, avoiding computing X∗
i (t).

Lemma 4.2. (Continuous Attention can Represent Time Warping) Let h be a time warping function,
g = h−1 andXi : R → R with support on [0, τ ]. Assume thatQ is dominated by Lebesgue measure ν
and let q0 = dQ

dν . Then for any fixed density p wrt Q, if g,Xi, q0, p are continuous almost everywhere
we have

EU∼pX
∗
i (U) = ET∼piXi(T ) (7)

where pi(t) = p(gi(t))
q0(gi(t))
q0(t)

g′i(t) and pi(t) is a valid probability density function.

See Appendix B.1 for proof. Even if p(t) is unimodal, pi(t) may not be: see Appendix B.2 for an
example. Thus we require multimodal continuous attention to represent such statistics.

5 Kernel Exponential and Deformed Exponential Families

We use kernel exponential families and a new deformed counterpart to obtain flexible attention
densities solving Eqn. 2 with the same regularizers. We first review kernel exponential families.
We then give a novel theoretical result describing when an unnormalized kernel exponential family
density can be normalized. This says that the normalizing constant exists when the base density
has fast enough tail decay relative to kernel growth. This result allows us to verify that a choice of
base measure and kernel lead to a valid attention density and thus attention mechanism. Next we
introduce kernel deformed exponential families, extending kernel exponential families to have either
sparse support, our focus, or fatter tails. These can attend to non-overlapping time intervals. We show
similar normalization results based on kernel choice and base density. The normalizing constant
exists when the unnormalized density has compact support and the kernel grows sufficiently slowly.
Following this we show approximation theory. We conclude by showing how to compute attention
densities in practice.

Kernel exponential families [4] extend exponential families, replacing f(t) = θTϕ(t) with f ∈ H a
reproducing kernel Hilbert space H [2]. Densities can be written

p(t) = exp(f(t)−A(f))

= exp(⟨f, k(·, t)⟩H⟩ −A(f)). (8)
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Figure 1: Rescaled continuous attention densities for a) kernel deformed exponential families on an
engine noise example b) kernel deformed exponential families on an ECG example. Both examples
are multimodal and highlight salient features of a signal, and the ECG example in particular highlights
the waves, which describe the electrical signal passing through the heart conduction system. It first
highlights the R wave, the largest peak, then the T wave, and next the R wave again.

Eqn. 8 follows from the reproducing property. A challenge is to choose H, Q so that a normalizing
constant exists, i.e.,

∫
S
exp(f(t))dQ <∞. These densities can approximate any continuous density

over a compact domain arbitrarily well in KL divergence, Hellinger, and Lp distance [33]. However
relevant integrals including the normalizing constant require numerical integration.

To avoid infinite dimensionality one generally assumes a representation of the form f =∑I
i=1 γik(·, ti), where for density estimation [33] the ti are the observation locations and this

is the solution to a regularized empirical risk minimization problem. This requires using one parame-
ter per observation value. This model complexity may not be necessary, and often one chooses a set
of inducing points [38] {ti}Ii=1 where I is less than the number of observation locations.

For a given pair H, k, how can we choose Q to ensure that the normalization constant exists? We
first give a simple example of H, f and Q where it does not.
Example 1. Let Q be the law of a N (0, 1) distribution and S = R. Let H = span{t3, t4} with
k(t, s) = t3s3 + t4s4 and f(t) = t3 + t4 = k(t, 1). Then the following integral diverges.∫

S

exp(f(t))dQ =

∫
R

1√
2π

exp

(
− t

2

2
+ t3 + t4

)
dt

5.1 Theory for Kernel Exponential Families

We provide sufficient conditions for Q and H so that A(f) the log-partition functional exists. We
relate H’s kernel growth rate to the tail decay of the random variable or vector TQ with law Q.
Proposition 5.1. Let p̃(t) = exp(f(t)) where f ∈ H an RKHS with kernel k. Assume k(t, t) ≤
Lk∥t∥ξ2 + Ck for constants Lk, Ck, ξ > 0. Let Q be the law of a random vector TQ, so that
Q(A) = P (TQ ∈ A). Assume ∀u s.t. ∥u∥2 = 1, z > 0

P (|uTTQ| ≥ z) ≤ Cq exp(−vzη) (9)

for some constants η > ξ
2 , CQ, v > 0. Then∫

S

p̃(t)dQ <∞.

See Appendix C.1 for proof. Based on k(t, t)’s growth, we can vary what tail decay rate for TQ
ensures we can normalize p̃(t). [44] also proved normalization conditions, but focused on exponential
power density for a specific growth rate of k(t, t) rather than relating tail decay to growth rate. By
focusing on tail decay, our result can be applied to non-symmetric base densities. Specific kernel
bound growth rate terms ξ lead to allowing different tail decay rates.
Corollary 5.2. For ξ = 4, TQ can be any sub-Gaussian random vector. For ξ = 2 it can be any
sub-exponential. For ξ = 0 it can be any probability density.

See Appendix C.2 for proof.
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5.2 Kernel Deformed Exponential Families

We now propose kernel deformed exponential families, which are flexible sparse non-parametric
densities: these can be multimodal. They take deformed exponential families and extend them to use
kernels in the deformed exponential term. This mirrors kernel exponential families. We write

p(t) = exp2−α(f(t)−Aα(f)),

where f ∈ H with kernel k. Fig. 1 shows that they can have support over disjoint intervals.

5.2.1 Normalization Theory

We construct a valid kernel deformed exponential family density from Q and f ∈ H. We first discuss
the deformed log-normalizer. In exponential family densities, the log-normalizer is the log of the
normalizer. For deformed exponentials, the following holds.
Lemma 5.3. Let Z > 0 be a constant. Then for 1 < α ≤ 2,

1

Z
exp2−α(Z

α−1f(t)) = exp2−α(f(t)− logα Z)

where

logβ t =


t1−β−1
1−β if t > 0, β ̸= 1;

log(t) if t > 0, β = 1;

undefined if t ≤ 0.

See Appendix D.1 for proof. We now describe a normalization sufficient condition analagous to
Proposition 5.1 for deformed kernel exponential families. With Lemma 5.3 and an unnormalized
exp2−α(f̃(t)) we derive a valid normalized kernel deformed exponential family density. We only
require that an affine function of the terms in the deformed-exponential is negative for large ∥t∥2.

Proposition 5.4. For 1 < α ≤ 2 assume p̃(t) = exp2−α(f̃(t)) with f̃ ∈ H, H is a RKHS with
kernel k. If ∃Ct > 0 s.t. for ∥t∥2 > Ct, (α− 1)f̃(t) + 1 ≤ 0 and k(t, t) ≤ Lk∥t∥ξ2 + Ck for some
ξ > 0, then

∫
S
exp2−α(f̃(t))dQ <∞.

See Appendix D.2 for proof. We now construct a valid kernel deformed exponential family density
using the finite integral.

Corollary 5.5. Under proposition 5.4’s conditions, assume exp2−α(f̃(t)) > 0 on a set A ⊆ S where
Q(A) > 0, then ∃ constants Z > 0, Aα(f) ∈ R such that for f(t) = 1

Zα−1 f̃(t), the following holds∫
S

exp2−α(f(t)−Aα(f))dQ = 1.

See Appendix D.3 for proof. We thus estimate f̃(t) = Zα−1f(t) and normalize to obtain a density
of the desired form.

5.2.2 Approximation Theory

Kernel deformed exponential families can approximate continuous densities satisfying a tail condition
on compact domains arbitrarily well in Lp norm, Hellinger distance, and Bregman divergence.
Theorem 5.6. Let q0 ∈ C(S), such that q0(t) > 0 for all t ∈ S, where S ⊆ Rd is locally compact
Hausdorff and q0 is the Radon Nikodym derivative of measureQ with respect to a dominating measure
ν. Suppose there exists l > 0 such that for any ϵ > 0,∃R > 0 satisfying |p(t)− l| ≤ ϵ for any t with
∥t∥2 > R. Define

Pc = {p ∈ C(S) :

∫
S

p(t)dQ = 1, p(t) ≥ 0,∀t ∈ S and p− l ∈ C0(S)}.

Suppose k(t, ·) ∈ C0(S)∀t ∈ S and the kernel integration condition (Eqn. 12) holds. Then kernel
deformed exponential families are dense in Pc wrt Lr norm, Hellinger distance and Bregman
divergence for the α-Tsallis negative entropy functional.
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The proof (Appendix D.4) idea is that under a kernel integrability condition, deformed exponential
families parametrized by f ∈ H are dense in those parametrized by f ∈ C0(S)

2 (we denote
those parametrized by f ∈ C0(S) as P0). We can approximate C(S) densities satisfying the tail
condition with P0 densities, and thus with deformed exponential family densities. This extends [33]’s
approximation to the deformed case: standard log and exponential rules cannot be applied. It requires
bounding functional derivatives and applying a mean value inequality.

5.3 Using Kernels for Continuous Attention

Here we describe how to compute continuous attention mechanisms with attention densities
parametrized by functions in an RKHS H in practice. Algorithm 1 shows the kernel deformed
exponential family case: the kernel exponential family case involves a similar algorithm. Given a
base measure, kernel, and inducing point locations, we start by computing kernel weights γ̃i for
f̃(t) = Zα−1f(t) =

∑I
i=1 γ̃ik(t, ti) and estimating the matrix B for basis weights for the value

function V (t) = BΨ(t). Unlike density estimation, this form for f is simply a practical way to obtain
f in an RKHS, rather than a solution to an empirical risk minimization problem. We then compute the
normalizing constant Z =

∫
S
exp2−α(f̃(t))dQ via numerical integration and use it to normalize f̃(t)

to obtain the attention density p(t). Finally we compute the context c = ET∼p[V (T )] = BEp[Ψ(t)]
by taking the expectation of Ψ(T ) with respect to a deformed kernel exponential family density p.
Unlike [23, 24], we lack closed form expressions and use numerical integration. In the backwards
pass we use automatic differentiation. Note that in some cases we have numerical underflow when
computing the normalizing constant. We also found that using FP16 precision, the default on some
newer GPUs for Pytorch up to 1.11, leads to worse performance, sometimes dramatically so, and
thus recommend using FP32. We discuss solutions for the underflow issue in Appendix E.1.

Algorithm 1 Continuous Attention Mechanism via Kernel Deformed Exponential Families
Choose q0(t) and kernel k. Inducing point locations {ti}Ii=1

Parameters {γ̃i}Ii=1 the weights for f̃(t) = (Z)α−1f(t) =
∑I
i=1 γ̃ik(t, ti), matrix B for basis

weights for value function V (t) = BΨ(t). I is number of inducing points.
Forward Pass
Compute Z =

∫
exp2−α(f̃(t))dQ(t) to obtain p(t) = 1

Z exp2−α(f̃(t)) via numerical integration
Compute ET∼p[Ψ(T )] via numerical integration
Compute c = ET∼p[V (T )] = BEp[Ψ(T )]
Backwards Pass use automatic differentiation

5.3.1 Numerical Integration Convergence

The trapezoidal rule’s standard one-dimensional convergence rate isO( 1
N2 ) for an integral over a fixed

interval, where N is the number of grid points. We would like better convergence guarantees. We
can achieve exponential convergence for the numerical integrals of kernel exponential and deformed
exponential family attention. We focus on numerical integration over the real line, leaving truncation
analysis and higher dimensions to future work. We let h > 0 be the grid size.

For functions holomorphic in a strip with rapid decay, the trapezoidal rule has exponential convergence.
For kernel exponential family attention, this gives us O(exp(−C/h)) or exponential convergence for
some C > 0 with appropriate choice of q0, V , and k. Technical details are in E.2, and are based on
extending real-valued analytic functions to complex functions analytic/holomorphic on a strip.

Kernel deformed exponential families, however, are not even differentiable, but we can construct
a sequence of differentiable approximations by replacing the positive part/ReLU function in the
deformed exponential with softplus for increasing values of the softplus parameter. Each differentiable
approximation has exponential convergence, and by taking limits as the softplus parameter tends to
infinity we can show that the numerical integral for kernel deformed exponential family attention
itself has exponential convergence. Technical details are in E.3.

We also show empirical convergence analysis in Appendix E.4 and figure 2 in that appendix. Both
kernel exponential and deformed exponential families see rapid convergence for 1d attention, pro-

2continuous function on domain S vanishing at infinity
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Attention Accuracy
Cts Softmax 77.72±14.20

Cts Sparsemax 77.96±9.64
Kernel Softmax (ours) 85.71 ± 11.98

Kernel Sparsemax (ours) 88.1 ± 1.50

Table 1: Results for 100 runs each of synthetic time warping classification experiment, N = 64. This
involves generating 10, 000 trajectories, each of length 95 of unaligned curves.

viding excellent integral approximations with only 5-10 grid points. Further, the numerical integral
using softplus is a very close approximation to that using ReLU for softplus parameters 5 and 10.

6 Experiments

We investigate how often multimodal continuous attention outperforms unimodal, given the same
architecture. We also investigate whether these methods learn rich multimodal densties. We denote
kernel exponential family attention as kernel softmax and the deformed case as kernel sparsemax.
Our architectures have: 1) an encoder maps a discrete time series representation to attention density
parameters. 2) The value function V (t;B) expresses an embedding of a time series as a linear
transformation of basis functions. 3) The context is c = Ep[V (T )], which is used in 4) a classifier.
Fig. 3 in the Appendices visualizes this. For kernel softmax/sparsemax the encoder outputs are the
weights for the kernel evaluations. For the Gaussian mixture case, the encoder’s outputs are the
mixture weights and components means and variances. Here we describe one synthetic and three
real data experiments. In Appendix E we provide an additional ECG classification experiment. We
provide confidence intervals for our three smaller experiments (at most 10, 000 samples). Our UWave
and ECG experiments were done on a Titan X GPU, IMDB on a 1080, and FordA on an A40. We
found that the A40 provides very different results out of the box for both accuracy/F1 and attention
densities. As an example, Figure 8 was done on a Titan X with an older version of Pytorch, while
Figure 7 was done with an A40 with Pytorch 1.12. Code is in our repository3, where we discuss the
flags used to control precision on recent GPUs and Pytorch versions. We discuss computational/
memory complexity in Appendix F, and give a summary in Table 5. We provide wall clock times in
Table 6.

6.1 Synthetic Experiment: Time Warping

We simulate time warping and do prediction for unimodal vs multimodal attention densities. Details of
the original time aligned stochastic process and inverse warping function are in Appendix B.3. Given
global densities for classes p1, p2 and aligned X∗, the class is argmax(⟨p1, X∗⟩, ⟨p2, X∗⟩). We
generate 10, 000 trajectories of length 95 observed at evenly spaced time points in the interval [0, 1].
We use two attention mechanisms (heads), one for each class. Letting V be the value function fit to
observed data, the classifier is softmax([⟨pi1, V ⟩L2 , ⟨pi2V ⟩L2 ]) where pi1 and pi2 are the attention
densities for the first and second class. Table 1 shows prediction results from 100 runs along with
1.96 standard deviation intervals. Kernel methods outperform by 7− 10%.

6.2 FordA Dataset

This is a binary classification dataset for whether a sympton exists in an automotive subsystem. Each
time series has 500 sensor observations, and there are 3601 training samples and 1320 test samples.
Table 2 shows results. Kernel sparsemax outperforms most baselines4, while kernel softmax also does
well. We use the same methods and architecture as the previous section, although hyperparameters
are slightly different. Several methods, including discrete softmax, continuous sparsemax and the
transformer, have very poor performance. To sanity check we fit SVM with a Gaussian kernel,
logistic regression, and a decision tree: accuracies are under 55% for these, and we conclude that

3https://github.com/onenoc/kernel-continuous-attention
4An earlier pre-print of this paper using previous TSAI/PyTorch versions and a Titan X instead of an A40

had ∼ 90% accuracy/F1 for LSTM FCN. We no longer have access to that environment, but we suspect the
difference has to do with either precision or implementation changes in the TSAI library.
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Method Accuracy F1
Discrete Softmax 51.27± 1.86 33.89± 0.82

Cts Softmax 74.88± 21.36 74.56± 21.84
Cts Sparsemax 90.95± 1.77 90.94± 1.77

Gaussian Mixture 69.56± 35.94 60.75± 52.88
Kernel Softmax (ours) 92.44 ± 1.96 92.43 ± 2.00

Kernel Sparsemax (ours) 92.61 ± 1.62 92.60 ± 1.62
LSTM FCN 93.41 ± 0.43 93.40 ± 0.43

TST (Transformer) 49.48± 1.04 49.46± 1.02
Table 2: FordA accuracy, 1.96 SD intervals over 10 runs. Our methods outperform most baselines.
Several methods have very poor performance. To sanity check we fit three classical methods: kernel
SVM, logistic regression, and a decision tree. All have under 55% accuracy, suggesting that this
dataset is problematic for some methods.

Attention N=64 N=128

Cts Softmax 67.78±1.64 67.70± 2.49
Cts Sparsemax 74.20±2.72 74.69±3.78

Gaussian Mixture 81.13±1.76 80.99±2.79
Kernel Softmax (ours) 93.85±0.60 94.26±0.75

Kernel Sparsemax (ours) 92.32 ± 1.09 92.15 ± 0.79

Table 3: Accuracy results on uWave gesture classification dataset for the irregularly sampled case.
Again over 10 runs. Due to the irregular sampling, this is only comparable to [16, 29]. Kernel based
attention substantially outperforms unimodal and mixture models. All methods use 100 attention
heads. Gaussian mixture uses 100 components (and thus 300 parameters per head), and kernel
methods use 256 inducing points.

this data poses difficulty for some classifiers. Appendix G provides some additional details, along
with attention density plots. The kernel softmax plots often highlight zero crossings. The kernel
sparsemax plots often select peaks of a signal while learning rich sparsity patterns.

6.3 uWave Experiment: Gesture Classification

We investigate: 1) Does a large number of unimodal attention heads, as suggested in [23, 24], perform
well when multimodality is needed? 2) Can this method work well for irregularly sampled time
series? 3) Can we learn interesting multimodal attention densities?

We analyze uWave [19]: accelerometer time series with eight gesture classes. We follow [16]’s
split into 3,582 training observations and 896 test observations: sequences have length 945. We do
synthetic irregular sampling and uniformly sample 10% of the observations. Because of this our
results are comparable to other uWave irregular sampling papers [16, 29], but not to results using the
full time series.

Table 3 shows the results. Our highest accuracy is 94.26%, the multi-head unimodal case’s best
is 74.69%, and the mixture’s best is 81.13%. We outperform the results of [16], who report a
highest accuracy of 91.41%, and perform similarly to [29] (their figure suggests approximately 94%
accuracy). Fig. 10 shows attention densities for one of the attention heads for the first three classes.
This takes one attention density for each time series of each class and plots it. Within the same class,
all attention densities for the head (one for each time series) are plotted. The plot shows two things:
firstly, attention densities have support over non-overlapping time intervals. This cannot be done with
Gaussian mixtures, and the intervals would be the same for each density in the exponential family
case. Secondly, there is high similarity of attention densities within each class, but low similarity
between classes. Appendix H describes additional details.

9



Attention N=32 N=64 N=128 Mean

Cts Softmax 89.56 90.32 91.08 90.32
Cts Sparsemax 89.50 90.39 89.96 89.95
Kernel Softmax 91.30 91.08 90.44 90.94

Kernel Sparsemax 90.56 90.20 90.41 90.39

Table 4: IMDB sentiment classification dataset accuracy. Continuous softmax uses Gaussian attention,
continuous sparsemax truncated parabola, and kernel softmax and sparsemax use kernel exponential
and deformed exponential family with a Gaussian kernel. The latter has α = 2 in exponential and
multiplication terms. N : basis functions, I = 10 inducing points, bandwidth 0.01.

6.4 IMBD Sentiment Classification

We extend [23]’s code5 for IMDB sentiment classification [20]. This uses a document representation
v from a convolutional network and an LSTM attention model. We use a Gaussian base density
and kernel, and divide the interval [0, 1] into I = 10 inducing points where we evaluate the kernel
in f(t) =

∑I
i=1 γik(t, ti). Table 4 shows results. On average, kernel exponential and deformed

exponential family slightly outperforms the continuous softmax and sparsemax. The continuous
softmax/sparsemax results are from running their code.

7 Discussion

In this paper we extend continuous attention mechanisms to use kernel exponential and deformed
exponential family densities. The latter is a new flexible class of non-parametric densities with
sparse support. We show novel existence properties for kernel exponential and deformed exponential
families, prove approximation properties for the latter, and show exponential convergence of numerical
integration for both attention mechanisms. We then apply these to the continuous attention framework
described in [23, 24]. We show results on several datasets. Kernel attention mechanisms tend to
outperform unimodal attention, sometimes by a large margin. We also see that in many cases they
exhibit multimodality. Kernel sparsemax in particular learns rich sparsity patterns while highlighting
peaks of a signal. This was evident in Figure 1. The engine noise example mimicked certain parts of
the signal, while in the ECG example, it tends to give very high weight to R waves in a signal. While
this paper is more focused on general methods than a specific potentially dangerous application,
potential application areas include wearable sensors and NLP, and general negative societal impacts
in those application areas could apply to this work.

7.1 Limitations

A limitation was the use of numerical integration, which scales poorly with location dimensionality.
While we achieve 1D exponential convergence, we still must investigate whether we can extend this
to higher dimensions. This still allows for multiple observation dimensions at a given 1d location, i.e.
multivariate time series or language tasks.
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Overview of Appendices

Appendices A to E are mostly theoretical. In Appendix A we describe how the Gaussian mixture
attention from [8] relates to the theoretical framework of [23, 24]. In Appendix B we discuss time
warping, showing that sufficiently flexible continuous attention can represent time warping, that in at
least in one case a multimodal density is required, and give some details describing our experiments.
In Appendix C we discuss normalization for kernel exponential families, while in Appendix D we do
the same along with approximation results for kernel deformed exponential families. In Appendix E
we discuss rate of convergence for approximating the attention mechanism with numerical integration,
and show some synthetic experiments showing rapid convergence empirically.
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The remaining appendices are empirical. In Appendix H, we include an additional experiment
analyzing an accelerometer classification dataset, where we add synthetic irregular sampling. In
Appendix I we provide additional details for the MIT-BIH experiment. Finally, in Appendix G
we provide additional details for the FordA experiment. The latter two appendices in particular
focus on visual comparisons of attention densities. We find that kernel deformed exponential
families/sparsemax tend to learn more interesting looking attention densities than all of the other
methods, and for ECG kernel sparsemax has the interpretation of selecting regions where the electrical
stimuli are largest.

The licenses are: for MIT BIH open data commons attribution. For UCR time series (uWave and
Ford) the exact license is difficult to find but the citation is [7]. For IMDB it is again difficult to find
the exact license, but the original paper is [20] and the website6 asks that it be cited.

A Gaussian Mixture Model

In this section we descibe how the Gaussian mixture attention of [8] relates to the optimization
definition of attention densities in [23, 24]. In fact their attention densities solve a related but
different optimization problem. [23, 24] show that exponential family attention densities maximize
a regularized linear predictor of the expected sufficient statistics of locations. In contrast, [8] find
a joint density over locations and latent states, and maximize a regularized linear predictor of the
expected joint sufficient statistics. They then take the marginal location densities to be the attention
densities.

Let Ω(p) be Shannon entropy and consider two optimization problems:

arg max
p∈M1

+(S)
⟨θ,Ep[ϕ(T )]⟩l2 − Ω(p)

arg max
p∈M1

+(S)
⟨θ,Ep[ϕ(T,Z)]⟩l2 − Ω(p)

The first is Eqn. 2 with f = θTϕ(t) and rewritten to emphasize expected sufficient statistics. If one
solves the second with variables Z, we recover an Exponential family joint density

p̂Ωα
[f ](t, z) = exp(θTϕ(t, z)−A(θ)).

This encourages the joint density of T,Z to be similar to a complete data representation θTϕ(t, z) of
both location variables T and latent variables Z, instead of encouraging the density of T to be similar
to an observed data representation θTϕ(t). Let SZ be the domain for latent variables Z. The latter
optimization is equivalent to

arg max
p∈M1

+(S×SZ)
Ω(p)

s.t.
Ep(T,Z)[ϕm(T,Z)] = cm,m = 1, . . . ,M.

The constraint terms cm are determined by θ. Thus, this maximizes the joint entropy of Z and T ,
subject to constraints on the expected joint sufficient statistics.

To recover EM learned Gaussian mixture densities, one must select ϕm so that the marginal distri-
bution of T will be a mixture of Gaussians, and relate cm to the EM algorithm used to learn the
mixture model parameters. For the first, assume that Z is a multinomial random variable with a single
trial taking |Z| possible values and let ϕ(t, z) = (I(z = 1), . . . , I(z = |Z| − 1), I(z = 1)t, I(z =
1)t2, . . . , I(z = |Z|)t, I(z = |Z|)t2). These are multinomial sufficient statistics with a single trial,
followed by the sufficient statistics of |Z| Gaussians multiplied by indicators for each z. Then p(T |Z)
will be Gaussian, p(Z) will be multinomial, and p(T ) will be a Gaussian mixture. For contraints, [8]
have

Ep(T,Z)[ϕm(T,Z)] =

L∑
l=1

wl

|Z|∑
k=1

pold(Z = k|T = tl)ϕm(tl, k), (10)

m = 1, . . . ,M

6http://ai.stanford.edu/ amaas/data/sentiment/
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at each EM iteration: pold(Z|T = tl) is the previous iteration’s latent state density conditional on the
observation location, wl are discrete attention weights, and tl is a discrete attention location. That
EM has this constraint was shown in [43]. This matches expected joint sufficient statistics to those
implied by discrete attention over locations, taking into account the dependence between Z and T
given by old model parameters. An alternative is simply to let θ be the output of a neural network.
While the constraints lack the intuition of Eqn. 10, it avoids the need to run EM. We focus on this
case and use it for our baselines.

B Time Warping

B.1 Proof of 4.2

Here we prove that continuous attention can represent time warping. We change measure to Lebesgue,
use the equivalence between Lebesgue and Riemann for almost everywhere continuous functions,
use integration by substitution, and then change back.

EpX∗
i (U) =

∫
[0,τ ]

p(u)X∗
i (u)dQ

=

∫
[0,τ ]

p(u)q0(u)X
∗
i (u)dν(u)

=

∫ τ

0

p(u)q0(u)X
∗
i (u)du

=

∫ τ

0

p(gi(t))q0(gi(t))X
∗
i (gi(t))g

′
i(t)dt

=

∫ τ

0

p(gi(t))
q0(gi(t))

q0(t)
g′i(t)X

∗
i (gi(t))q0(t)dt

=

∫
[0,τ ]

p(gi(t))
q0(gi(t))

q0(t)
g′i(t)X

∗
i (gi(t))dQ

=

∫
[0,τ ]

pi(t)Xi(t)dQ

Further, since h is strictly increasing, g is as well so that g′i(t) > 0∀t ∈ [0, τ ]. This gives us that pi(t)
is non-negative, and we have to show that it integrates to 1.∫

[0,τ ]

p(gi(t))
q0(gi(t))

q0(t)
g′i(t)dQ =

∫ τ

0

p(gi(t))q0(gi(t))g
′
i(t)dt

=

∫ τ

0

p(u)q0(u)du

= 1

B.2 Multimodal Densities are Required

Consider the case where pglobal(t) is an exponential density function and g(t) the inverse warping
function has the following form

pglobal(t) =

{
λ exp(−λ(t)), t ≥ 0

0, else

g(t) =

{
C1

∫ t
0
exp(W (u))du, t ∈ [0, τ ]

t else
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for C1 = τ∫ τ
0

exp(W (u))du
and some twice diferentiable function W . The role of C1 is to ensure that

g(τ) = τ . Then

pi(t) = λC1 exp(−λC1

∫ t

0

exp(W (u))du+W (t))

so that

p′i(t) = (−λC1 exp(t) +W ′(t))pi(t)

p′′i (t) = (−λC1 exp(t) +W ′′(t))pi(t)

+ (−λC1 exp(t) +W ′(t))2pi(t)

Now note that depending on the sign and magnitude of W ′′(t), p′′i (t) may be either positive or
negative and thus pi(t) may lack a unique optimum and may be multimodal.

B.3 Time Warping Experimental Details

This describes the aligned vs the observed stochastic process. The original time aligned stochastic
process is given by

X∗(t) =


Z0 cos 9πt, 0 ≤ t < 0.25

Z1t
2, 0.25 ≤ t < 0.5

Z2 sin t, 0.5 ≤ t < 0.75

Z3 cos 17πt, 0.75 ≤ t < 1

where Zk ∼ U(−4, 4), k = 1, 2, 3, 4. We instead observe realizations Xi(t) = X∗
i (g(t)) at fixed

time points with the following inverse warp function

gi(t) =

{
Ci
∫ t
0
exp(−sλi)ds, λi ∼ U(0, 25), t ∈ [0, 1]

t else

The global densities are p1 ∼ U(0, 0.5) and p2 ∼ U(0.5, 1).

C Proof Related to Proposition 5.1

C.1 Proof of Proposition 5.1

Here we prove that if the kernel evaluated twice at the same point grows sufficiently slowly with
respect to base density tail decay, then we can normalize.

Proof. This proof has several parts. We first bound the RKHS function f and use the general
tail bound we assumed to give a tail bound for the one dimensional marginals TQd of TQ. Using
the RKHS function bound, we then bound the integral of the unnormalized density in terms of
expectations with respect to these finite dimensional marginals. We then express these expectations
over finite dimensional marginals as infinite series of integrals. For each integral within the infinite
series, we use the finite dimensional marginal tail bound to bound it, and then use the ratio test to
show that the infinite series converges. This gives us that the original unnormalized density has a
finite integral.

We first note, following [44], that the bound on the kernel in the assumption allows us to bound f in
terms of two constants and the absolute value of the point at which it is evaluated.

|f(t)| = |⟨f, k(t, ·)⟩H| reproducing property
≤ ∥f∥H∥k(t, ·)∥H Cauchy Schwarz

= ∥f∥H
√

⟨k(t, ·), k(t, ·)⟩H
= ∥f∥H

√
k(t, t)

≤ ∥f∥H
√
Lk∥t∥ξ + Ck by assumption

≤ C0 + C1∥t∥|ξ|/2 for some C1, C2 > 0.
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We can write TQ = (TQ1, . . . , TQD). Let ed be a standard Euclidean basis vector. Then by the
assumption and setting u = ed we have

P (|TQd| ≥ z) ≤ Cq exp(−vzη)

Letting Qd be the marginal law,∫
S

exp(f(t))dQ ≤
∫
S

exp(C0 + C1∥t∥ξ/2)dQ

= exp(C0)

∫
S

exp(C1∥t∥ξ/2)dQ

= exp(C0)E exp(C1∥TQ∥ξ/2)

≤ exp(C0)E exp(C1(
√
d max
d=1,...,D

|TQd|)ξ/2)

≤ exp(C0)

D∑
d=1

E exp(C2|TQd|ξ/2)

which will be finite if each E exp(C2|TQd|ξ/2) <∞. Now letting Sd be the relevant dimension of S,

E exp(C2|TQd|ξ/2) =
∫
Sd

exp(C2|td|ξ/2)dQd

≤
−1∑

j=−∞

∫ j+1

j

exp(C2|td|ξ/2)dQd +
∞∑
j=0

∫ j+1

j

exp(C2|td|ξ/2)dQd

where the inequality follows since Sd ⊆ R, exp is a non-negative function and probability measures
are monotonic. We will show that the second sum converges. Similar techniques can be shown for
the first sum. Note that for j ≥ 0

Qd([j, j + 1)) = P (Td ≥ j)− P (Td ≥ j + 1)

≤ P (Td ≥ j)

≤ Cq exp(−vjη) by assumption

Then
∞∑
j=0

∫ j+1

j

exp(C2|td|ξ/2)dQd ≤
∞∑
j=0

exp(C2|j|ξ/2)Qd([j, j + 1))

≤
∞∑
j=0

CQ exp(C2|j|ξ/2 − vjη)

Let aj = exp(C2|j|ξ/2 − viη). We will use the ratio test to show that the RHS converges. We have∣∣∣∣aj+1

aj

∣∣∣∣ = exp(C2((j + 1)ξ/2 − jξ/2)− v[(j + 1)η − jη]). (11)

We want this ratio to be < 1 for large j. We thus need to select η so that for sufficiently large j, we
have

C1

v
((j + 1)ξ/2 − jξ/2) < [(j + 1)η − jη].

Assume that η > ξ
2 . Then

(j + 1)η − jη

(j + 1)ξ/2 − jξ/2
=

jη[(1 + 1
j )
η − 1]

jξ/2[(1 + 1
j )
ξ/2 − 1]

≥ jη−ξ/2.
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Since the RHS is unbounded for η > ξ
2 , we have that Eqn. 11 holds for sufficiently large j. By the ratio

test Eqd(t) exp(C2|Td|ξ/2) =
∑−1
j=−∞

∫ j+1

j
exp(C2|td|ξ/2)dQd +

∑∞
j=0

∫ j+1

j
exp(C2|td|ξ/2)dQd

is finite. Thus putting everything together we have∫
S

exp(f(t))dQ ≤
∫
S

exp(C0 + C1∥t∥ξ/2)dQ

< exp(C0)

D∑
d=1

E exp(C2|TQd|ξ/2)

<∞
and p̃(t) can be normalized.

C.2 Proof of Corollary 5.2

Here we prove two special cases of kernel growth rate and tail decay.

Proof. Let ξ = 4. Then η > 2 and

P (|uTT | > t) ≤ P (|uTT | ≥ t) monotonicity
≤ CQ exp(−vtη)
< CQ exp(−vt2).

The second case is similar. For the uniformly bounded kernel,∫
S

exp(⟨f, k(·, t)⟩H)dQ ≤ exp(∥f∥H
√
Ck)

∫
S

dQ

= exp(∥f∥H
√
Ck)

<∞.

The first line follows from Cauchy Schwarz and ξ = 0

D Proofs Related to Kernel Deformed Exponential Family

D.1 Proof of Lemma 5.3

Here we prove a key equality for calculating normalization of deformed exponential families.

Proof. The high level idea is to express a term inside the deformed exponential family that becomes
1/Z once outside. Recalling the definition of β-exponential in Eqn. 5,

exp2−α(f(t)− logα(Z)) = [1 + (α− 1)(f(t)− logα Z)]
1

α−1

+

= [1 + (α− 1)f(t)− (α− 1)
Z1−α − 1

1− α
]

1
α−1

+

= [1 + (α− 1)f(t) + Z1−α − 1]
1

α−1

+

= [(α− 1)f(t) + Z1−α]
1

α−1

+

= [(α− 1)f(t)
Zα−1

Zα−1
+ Z1−α)]

1
α−1

+

=
1

Z
[(α− 1)f(t)Zα−1 + 1]

1
α−1

+

=
1

Z
exp2−α(Z

α−1f(t)).

Note that one could potentially also prove this starting with Proposition 1 and B.3 from [23]. However
after some investigation we found our approach to be easier.
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D.2 Proof of Proposition 5.4

Here we prove that if f̃(t) has compact support and the kernel grows sufficiently slowly, then its
deformed exponential has a finite integral.

Proof. ∫
S

exp2−α(f̃(t))dQ =

∫
S

[1 + (α− 1)f̃(t)]
1

α−1

+ dQ

=

∫
∥t∥≤Ct

[1 + (α− 1)f̃(t)]
1

α−1

+ dQ

≤
∫
∥t∥≤Ct

[1 + (α− 1)(C0 + C1|Ct|ξ/2)]
1

α−1

+ dQ

<∞

where the 2nd to last line is due to the inequality |f(t)| ≤ C0+C1∥t∥ξ/2 from the proof in Appendix
C.1.

D.3 Proof of Corollary 5.5

Here we prove that we can normalize deformed exponential families under the previous conditions.

Proof. From proposition 5.4 and the assumption,∫
S

exp2−α(f̃(t))dQ = Z

for some Z > 0. Then ∫
S

1

Z
exp2−α(Z

α−1f(t))dQ = 1∫
S

exp2−α(f(t)− logα Z)dQ = 1

where the second line follows from lemma 5.3. Set Aα(f) = logα(Z) and we are done.

D.4 Approximation Theory

This section proves Theorem 5.6. We start with a Proposition, which says that under a kernel
integration condition, deformed exponential families parametrized by functions in H can approximate
similar densities parametrized by functions in C0(S) arbitrarily well.

Proposition D.1. Define

P0 = {πf (t) = exp2−α(f(t)−Aα(f)), t ∈ S : f ∈ C0(S)}

where S ⊆ Rd. Suppose k(x, ·) ∈ C0(S),∀x ∈ S and∫ ∫
k(x, y)dµ(x)dµ(y) > 0,∀µ ∈Mb(S)\{0}. (12)

here Mb(S) is the space of bounded measures over S. Then the set of deformed exponential families
is dense in P0 wrt Lr(Q) norm and Hellinger distance.

Proof. The kernel integration condition tells us that H is dense in C0(S) with respect to L∞ norm.
This was shown in [34]. For the Lr norm, we apply ∥pf − pg∥Lr ≤ 2Mexp∥f − g∥∞ from Lemma
D.5 with f ∈ C0(S), g ∈ H, and f0 = f . L1 convergence implies Hellinger convergence.
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We can then use this for our main proof of Theorem 5.6, which we restate here for reference. Note
that our Bregman divergence result is analagous to [33]’s KL divergence result. KL divergence is
Bregman divergence with the Shannon entropy functional: we show the same for Tsallis entropy,
which is maximized given expected sufficient statistics by deformed exponential families [27]. The
Bregman divergence describes how close a density’s uncertainty is to its first order approximation
evaluated at another density.
Theorem D.2. Let q0 ∈ C(S), such that q0(t) > 0 for all t ∈ S, where S ⊆ Rd is locally compact
Hausdorff and q0 is the Radon Nikodym derivative of measureQ with respect to a dominating measure
ν. Suppose there exists l > 0 such that for any ϵ > 0,∃R > 0 satisfying |p(t)− l| ≤ ϵ for any t with
∥t∥2 > R. Define

Pc = {p ∈ C(S) :

∫
S

p(t)dQ = 1, p(t) ≥ 0,∀t ∈ S and p− l ∈ C0(S)}.

Suppose k(t, ·) ∈ C0(S)∀t ∈ S and the kernel integration condition (Eqn. 12) holds. Then kernel
deformed exponential families are dense in Pc wrt Lr norm, Hellinger distance and Bregman
divergence for the α-Tsallis negative entropy functional.

Proof. For any p ∈ Pc, define pδ = p+δ
1+δ . Then

∥p− pδ∥r =
∥∥∥∥p− p+ δ

1 + δ

∥∥∥∥
r

=

∥∥∥∥p(1 + δ)

1 + δ
− p+ δ

1 + δ

∥∥∥∥
=

δ

1 + δ
∥p− 1∥r

→ 0

for 1 ≤ r ≤ ∞. Thus for any ϵ > 0,∃δϵ > 0 such that for any 0 < θ < δϵ, we have ∥p− pθ∥r ≤ ϵ,
where pθ(t) > 0 for all t ∈ S.

Define f =
(

1+θ
l+θ

)1−α
log2−α pθ

1+θ
l+θ . Since p ∈ C(S), so is f . Fix any η > 0 and note that

f(t) ≥ η(
1 + θ

l + θ

)1−α

log2−α pθ
1 + θ

l + θ
≥ η

log2−α pθ
1 + θ

l + θ
≥
(
1 + θ

l + θ

)α−1

η

pθ
1 + θ

l + θ
≥ exp2−α

((
1 + θ

l + θ

)α−1

η

)

pθ ≥
l + θ

1 + θ
exp2−α

((
1 + θ

l + θ

)α−1

η

)

pθ(1 + θ) ≥ (l + θ) exp2−α

((
1 + θ

l + θ

)α−1

η

)
p+ θ

1 + θ
(1 + θ) ≥ (l + θ) exp2−α

((
1 + θ

l + θ

)α−1

η

)

p− l ≥ (l + θ)

(
exp2−α

((
1 + θ

l + θ

)α−1

η

)
− 1

)
Thus

A = {t : f(t) ≥ η}

=

{
p− l ≥ (l + θ)

(
exp2−α

((
1 + θ

l + θ

)α−1

η

)
− 1

)}
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Since p− l ∈ C0(S) the set on the second line is bounded. Thus A is bounded so that f ∈ C0(S).
Further, by Lemma 5.3

pθ = exp2−α

(
f − logα

1 + θ

l + θ

)
giving us pθ ∈ P0. By Proposition D.1 there is some pg in the deformed kernel exponential family
so that ∥pθ − pg∥Lr(S) ≤ ϵ. Thus ∥p − pg∥r ≤ 2ϵ for any 1 ≤ r ≤ ∞. To show convergence in
Helinger distance, note

H2(p, pg) =
1

2

∫
S

(
√
p−√

pg)
2dQ

=
1

2

∫
S

(p− 2
√
ppg + pg)dQ

≤ 1

2

∫
S

(p− 2min(p, pg) + pg)dQ

=
1

2

∫
S

|p− pg|dQ

=
1

2
∥p− pg∥1

so that L1(S) convergence, which we showed, implies Hellinger convergence. Let us consider the
Bregman divergence. Note the generalized triangle inequality7 for Bregman divergence

BΩα
(p, pg) = BΩα

(p, pθ)︸ ︷︷ ︸
I

+BΩα
(pθ, pg)︸ ︷︷ ︸
II

−⟨p− pθ,∇Ωα(pθ)−∇Ωα(pg)⟩2︸ ︷︷ ︸
III

(13)

Term I

BΩα(p, pθ) =
1

α(α− 1)

∫
S

(pα − pαθ )dQ− ⟨∇Ωα(pθ), p− pθ⟩

=
1

α(α− 1)

∫
S

(pα − pαθ )dQ− 1

α− 1

∫
pα−1
θ (p− pθ)dQ

≤ 1

α(α− 1)

∫
S

|pα − pαθ |dQ+
1

α− 1
∥pα−1
θ ∥1∥∥p− pθ∥∞

Note that the Bregman divergence is non-negative and thus we only need to worry about an upper
bound. The first term on the rhs clearly vanishes as θ → 0 since pθ → p and we can pull the
limit under the integral since p, pθ are bounded. For the second term, we already showed that
∥p− pθ∥∞ → 0 as θ → 0.

Term II

Fix θ. Then term II converges to 0 by Lemma D.5.

Term III

For term III ,
⟨p− pθ,∇Ωα(pθ)−∇Ωα(pg)⟩2 ≤ ∥p− pθ∥∞∥∇Ωα(pθ)−∇Ωα(pg)∥1

Clearly the first term on the rhs converges by Lr convergence. The L1 term for the gradient is given
by

∥∇Ωα(pθ)−∇Ωα(pg)∥1 =
1

α− 1

∫
|pθ(t)α−1 − pg(t)

α−1|dQ

≤
∫
(∥pθ∥∞ + ∥pθ − pg∥∞)α−2∥pθ − pg∥∞dQ Eqn. 17

= (∥pθ∥∞ + ∥pθ − pg∥∞)α−2∥pθ − pg∥∞
so that the inner product terms are bounded as

|⟨p− pθ,∇Ωα(pθ)−∇Ωα(pg)⟩2| ≤ (∥pθ∥∞ + ∥pθ − pg∥∞)α−2∥pθ − pg∥∞∥p− pθ∥∞
Fixing θ and letting g → θ the RHS goes to 0.

7actually an equality, see https://www2.cs.uic.edu/ zhangx/teaching/bregman.pdf for proof
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D.4.1 Some Supporting Lemmas and Claims for Approximation Theory

Lemma D.3. (Functional Mean Value Theorem) Let F : X → R be a Gateaux differentiable
functional where f, g ∈ X some Banach space with norm ∥ · ∥. Then

|F (f)− F (g)| ≤ ∥F ′(h)∥op∥f − g∥

where h = g + c(f − g) for some c ∈ [0, 1], F ′(h) is the Gateaux derivative of F , and ∥ · ∥op is the
operator norm ∥A∥op = inf{c > 0 : ∥Ax∥ ≤ c∥x∥∀x ∈ X}.

Proof. Consider G(η) = F (g + η(f − g)). Apply the ordinary mean value theorem to obtain

G(1)−G(0) = G′(c), c ∈ [0, 1]

= F ′(g + c(f − g)) · (f − g)

and thus

|F (f)− F (g)| ≤ ∥F ′(h)∥op∥f − g∥

Claim 1. Consider P∞ = {pf = exp2−α(f − Aα(f)) : f ∈ L∞(S)}. Then for pf ∈ P∞,
Aα(f) ≤ ∥f∥∞.

Proof.

pf (t) = exp2−α(f(t)−Aα(f))

≤ exp2−α(∥f∥∞ −Aα(f)) for 1 < α ≤ 2∫
S

pf (t)dQ ≤
∫
S

exp2−α(∥f∥∞ −Aα(f))dQ

1 ≤ exp2−α(∥f∥∞ −Aα(f))

log2−α 1 ≤ ∥f∥∞ −Aα(f)

Aα(f) ≤ ∥f∥∞
where for the second line recall that we assumed that throughout the paper 1 < α ≤ 2.

Lemma D.4. Consider P∞ = {pf = exp2−α(f − Aα(f)) : f ∈ L∞(S)}. Then the Gateaux
derivative of Aα : L∞ → R is given by the map

A′(f)(g) = Ep̃2−α
f

(g(T ))

=

∫
p2−αf (t)g(t)dQ∫
p2−αf (t)dQ

Proof. This proof has several parts. We first derive the Gateaux differential of pf in a direction
ψ ∈ L∞ and as it depends on the Gateaux differential of Aα(f) in that direction, we can rearrange
terms to recover the latter. We then show that it exists for any f, ψ ∈ L∞. Next we show that the
second Gateaux differential of Aα(f) exists, and use that along with a functional Taylor expansion to
prove that the first Gateaux derivative is in fact a Frechet derivative.

In [23] they show how to compute the gradient of Aα(θ) for the finite dimensional case: we extend
this to the Gateaux differential. We start by computing the Gateaux differential of pf .

d

dη
pf+ηψ(t) =

d

dη
exp2−α(f(t) + ηψ(t)−Aα(f + ηψ))

=
d

dη
[1 + (α− 1)(f(t) + ηψ(t)−Aα(f + ηψ))]

1/(α−1)
+

= [1 + (α− 1)(f(t) + ηψ(t)−Aα(f + ηψ))]
(2−α)/(α−1)
+

(
ψ(t)− d

dη
Aα(f + ηψ)

)
= p2−αf+ηψ(t)

(
ψ(t)− d

dη
Aα(f + ηψ)

)
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evaluating at η = 0 gives us

dp(f ;ψ)(t) = p2−αf (t) (ψ(t) + dAα(f ;ψ))

Note that since pf+ηψ(t) is a probability density function, it is integrable and thus we can apply the
dominated convergence theorem to pull a derivative with respect to η under an integral. Noting that
the integral of a density function is 1 and thus its derivative is 0, we can then recover the Gateaux
diferential of Aα via

0 =
d

dη

∣∣∣∣
η=0

∫
pf+ηψ(t)dQ

=

∫
dp(f ;ψ)(t)dQ

=

∫
pf (t)

2−α(ψ(t)− dAα(f ;ψ))dQ

dAα(f ;ψ) = Ep̃2−α
f

(ψ(T ))

<∞
where the last line follows as ψ ∈ L∞. Thus the Gateaux derivative exists in L∞ directions. The
derivative at f maps ψ :→ Ep̃2−α

f
(ψ(T )) i.e. A′

α(f)(ψ) = Ep̃2−α
f

(ψ(T )).

Lemma D.5. Define P∞ = {pf = exp2−α(f −Aα(f)) : f ∈ L∞(S)} where L∞(S) is the space
of almost everywhere bounded measurable functions with domain S. Fix f0 ∈ L∞. Then for any
fixed ϵ > 0 and pg, pf ∈ P∞ such that f, g ∈ B

∞
ϵ (f0) the L∞ closed ball around f0, there exists

constant Mexp > 0 depending only on f0 such that

∥pf − pg∥Lr ≤ 2Mexp∥f − g∥∞
Further

BΩα(pf , pg) ≤
1

α− 1
∥pf − pg∥∞[(∥pf∥∞ + ∥pf − pg∥∞)α−1 + exp2−α(2∥g∥∞)]

Proof. This Lemma mirrors Lemma A.1 in [33], but the proof is very different as they rely on the
property that exp(x + y) = exp(x) exp(y), which does not hold for β-exponentials. We thus had
to strengthen the assumption to include that f and g lie in a closed ball, and then use the functional
mean value theorem Lemma D.3 as the main technique to achieve our result.

Consider that by the mean value inequality,

|pf (t)− pg(t)| = | expβ(f(t)−Aα(f))− expβ(g(t)−Aα(g))|
≤ | expβ(h(t)−Aα(h))

2−α||f(t)−Aα(f)− (g(t)−Aα(g))|
≤ ∥ expβ(h−Aα(h))

2−α∥∞(∥f − g∥∞ + |Aα(f)−Aα(g)|)

where h = cf + (1− c)g for some c ∈ [0, 1]. This implies

∥pf − pg∥Lr = ∥ expβ(f −Aα(f))− expβ(g −Aα(g))∥Lr

≤ ∥ expβ(h−Aα(h))
2−α∥∞(∥f − g∥∞ + |Aα(f)−Aα(g)|) (14)

We need to bound expβ(h−Aα(h)) and ∥Aα(f)−Aα(g)∥∞.

We can show a bound on ∥h∥∞
∥h∥∞ = ∥cf + (1− c)g − f0 + f0∥∞

≤ ∥c(f − f0) + (1− c)(g − f0) + f0∥∞
≤ c∥f − f0∥∞ + (1− c)∥g − f0∥∞ + ∥f0∥∞
≤ ϵ+ ∥f0∥∞

so that h is bounded. Now we previously showed in claim 1 that |Aα(h)| ≤ ∥h∥∞ ≤ ϵ + ∥f0∥∞.
Since h,Aα(h) are both bounded expβ(h−Aα(h))

2−α is also.
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Now note that by Lemma D.3,

|Aα(f)−Aα(g)| ≤ ∥A′
α(h)∥op∥f − g∥∞

We need to show that ∥A′
α(h)∥op is bounded for f, g ∈ Bϵ(f0). Note that in Lemma D.4 we showed

that

|A′
α(f)(g)| = |Ep2−α

f
[g(T )]|

≤ ∥g∥∞
Thus ∥A′

α∥op = sup{|A′
α(h)(m)| : ∥m∥∞ = 1} ≤ 1. Let Mexp be the bound on expβ(h−Aα(h)).

Then putting everything together we have the desired result

∥pf − pg∥Lr ≤ 2Mexp∥f − g∥∞

Now

BΩα
(pf , pg) = Ωα(pf )− Ωα(pg)− ⟨∇Ωα(pg), pf − pg⟩2 (15)

For the inner prodct term, first note that following [23] the gradient is given by

∇Ωα(pg)(t) =
pg(t)

α−1

α− 1
(16)

Thus

|⟨∇Ωα(pg), pf − pg⟩2| ≤ ∥∇Ωα(pg)∥1∥pf − pg∥∞

=
1

α− 1

∫
S

exp2−α(g(t)−A(g))dQ∥pf − pg∥∞

≤ 1

α− 1
exp2−α(2∥g∥∞)∥pf − pg∥∞

where the second line follows from claim 1. Further note that by Taylor’s theorem,

yα = xα + αzα−1(y − x)

for some z between x and y. Then letting y = pf (t) and x = pg(t), we have for some z = h(t) lying
between pf (t) and pg(t) that

pf (t)
α = pg(t)

α + αh(t)α−1(pf (t)− pg(t))

Since f ∈ L∞ then applying Claim 1 we have that each pf , pg ∈ L∞ and thus h is. Then

|pf (t)α − pg(t)
α| = α|h(t)|α−1|pf (t)− pg(t)|

≤ α∥h∥α−1
∞ ∥pf − pg∥∞

≤ αmax{∥pf∥∞, ∥pg∥∞}α−1∥pf − pg∥∞
≤ α(∥pf∥∞ + ∥pf − pg∥∞)α−1∥pf − pg∥∞ (17)

so that

|Ωα(pf )− Ωα(pg)| =
∣∣∣∣ 1

α(α− 1)

∫
(pf (t)

α − pg(t)
α)dQ

∣∣∣∣
≤ 1

α− 1
(∥pf∥∞ + ∥pf − pg∥∞)α−1∥pf − pg∥∞.

Putting it all together we obtain

BΩα
(pf , pg) ≤

1

α− 1
(∥pf∥∞ + ∥pf − pg∥∞)α−1∥pf − pg∥∞

+
1

α− 1
exp2−α(2∥g∥∞)∥pf − pg∥∞

=
1

α− 1
∥pf − pg∥∞[(∥pf∥∞ + ∥pf − pg∥∞)α−1 + exp2−α(2∥g∥∞)]
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E Numerical Integration Stability and Convergence Analysis

E.1 Stable Numerical Integration

One issue is numerical underflow when computing the normalizing constant. In the kernel exponential
family case, if |f(t)| is very large and f(t) < 0 for all evaluated t, then on a computer exp(f(t))
will round to 0 for all the evaluated t. Thus Z the normalizing constant will be estimated as 0 in
numerical integration and the estimate of exp(f(t))/Z cannot be computed. A similar issue exists
for the deformed case.

For kernel exponential family, we can use the standard technique used in discrete softmax implemen-
tations (see [10] chapter 4). Note

exp(f(t)−A(f)) = exp(f(t)− C + C −A(f))

= exp(f(t)− C) exp(C −A(f))

Then instead of normalizing exp(f(t)) with exp(−A(f)) we normalize exp(f(t)−C) with exp(C−
A(f)), letting C = supt f(t). Taking C = supt f(t) will prevent underflow as if f(t) < 0∀t,
f(t)− sup f(t) ≈ 0 for some t (equality if there is a maximum, which there always is when using a
finite set of t for numerical integration).

For the deformed case, recall that by Lemma 5.3, exp2−α(f(t)− logα Z) =
1
Z exp2−α(Z

α−1f(t))
for Z > 0. Then letting logα C = supt f(t) and noting that for x, y > 0, logα x − logα y =

logα(x⊘α y) = [x1−α − y1−α + 1]
1

1−α

+ [37],

exp2−α(f(t)− logα Z) = exp2−α(f(t)− logα C + logα C − logα Z)

= exp2−α(f(t)− logα C − (logα Z − logα C))

= exp2−α(f(t)− logα C − logα (Z ⊘α C))

=
1

Z ⊘α C
exp2−α

((
1

Z ⊘α C

)α−1

(f(t)− logα C)

)

Now consider f̃(t) =
(

1
Z⊘αC

)α−1

f(t). Then

sup
t
f̃(t) =

(
1

Z ⊘α C

)α−1

logα C

We can thus estimate f̃(t), subtract supt f̃(t) (max in practice), take the deformed exponential, and
normalize. The computational operations are nearly identical to the kernel exponential family case,
although the reasons for their validity are very different.

E.2 Kernel Exponential Family Attention

Here we show conditions for which numerical integration of∫
S

exp(f(t))V (t)dQ =

∫ ∞

−∞
exp(f(t))V (t)q0(t)dt

using the trapezoidal rule is exponentially convergent. We start by restating a theorem. This says
that the trapezoidal rule for numerical integration of holomorphic functions of sufficiently fast decay
has exponential convergence. A version of this theorem comes from [39], but there are slight issues
with the notation and conditions. A slightly revised statement is in the course notes of [14], which we
follow here.
Theorem E.1. Let w : C → C be analytic in the strip Sb = {z ∈ C : |Im(z)| < a} for some a > 0.
Suppose further that w(z) → 0 as |z| → ∞ in the strip, and for some M > 0,∫ ∞

−∞
|w(x+ ib)|dx ≤M (18)

for all b ∈ (−a, a). Then leting I =
∫∞
−∞ w(x)dx and Ih = h

∑∞
k=−∞ w(kh),

|Ih − I| ≤ 2M

exp(2πa/h)− 1
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Next we give conditions on q0(t), V (t), and k so that numerical integration is exponentially con-
vergent. Specifically that q0 and V have holomorphic complex extensions to a strip and that k has
exponentially decaying Fourier transform.
Corollary E.2. Assume that q0, V have holomorphic complex extensions to a strip Sb = {z ∈
C : |Im(z)| < b}, q0(z) → 0 as |z| → ∞ and V is bounded by MV . Also assume that for any
ti ∈ R the absolute value of the Fourier transform |k̂(ξ, ti)| = |

∫∞
−∞ k(t, ti) exp(−2πiξt)dt| ≤

|A(ti) exp(−a|ξ|)|, where A : R → C and a > 0 is a fixed constant. Further assume that
f(t) =

∑I
i=1 γik(t, , ti), k(t, ti) ∈ C0, and∫ ∞

−∞
|q(x+ ib)|dx ≤M (19)

for some M > 0. Then if w(z) = q0(z) exp(f(z))V (z) → 0 as |z| → ∞, the trapezoidal rule for
w(t) = q0(t) exp(f(t))V (t) is exponentially convergent.

Proof. Note that

f̂(ξ) =

∫ ∞

−∞
f(t) exp(−2πiξt)dt

=

∫ ∞

−∞

I∑
i=1

γik(t, ti) exp(−2πiξt)dt

=

I∑
i=1

γi

∫ ∞

−∞
k(t, ti) exp(−2πiξt)dt

=

I∑
i=1

γik̂(ξ, ti)

and thus

|f̂(ξ)| ≤
I∑
i=1

|γi||A(ti)| exp(−a|ξ|)

≤ exp(−a|ξ|)Imax
i∈I

|γi||A(ti)|

Thus since the fourier transform of f has (at least) exponential decay, by Theorem 3.1 in [35] the
extension of f(t) to f(z) is holomorphic in the strip. Since compositions and products of holomorphic
functions are holomorphic, q0(z) exp(f(z))V (z) is holomorphic in the strip. Further, since for each
ti, k(t, ti) ∈ C0, f is and thus it is bounded and thus its complex extension is bounded, say by MF ,
thus the complex exp(f) is bounded by exp(Mf ). Since V is also bounded, we have∫ ∞

−∞
|w(x+ ib)|dx ≤MV exp(Mf )M.

Finally,

|w(z)| ≤MV exp(Mf )|q(z)|
→ 0 as |z| → ∞

and thus w satisfies the conditions of the previous theorem.

Finally, we show example special cases of q0, V, k satisfying those conditions.
Corollary E.3. If k is a Gaussian kernel, V is a linear combination of Gaussian RBFs, and q0(t) =
1√
2π

exp(−t2/2), then the trapezoidal rule for kernel exponential family attention is exponentially
convergent.

Proof. For the Gaussian kernel, we have k(t, ti) = exp(−ζ2(t− ti)
2). Now∫ ∞

−∞
exp(−ζ2(t− ti)

2) exp(−2πiξt)dt =
exp(−iξti)

γ

√
π exp(−ξ2/(4ζ2))
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and thus since exp(−iξti) lies on the unit circle,∣∣∣∣∫ ∞

−∞
exp(−ζ2(t− ti)

2) exp(−2πiξt)dt

∣∣∣∣ ≤ √
π

γ
exp(−ξ2/(4ζ2)).

This satisfies the Fourier decay condition for the kernel so that functions f ∈ H have holomorphic
extensions to the strip. A similar technique can be applied to V and q0 to show that they have
holomorphic extensions to the strip, and clearly both V and f are bounded since they are continuous
and vanish at infinity. Thus exp(f) is also bounded. For the decay of q0, note

1√
2π

∫ ∞

−∞
| exp(−(x+ ib)2/2)|dx =

1√
2π

∫ ∞

−∞
| exp((−x2 + b2 − 2xbi)/2)|dx

≤ 1√
2π

exp(b2/2)

∫ ∞

−∞
exp(−x2/2)dx

=
1√
2π

exp(b2/2)

≤ 1√
2π

exp(a2/2)

satisfying the integration condition Eqn. 18. It remains to show that w(z) → 0. First note that

|q0(z)| =
1√
2π

| exp(−(x+ ib)2/2)|

≤ 1√
2π

exp(a2/2) exp(−x2/2)

Since z ∈ Sb, |z| → ∞ requires |x| → ∞, and 1√
2π

exp(a2/2) exp(−x2/2) → 0 as |x| → ∞. Thus
q0(z) → 0 as |z| → ∞ in the strip. Note that since V, f are bounded and q0(z) → 0 in the strip as
|z| → ∞, w(z) → 0 as |z| → ∞ in the strip.

E.3 Convergence of Numerical Integration for Kernel Deformed Exponential Family
Attention

E.3.1 Smooth Approximation to Kernel Deformed Exponential Family Attention

Definition E.4. Let

expρ,β(t) ≡
[
1

ρ
log(1 + exp(ρ[1 + (1− β)t]))

] 1
1−β

(20)

for some ρ > 0.

Claim 2. expρ,β(z) is holomorphic on the strip {z ∈ C : Im(z) ∈ [−π/2, π/2]} for the principal
branch of log.

Proof. This proof is adapted from [11]. We show it for exp0,0 but the idea can easily be extended
to more general ρ and β. Note that the principal branch of log z is analytic outside of B = {z =
x+ iy : −∞ < x ≤ 0, y = 0}. Thus exp0,0 is analytic as long as 1 + exp(1 + z) is not in B.

Now exp(1+z) = exp(x+1) exp(iy), so exp(1+z) will be in {z = x+iy : x ∈ (−∞,−1], y = 0}
when exp(x+ 1) ≥ 1, exp(iy) = −1, i.e. x ≥ −1, y = π + 2πn, n ∈ N. The y condition will not
be satisfied on the strip above and thus exp0,0(z) is holomorphic on that strip.

Corollary E.5. If k is a Gaussian kernel, V is a linear combination of Gaussian RBFs, and
q0(t) =

1√
2π

exp(−t2/2), then the trapezoidal rule for softplus approximation to kernel deformed
exponential family attention is exponentially convergent.

Proof. Apply Theorem E.1. We already showed in the kernel exponential family section that q0 and
V are holomorphic in the strip, and we showed that expρ,β is in the previous claim. We also showed
that V is bounded and that q0 satisfies the integration condition and q0(z) → 0 as |z| → ∞ in the
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strip. It remains to show that expρ,β(f(t)) is bounded (and thus its complex extension is). We show
it for expρ,0(f(t)) but again the idea can be extended to general β. Note that since log(1 + x) ≤ x
for x > −1,

log(1 + exp(1 + f(t))) ≤ exp(1 + f(t))

≤ exp(1 +Mf )

since f is bounded. Further, fixing t, log(1 + exp(ρ(1 + t)))/ρ is monotonically decreasing as a
function of ρ and thus for all ρ ≥ 1,

log(1 + exp(ρ(1 + t)))/ρ ≤ exp(1 +Mf )

Thus w satisfies both the integration condition and the convergence condition.

E.3.2 Using the Smooth Approximation to Bound the Numerical Integral for Kernel
Sparsemax Attention

Let Ih be the numerical integral proportional to kernel deformed exponential family attention, Ih,s be
its softplus approximation, I be the true kernel deformed exponential family integral, and Is be its
softplus approximation. Then

|Ih − I| ≤ |Ih − Ih,s|+ |Ih,s − Is|+ |Is − I|

We already bounded |Ih,s − Is| in the previous subsection, so we will bound the other two terms on
the right hand side.

E.3.3 Bounding Is − I

We first bound the difference between the softplus integral and the integral using the positive
part/ReLU. By Hoelder’s inequality,

|
∫ ∞

−∞
q0(t)V (t)[ln(1 + exp(ρ(1 + t)))/ρ−max(0, 1 + t)]dt|

≤ ∥q0V ∥1esssupt∈(−∞,∞)[ln(1 + exp(ρ(1 + t)))/ρ−max(0, 1 + t)]

≤ ∥q0V ∥1 ln(2)/ρ

E.3.4 Bounding Ih − Ih,s

|Ih,s − Ih| = |h
∞∑

k=−∞

q0(kh)V (kh)[ln(1 + exp(ρ(1 + kh)))/ρ−max(0, 1 + kh)]|

= |h⟨q0(h·)V (h·), ln(1 + exp(ρ(1 + h·)))/ρ−max(0, 1 + h·)⟩l2 |

≤ h

( ∞∑
k=−∞

q0(hk)|V (hk)|

)
ln(2)/ρ

where the last line again uses Hoelder’s inequality.

E.3.5 Putting it All Together

We now have, for any ρ > 0,

|Ih − I| ≤ |Ih − Ih,s|+ |Ih,s − Is|+ |Is − I|

≤ ∥q0V ∥1 ln(2)/ρ+
2M

exp(2πa/h)− 1
+ h

( ∞∑
k=−∞

q0(hk)|V (hk)|

)
ln(2)/ρ

and since this holds for all ρ > 0 we can take ρ→ ∞ and we have

|Ih − I| ≤ 2M

exp(2πa/h)− 1
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Figure 2: a) Convergence of trapezoidal rule for multimodal continuous attention. We see that both
methods have very fast convergence empirically. The y-axis is the absolute difference between the
numerical integral at x vs the max value of x (x ranges from 1 to 19). The kernel deformed exponential
family tends to converge faster than kernel exponential family attention. b) The value of the integral
using kernel deformed exponential family sparsemax vs softplus approximations with different values
of ρ. We see that the attention using softplus approximation becomes indistinguishable from the
deformed exponential attention for ρ = 5, 10.

E.4 Synthetic Experiments: Convergence

We now analyze convergence of the trapezoidal rule for multimodal continuous attention using
numerical integration empirically using synthetic experiments. We define

f(t) =

I∑
i=1

γik(t, ti)

and

V (t) =

I∑
i=1

Bik(t, ti)

with γi, Bi ∼ U(−1, 1). We set I = 10 and ti to be evenly spaced in the interval [0, 1]. We then
compute ∫ 1

0

exp(−t2/2)V (t) exp(f(t))dt

which is proportional to attention for kernel exponential families. We also compute∫ 1

0

exp(−t2/2)V (t) exp0(f(t))dt

proportional to the sparsemax case of kernel deformed exponential family attention. Finally, we also
use the softplus approximation∫ 1

0

exp(−t2/2)V (t) expρ,0(f(t))dt.

Note that we do not use the f̃ and γ̃ notation for the kernel deformed case as the main point is
to examine the numerical integration convergence rather than to formally handle normalization.
We simulate 100 times. Figure 2a compares the convergence as the number of grid points in the
trapezoidal rule increases. 2b shows a single case of the integral value using deformed exponential
vs the softplus approximation for various values of ρ and numbers of grid points. We see that for
ρ = 5, 10 the integral using softplus approximation is essentially indistinguishable from that using
the positive part/ReLU.
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Figure 3: General architecture for classification using continuous attention mechanisms. The pipeline
is trained end-to-end. The encoder takes a discretized representation of an observation (i.e. a time
series itself, hidden units of an LSTM, or a layer of a CNN) and outputs parameters for an attention
density. The value function takes the original (potentially irregularly sampled) time series or some
representation and outputs parameters for a function V (t). These are then combined in an attention
mechanism by computing a context vector c = Ep[V (T )]. For some parametrizations of p and V (t)
this can be computed in closed form, while for others it must be done via numerical integration. The
context vector is then fed into a classifier.

F Computational/Memory Complexity

Our attention mechanisms require computation in three steps:

1. Estimating the value function parameters with regularized multivariate linear regression.
This was already required by [23, 24]. This involves computing HFT (FFT + λIN )−1 for
F ∈ RN×L, H ∈ RD×L. We thus need to compute

• The Gram matrix FFT ∈ RN×N . This is O(N2L).
• The inverse (FFT + λIN )−1 ∈ RN×N . This is O(N3).
• The matrix multiplication HFT ∈ RD×N . This is O(DNL).
• The matrix multiplication giving HFT (FFT + λIN )−1 ∈ RD×N . This is O(DNL).

This gives a final cost of O(N3 + N2L + DNL). Note that if we do this for raw data,
we only need to do this once, while if we do this for activations, we need to do it at every
iteration.

2. Computing the normalizing constant of the attention density.

• This requires computing exp(f̃(t))q0(t) for each numerical integration grid point
1, . . . , G.

• Each term has cost O(I), where I is the number of inducing points.
The final cost is O(GI).

3. Computing the numerical integral/context vector.

• We need to compute exp(f̃(t))q0(t)ψn(t) for each basis function n = 1, . . . , N and
each numerical integration grid point 1, . . . , G.

• Each such computation has cost O(DI), since we have D dimensions and I inducing
points.

The total cost is thus O(NGDI), linear in the number of basis functions, grid evaluation
points, dimensions, and inducing points.

4. Applying the final linear transformation.

This gives total computation O(N3 + N2L + DNL + NGDI). The first three terms were
already required in [23, 24], while the last is due to numerical integration. For memory, we require
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Type Martins et al. Ours
Computation O(N3 +N2L+DNL) O(N3 +N2L+DNL+NGDI)

Memory O(N2 +ND) O(N2 +NGD)

Table 5: Computation and Memory requirements for our model vs [23]. N : basis functions D: dim
L: sequence length I: inducing points G: integration grid points

.

Experiment Kernel Softmax Kernel Sparsemax
MIT BIH 25.70 27.20

FordA 0.70 0.68
uWave 1.26 1.25

Table 6: Wall clock time in seconds for one epoch of kernel softmax and kernel sparsemax on an
A40. We do not display IMDB results due to having difficulties running it on recent versions of
Pytorch/Python/Torchtext.

1. All the matrices of the value function. This gives O(N2 +DN).

2. All of the evaluations for numerical integration before integration happens. This requires
O(NGD). We are uncertain how these are implemented on a computer, and one may not
need to store all the grid point evaluations at once for instance. Thus we can consider
this to be an upper bound. Regardless neither memory requirement is excessive for most
applications.

The total memory cost is thus O(N2 + NGD), where the first term was already present in [23, 25]
and the second is due to numerical integration. These results are summarized in Table 5.

G FordA: Additional Details

We plot attention densities for randomly selected examples under each density class. We find that
only the kernel methods appear truly multimodal visually (Gaussian mixture does not), and the kernel
sparsemax case actually highlights specific peaks and troughs of the original signal, suggesting the
ability to attend to higher frequencies. Figure 7 shows rescaled kernel softmax attention densities
along with the original series. These are generally smooth and show rich multimodality, and often
highlight 0 crossings where the signal decreases. Figure 9 shows the same for kernel sparsemax.
These are very interesting, and learn rich sparsity patterns and often highlight the peaks and troughs
of the series, while taking 0 values over many regions where the series becomes negative.

This dataset uses the architecture in Fig. 11, further described in Appendix I. Hyperparameters are
in Table 7. On this dataset, claiming interpretability is difficult because it is engine noise while the
class meanings are unknown: only the binary labels are present. However it is interesting that kernel
sparsemax is able to select individual waves and exhibit rich sparsity patterns, while kernel softmax
highlights 0 crossings.

Hyperparameter Value
Batch Size 64

LSTM Hidden Units 128
Value Basis Functions 256

Inducing Points 500
Integration Grid Points 500

Learning Rate 1e-3
Weight Decay 1e-5

Epochs 100

Table 7: Hyperparameters for FordA Experiment
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Figure 4: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using continuous softmax. The densities are rescaled so that they have the
same max as the signal. The densities are simple and do not attend to fine portions of the signal.

Figure 5: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using continuous sparsemax. The densities are rescaled so that they have the
same max as the signal. The densities are again simple and do not attend to fine portions of the signal,
although have more focus than in the continuous softmax case.
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Figure 6: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using Gaussian mixture. The densities are rescaled so that they have the same
max as the signal. The densities do not appear multimodal, again likely due to lack of separation
between components. However, the shape looks different from the simple shapes of the Gaussian and
truncated parabola from continuous softmax and sparsemax.

Figure 7: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using kernel softmax. The densities are rescaled so that they have the same
max as the signal. The densities seem to focus often on the zero crossings where the signal moves
from a peak to a trough.
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Figure 8: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using kernel softmax. This used a Titan X and a deprecated Pytorch version,
but is otherwise the same model as 7, which used Pytorch 1.12 and an A40. The densities are rescaled
so that they have the same max as the signal. The densities show a rich multimodal pattern, but do
not appear to highlight obvious features of the signal.

Figure 9: Original time series vs rescaled attention densities for four randomly selected examples
from the FordA dataset using kernel sparsemax. The densities are rescaled so that they have the same
max as the signal. The densities exhibit very similar patterns to the signal itself, often selecting the
peaks or troughs. They also have rich sparsity patterns.
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Figure 10: Attention densities for head 1 for different classes for the uWave dataset. We can see that
within each class, the densities tend to be similar, while between classes they are less so, suggesting
the densities learn to represent classes.

Hyperparameter Value
Batch Size 25

Value Basis Functions 64, 128
Heads 100

Inducing Points 256
Integration Grid Points 100

Optimizer Adam
Learning Rate 1e-4

Epochs 10

Table 8: Hyperparameters for uWave Experiment

H Additional uWave Details

We experiment with N = 64, 128 basis functions, and use a learning rate of 1e− 4. We use H = 100
attention mechanisms, or heads. Unlike [42], our use of multiple heads is slightly different as we use
the same value function for each head, and only vary the attention densities. Additional architectural
details are given below. Table 8 summarizes the hypermarameters and training details.

H.1 Value Function

The value function uses regularized linear regression on the original time series observed at random
observation times (which are not dependent on the data) to obtain an approximation V (t;B) =
BΨ(t) ≈ X(t). The H in Eqn. 6 is the original time series.

H.1.1 Encoder

In the encoder, we use the value function to interpolate the irregularly sampled time series at the
original points. This is then passed through a convolutional layer with 4 filters and filter size 5
followed by a max pooling layer with pool size 2. This is followed by one hidden layer with 256
units and an output v of size 256. The attention densities for each head h = 1, . . . ,H are then

µh = wTh,1v

σh = softplus(wTh,2v)

γh =W (h)v

for vectors wh,1, wh,2 and matrices Wh and heads h = 1, . . . ,H

H.1.2 Attention Mechanism

After forming densities and normalizing, we have densities p1(t), . . . , pH(t), which we use to
compute context scalars

ch = Eph [V (T )]

We compute these expectations using numerical integration to compute basis function expectations
Eph [ψn(T )] and a parametrized value function V (t) = Bψ(t) as described in section 3.
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Method Accuracy F1
Discrete Softmax 97.97 88.67

Cts Softmax 98.20 91.01
Cts Sparsemax 98.30 90.92

Gaussian Mixture 98.12 90.16
Kernel Softmax (ours) 98.67 92.56

Kernel Sparsemax (ours) 98.42 92.07
LSTM FCN 98.36 90.45

TST (Transformer) 98.18 90.79
Table 9: Accuracy results on MIT BIH Arrhythmia Classification dataset. The first four rows use the
same architecture but different attention mechanisms. Gaussian mixture had 10 components: other
choices were tried with lower performance. Rows five and six are our attention mechanisms. LSTM
FCN [13] is an LSTM+fully convolutional network. TST is a transformer from [46]

H.1.3 Classifier

The classifier takes as input the concatenated context scalars as a vector. A linear layer is then
followed by a softmax activation to output class probabilities.

I ECG Heartbeat Classification: MIT BIH

We use a kaggle version8 of the MIT Arrhythmia Database [9]. Not all versions are comparable:
[12] report results under well-balanced classes (unclear how they obtain these), while [26] augment
the dataset with SMOTE. We do no data augmentation, so compare to two time series classification
baselines in TSAI: a hybrid fully convolutional and LSTM network[13], and a transformer [46].

The task is to detect abnormal heart beats from ECG. The five classes are {Normal, Supraventricular
premature, Premature ventricular contraction, Fusion of ventricular and normal, Unclassifiable}.
There data has a 87,553/21,891 train/test split. Each sample is a univariate time series of length 187:
we pass this through two convolutional layers in order to obtain a multivariate representation of each
time step. We then use an LSTM. The hidden layer is used to construct discrete attention using [3].
Following [24] for unimodal continuous softmax and sparsemax, we first output discrete attention
weights p = (p1, . . . , pL), p ∈ ∆L in the probability simplex and then compute µ = Ep[T/L]
and σ2 = Ep[(T/L)2] − µ2 where T ∼ p. The value function uses Gaussian RBFs. The final
context vector is passed through three feedforward layers. Kernel softmax attention is not particularly
interpretable. For kernel sparsemax, the attention densities tend to highlight peaks in the signal.
Particularly they assign high weight to the R wave, the peak of the QRS complex, of the heartbeat.

We plot attention densities for randomly selected examples under the different density classes, and
find that only kernel deformed exponential families/sparsemax learn interpretable attention densities,
which focus on regions where the electrical signals from the heart are strong. Figures 12 and 13
show attention densities vs original signals for continuous softmax and sparsemax, respectively. Both
are only able to learn simple unimodal densities. Figure 14 shows the same for Gaussian mixture
attention. These do not look very multimodal, despite having one component per time point. This is
likely due to lack of separation between components. However, we do see that the shapes look more
flexible than in single Gaussian or truncated parabola cases. Figure 15 shows attention densities vs
original signals for kernel softmax attention. While not particularly interpretable, it learns densities
similar to exponential densities without them being specified, a benefit of being a non-parametric
density. Figure 16 shows the same for kernel sparsemax. These show interesting highlighting of
waves, which describe electrical signals passing through the heart conduction system. There is a
particular focus on the R wave, the largest peak in a heartbeat, representing electrical stimulus in the
main ventricular mass.

Note that given the relatively complex model structure and reasonably high capacity relative to the
original time series length (512 LSTM hidden units per time step for a univariate time series of length
187), models without an interpretable attention density may still perform well by taking advantage

8https://www.kaggle.com/datasets/shayanfazeli/heartbeat, license Open Data Commons Attribution License
v1.0
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Hyperparameter Value
Batch Size 64

LSTM Hidden Units 512
Value Basis Functions 24

Inducing Points 187
Integration Grid Points 187

Learning Rate 1e-3
Weight Decay 1e-5

Epochs 30

Table 10: Hyperparameters for MIT BIH Experiment

Figure 11: Architecture used for the MIT BIH and FordA experiments. The input is a univariate time
series. The conv block has two conv layers, with the goal of converting a univariate time series into
a multivariate one. The hidden units of the LSTM are then used to compute the attention density
parameters and the value function. The feedforward network has three layers, where the first two
have ReLU activation functions.

of capacity elsewhere in the model. However, a model that selects ECG waves may be useful in
convincing specialists of its value.

I.1 General Architecture

Our general architecture is shown in 11. In the first part, two convolutional layers of filter size 5 and 24
filters with padding map the original univariate time series from R187 to a multivariate representation
R187×24. This is then passed to an LSTM. Context vectors are computed using either the original
hidden states (discrete attention) or a continous-time representation (continuous attention). The
context vector is then fed into a feedforward network for final classification. The entire architecture
is trained end-to-end. Hyperparameters are described in Table 10.
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Figure 12: Original time series vs rescaled continuous softmax attention densities for four randomly
selected examples from the MIT BIH dataset. Continuous softmax only learns simple unimodal
densities.

I.2 Value Function

The value function uses regularized linear regression on the hidden states of an LSTM to obtain an
approximation V (t;B) = BΨ(t) ≈ ht. The H in Eqn. 6 is the set of all hidden states.

I.3 Encoder

The encoder takes the hidden layer of the LSTM as input. For the hidden units ht ∈ Rp for a given
time step, it computes

vt = tanh(Wwht + bw),Ww ∈ Rd×p, bw ∈ Rp

γt = wTv vt

Note that this is written slightly differently from the form in the main paper.

I.4 Attention Mechanism

The attention mechanism takes the parameters from the encoder and forms an attention density. It
then computes

c = Ep[V (T )]

for input to the classifier.

I.5 Classifier

The classifier has three feedforward layers, where the first two have ReLU activation functions.
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Figure 13: Original time series vs rescaled continuous sparsemax attention densities for four randomly
selected examples from the MIT BIH dataset. Continuous sparsemax, similar to continuous softmax,
again only learns simple unimodal densities.

Figure 14: Original time series vs rescaled Gaussian mixture attention densities for four randomly
selected examples from the MIT BIH dataset. Number of mixture components equal to number
of time points. This does not appear very multimodal, likely because the mixture components are
not well separated. However, the attention densities seem to have more flexible shapes than for
continuous softmax/sparsemax.
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Figure 15: Original time series vs rescaled kernel softmax attention densities for four randomly
selected examples from the MIT BIH dataset. While this is not particularly interpretable, it still learns
a density that looks similar to an exponential density without explicitly specifying this shape. Further,
the empirical performance beats the other attention mechanisms other than kernel sparsemax.

Figure 16: Original time series vs rescaled kernel sparsemax attention densities for four randomly
selected examples from the MIT BIH dataset. All cases are multimodal. Further, this is much more
interpretable than any of the other methods, and tends to select local peaks, or waves. These waves
represent the electrical stimulus as they pass through different parts of the heart conduction system.
There is a particular focus on the R wave, the largest peak, which represents the electrical stimulus in
the main ventricular mass.
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