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3DQuestion Answering with Scene Graph Reasoning
Anonymous Authors

ABSTRACT
3DQA has gained considerable attention due to its enhanced spatial
understanding capabilities compared to image-based VQA. How-
ever, existing 3DQA methods have explicitly focused on integrating
text and color-coded point cloud features, thereby overlooking the
rich high-level semantic relationships among objects. In this paper,
we propose a novel graph-based 3DQAmethod termed 3DGraphQA,
which leverages scene graph reasoning to enhance the ability to
handle complex reasoning tasks in 3DQA and offers stronger in-
terpretability. Specifically, our method first adaptively constructs
dynamic scene graphs for the 3DQA task. Then we inject both the
situation and the question inputs into the scene graph, forming
the situation-graph and the question-graph, respectively. Based
on the constructed graphs, we finally perform intra- and inter-
graph feature propagation for efficient graph inference: intra-graph
feature propagation is performed based on Graph Transformer
in each graph to realize single-modal contextual interaction and
high-order contextual interaction; inter-graph feature propagation
is performed among graphs based on bilinear graph networks to
realize the interaction between different contexts of situations and
questions. Drawing on these intra- and inter-graph feature propa-
gation, our approach is poised to better grasp the intricate semantic
and spatial relationship issues among objects within the scene and
their relations to the questions, thereby facilitating reasoning com-
plex and compositional questions. We validate the effectiveness
of our approach on SQA3D and ScanQA datasets, and expand the
SQA3D dataset to SQA3D Pro with multi-view information, making
it more suitable for our approach. Experimental results demonstrate
that our 3DGraphQA outperforms existing methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
3D Question Answering, Scene Understanding, Graph Neural Net-
works, Spatial Relation Reasoning

1 INTRODUCTION
Recently, 3DQA, i.e., answering questions related to 3D scenes, has
received widespread attention due to its applicability in various
downstream tasks such as visual language navigation [19, 30], intel-
ligent agents [27, 34], and autonomous driving [14]. To some extent,
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Figure 1: This figure illustrates examples of the 3DQA task,
which involves reasoning about the complex semantic and
spatial relationships among objects within the scenes and
questions.

3DQA serves as an extension of the VQA task, since both tasks re-
quire the analysis and understanding of multimodal visual and
textual content, followed by inference to obtain answers. However,
compared to 2D VQA tasks, reasoning within authentic 3D envi-
ronments allows for the avoidance of spatial ambiguities inherent
in 2D data, thereby requiring the acquisition of accurate geometric
information and object relationships. Moreover, 3D scenes typically
encompass a greater number of objects and entail more intricate
interrelationships among them.

Many efforts have been made to address the challenges of 3DQA.
For example, Ye et al.[35] proposed 3DQA-TR, a transformer-based
3DQAmodel, that leverages two separate encoders to encode the ap-
pearance and geometry information and then adopts a 3D-linguistic
Bert [11] to fuse multi-modal information including appearance,
geometry and linguistic question for 3DQA. Azuma et al.[3] devel-
oped a baseline model based on their constructed ScanQA dataset,
which primarily comprises 3D and language encoders, 3D and lan-
guage fusion, and 3D object localization and 3D QA modules. It
can be observed that these methods predominantly focus on align-
ing and fusing text and point cloud features. Though significant
progress has been made, these approaches still exhibit limitations
in interpretability and handling complex semantic and spatial re-
lationship reasoning. For example, consider the question posed in
Figure 1. “ What is behind me that you can sleep on or sit on?” or
"How many backpacks are on the ottoman behind me to the left
side?" not only requires detecting objects in geometric scenes but
also understanding the complex semantic and spatial relationships
between scene objects, questions and situations.

This paper is inspired by graph-based 2D VQA methods [18, 28,
31, 32], which have demonstrated the effectiveness of enhancing the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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interpretability and reasoning capabilities for complex questions
in VQA. However, directly transferring the graph structure from
VQA to 3DQA is not feasible, because 2D scene graphs only carry
local information, whereas our 3D scene graphs can encapsulate
both global scene information and support the generation of end-to-
end dynamic graphs. Depending on the situation and the question
setting, different scene graphs can be constructed for the same
scene. For example, the situation: I play the piano, and the situation:
I am sitting on the armchair facing the desk. require different scene
graphs of the scene for the question: What is behind me that you
can sleep on or sit on?.

In this paper, we propose a novel graph-based 3DQA method,
termed 3DGraphQA, exploring using the graph reasoning to en-
hance the performance of 3DQA task. Specifically, in the graph
construction stage, our method utilizes VoteNet [24] to detect ob-
jects in the scene based on the specified situational setting. The
detected objects and their features act as nodes in the graph and are
optimized using prior knowledge, thereby forming the initial scene
graph. Note that as the situation setting changes, the final scene
graph also changes accordingly, making the scene graph dynamic.
Our method injects the input situation description and question
description separately into the scene graph to obtain the situation-
graph and the question-graph; In the graph feature fusion stage, to
facilitate the high-order contextual interaction within the graph and
the cross-modal contextual interaction between the situation-graph
and the question-graph, our method investigates graph transformer
to realize intra-graph contextual interaction, and adopts bilinear
graph networks to realize inter-graph contextual interaction.

Our method is experimentally validated on the ScanQA and
SQA3D datasets, both of which are built upon the ScanNet dataset.
Moreover, to further explore the potential of our method, we also
develop the SQA3D Pro dataset, which is an extension of the SQA3D
dataset with additional multi-view situation information, drawing
inspiration from ScanQA dataset. We show that the SQA3D Pro
dataset provides rich information for the scenes and facilitates a
better understanding of the current scene for scene graph reasoning,
enabling performance improvement. The experimental results have
shown that our proposed method achieves SOTA performance on
these datasets.

In summary, our contributions are listed as follows:

• We propose a novel graph-based 3DQA method, which ex-
ploits dynamic scene graphs to facilitate the 3DQA tasks.

• We introduce a Graph Transformer-based model for intra-
graph feature fusion, enabling contextual interactions be-
tween the scene objects and the question, and between the
scene objects and the situation description.

• We leverage the bilinear graph neural network for inter-
graph feature fusion, which can enhance contextual interac-
tions between different graphs.

• We develop SQA3D Pro dataset, which is an extension of the
SQA3D dataset with additional multi-view situation infor-
mation, drawing inspiration from ScanQA dataset.

• We conduct extensive experiments on two public benchmark
datasets, i.e., SQA3D and ScanQA datasets. Experimental re-
sults show that our model outperforms all baseline methods.

2 RELATEDWORK
In this section, we give a brief review on recent advances in 3D
Question Answering, 3D Captioning and Visual Grounding, as well
as Graph-based Visual Question Answering.

2.1 3D Question Answering
3D Question Answering (3DQA) refers to answering questions
related to 3D scenes, distinguishing it from VQA, which aims to
answer questions related to 2D images. A few benchmarks have
been devised in the field including SQA3D [20] and ScanQA datasets
[3, 35] for the evaluation. Depending on the output answering
content, we categorize previous 3DQA work into two types: those
that solely provide answers and those that simultaneously provide
answers along with object information.

For the methods that solely provide answers, Ye et al. [35] pro-
posed 3DQA-TR, a transformer-based 3DQA method, that adopts
a 3D-linguistic Bert to first encode the point cloud into tokens,
then these tokens, along with the text encoding of the question,
are jointly fed into the Bert for training and inference. The output
answers are generated by the decoder of the Bert model. Zhou et
al.[33] proposed the Chat-3D method, where they first segment
each object in the scene. Then, they encode each object individu-
ally and fed them into a large language model (GPT) for answer
prediction. Leveraging the powerful knowledge priors of GPT, this
method can thus obtain open-ended answer results. Ma et al.[20]
proposed a zero-shot 3DQA method, called SQA3D, which first in-
puts the point cloud scene into the pre-trained Scan2Cap model to
obtain dense captions of the scene. Subsequently, these dense cap-
tions are combined with the context description and the question,
to feed into the GPT-3 to obtain the answer.

For the methods that simultaneously provide answers along
with object information, Azuma et al. [3] proposed ScanQA, which
consists of 3D and language encoding layers, three-dimensional
and language fusion layers, and object localization and language
decoding layers. In the fusion layer, it mainly references the 2D
MCAN [37], using transformer blocks to capture the relationship
between objects and questions. This method facilitates answering
questions and 3D object localization. Delitzas et al. [10] investigated
Multi-CLIP, a pre-training multi-modal CLIP-based architecture
that embeds the 3D scene features to their corresponding captions
and multi-view images in the CLIP space. This method facilitates
the tasks of question answering and referred object localization,
and 3D situated question answering.

In this paper, to address the interpretability and complex reason-
ing problems in the field, we propose a novel scene graph-based
method for 3D question answering. We also extend the SQA3D
dataset to SQA3D Pro dataset with multi-view information, en-
abling more accurate reasoning.

2.2 3D Captioning and Visual Grounding
Witnessing the popularity of the vision-language models in image
domains, many researchers have exploited the 3D-language mod-
els for 3D scene tasks including 3D captioning [36] and 3D visual
grounding. Chen et al. [6] proposed ScanRefer, a novel method for
3D object localization using natural language. They also developed
ScanRefer dataset, which is the first large-scale scene-linguistic
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Figure 2: The overall architecture of our 3DGraphQA framework: our method takes the 3D scene context, the situation
description and the question as input, ultimately yielding answers to the questions along with object positions and orientations.
The key premise of our approach is that the scene graph and graph reasoning model can effectively facilitate complex reasoning
tasks in the vision-language domain.
dataset. Subsequently, Achlioptas et al.[1] presented ReferIt3D
dataset, which contains fine-grained multi-instance 3D object labels
to a scene, aiming to facilitate the task of identifying the instance of
the same fine-grained object class in a 3D scene. Based on the two
datasets, a large body of work has been dedicated to 3D caption and
3d visual grounding. For example, Chen et al. introduced Scan2Cap
[7] for the task of dense scene caption generation. This method uti-
lizes PointNet++ [25] as its foundation to generate textual descrip-
tions for objects in the scene. Following their work, Yuan et al.[38]
further proposed X-Tran2Cap, which leverages 2D priors for opti-
mization. Wu et al.[39] proposed EDA, which offers a decoupling
approach during text encoding, achieving better alignment between
scenes and text. Zhao et al. [39] introduced 3DVG-Transformer, a
transformer-based 3D visual grounding method that exploits the
proposal relations among objects in 3D scene. Cai et al. [5] and
Chen et al. [8] offered unified architectures for joint 3D captioning
and visual grounding.

This work also falls within the realm ofmulti-modal 3D-language
tasks. In this work, our primary focus is 3D question answering.

2.3 Graph-based Visual Question Answering
Visual Question Answering (VQA) is a computer vision task that
involves both image comprehension and text recognition. Its goal
is to equip machines with the capability to comprehend image
content and respond to questions about it using natural language.
Tremendous efforts have been devoted to the task, with the central
challenge lying in how to capture dense semantic interactions and
reasoning within and across modalities of images and text. To allevi-
ate this issue, some researchers have attempted to introduce Graph

Neural Networks (GNN) into VQA tasks. These works have demon-
strated that by integrating graph structural information, such as
concept graphs and scene graphs, significant improvements can be
made in the interpretability and effectiveness of VQA tasks, thereby
enhancing the answer prediction accuracy. For example, Will et
al.[21] utilize Graph Convolutional Networks (GCN) to model the
semantic correlations between objects in the image scene and learn
graph structure representations relevant to the questions. Zhu et
al. [40] propose an object-aware graph learning module guided
by questions, suggesting that differences provide more informa-
tion when modeling semantic relationships. To capture complex
semantic and spatial relationships in images, many researchers
[18, 28, 31, 32] have exploited to use scene graphs to enhance the
multi-model image-text learning, facilitating the complex reasoning
regarding to the semantic and spatial relationship among objects
in 3D scenes.

In this paper, we pioneer the graph-based 3DQA method by
exploiting scene graph reasoning. Compared with 2D graph-based
VQA, our graph to 3D scene is dynamic, depending on the situation
and the question setting.

3 METHOD
In this section, we provide a detailed introduction to our 3DGraphQA,
which employs graph reasoning to address the task of 3D question
answering. As illustrated in the Fig. 2, 3DGraphVQA takes the point
cloud 𝑃 of the 3D scene context, the situation description 𝑠 , the ques-
tion 𝑞, as well as multi-view images 𝐼 , as input, aiming to generate
accurate answer from the answer set 𝑎 = {𝑎1, · · · , 𝑎𝑀 }, and corre-
sponding to the bounding box 𝑏𝑏𝑜𝑥 of the question, and predicting
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Figure 3: The intra-graph feature fusion architecture based
on Graph Transformer.

the accurate situation position 𝑠𝑝𝑜𝑠 , and the current perspective
𝑠𝑟𝑜𝑡 from the situation description. As shown in Fig. 2, 3DGraphQA
mainly consists of the three main components: encoder module,
scene graph construction module, and graph-based feature fusion
module. Below we elaborate on the details of each module.

3.1 Encoder Module
This module aims to encode the input language and scene images
into features. Specifically, for the input situation description 𝑠 and
question 𝑞, we utilize GloVe [23], followed SQA3D, to encode the
situation descriptions and questions. These embeddings are then
fed into a biLSTM [15] for sequence modeling. Subsequently, the
situation features 𝐹𝑠 and the question features 𝐹𝑞 are obtained by
projecting the outputs of the LSTM through GELUs activation [16]
non-linear layers. As for the scene image input, we employ the CILP
model [26], a multi-modal pretrained model based on contrastive
learning of images and text, to achieve image feature denoted as 𝐹𝐼 .

3.2 Scene-graph Construction Module
To construct the scene graph, we first need to encode the point cloud
of the scene. Given the point cloud 𝑃 = {𝑝1, · · · , 𝑝𝑁 } ∈ 𝑅𝑁×3 of the
scene as input, where 𝑁 denotes the number of points in the scene,
our method employs VoteNet [24], which is a point cloud object
detection network based on PointNet++ [25], to extract various
object proposals and obtain their features. We assume the number
of extracted object proposals is denoted by𝐾 , and the features of the
object proposals are represented by 𝐹𝑃 = {𝐹1, · · · , 𝐹𝐾 }, where 𝐹𝑖
refers to the features of the 𝑖-th object. The object bounding boxes
are denoted by 𝐵 = {𝑏1, · · · , 𝑏𝐾 }, where 𝑏𝑖 denotes the position
information of the boundaries, containing the position information
of a center and eight corners. In the following, we will use the

Figure 4: The inter-graph fusion architecture based on the
bilinear graph networks.

relative positional relationships between each object in the scene
to construct the scene graph.

Initial Graph Construction.We use the 𝐾 extracted objects
in the scene as vertices to construct the initial fully connected
undirected graph. Let the graph be represented as 𝐺 = (𝑉 , 𝐸) with
𝐾 nodes 𝑣𝑖 ∈ 𝑉 and edge element 𝑒𝑖, 𝑗 ∈ 𝐸 denotes the edge between
the vertices 𝑣𝑖 and 𝑣 𝑗 . We associate the feature set 𝐹𝑃 to 𝑉 , seen as
node features, and the elements in the edge set are initially set 1s,
leading to a fully connected graph of𝐺 . Because there are potential
relationships between every two objects in the fully connected
graph, and no prior knowledge is used during the learning process,
the weights can be learned and adjusted during the subsequent
graph-based feature fusion module.

Pruned Graph with Prior-Knowledge. Based on the fully
connected graph with uniform weights, which may not effectively
measure the spatial relationships between objects in the scene. To
overcome this issue, we utilize prior knowledge to prune the graph.
Since there are explicit relationships between objects in the scene
that can be utilized, we can prune non-existent edges using some
prior-knowledge to transform the fully connected graph into a
locally connected graph. Specifically, we observed that the perfor-
mance improves when objects are not connected to themselves
compared to when they are connected, so we assign a weight of
0 to the diagonal positions in the adjacency matrix. Then, when
establishing local connectivity, we found that most questions are
related to objects surrounding the current target object. Therefore,
we set a neighborhood range (e.g. k-nearest-neighbor) as the re-
ceptive field of the current target and use the bounding boxes of
each object as the receptive field to construct this locally connected
graph, which can be defined as follows:

𝑒𝑖, 𝑗 = { 1, 𝑝 𝑗 ∈ 𝑘𝑛𝑛(𝑝𝑖 )
0, otherwise , (1)
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where 𝑒𝑖, 𝑗 ∈ 𝐸 is the edge element of pruned edge set 𝐸, 𝑘𝑛𝑛(·)
represents the k-nearest-neighbor, which is calculated based on the
absolute distances between the center of the bound box of an object
and the center of the bound box of other surrounding nodes. The
remaining positions of the adjacency matrix are set to 0s. Therefore,
the connectivity graph can be defined as: �̃� = (𝑉 , 𝐸).

Additionally, we dynamically set the weights of edges based on
the proximity of bounding box relative positions. To ensure the
robustness of the graph in multimodal fusion, we also randomly
add some explicit unidirectional edges to the graph.

Situation-Graph and Question-Graph To better capture the
interaction between the situation and question inputs with the 3D
scene objects, we investigate injecting the features of perspective
images, situation descriptions, and questions into the constructed
scene graph. Specifically, considering that the features of individ-
ual objects carry local scene information, we connect the encoded
image with the features of graph nodes to enhance the global per-
ception capability of target nodes.

Additionally, in 3D scene question answering tasks, there exist
different scenes, situation descriptions, and questions, and even the
same scene may have different scenarios with varying questions.
Therefore, in designing multi-modal feature fusion, it is crucial
to address how the adaptive relationship between situation de-
scriptions and questions can be effectively injected into the graph
structure and how the weights between multi-modal graph nodes
can be learned reasonably. Therefore, we first construct the situ-
ation graph 𝐺𝑠 = (𝑉𝑠 , 𝐸) with the feature set of 𝑉𝑠 is updated to
[𝐹𝑃 ∥𝐹𝐼 ∥𝐹𝑆 ] from the initial 𝐹𝑃 , and the question graph is similarly
defined as 𝐺𝑞 = (𝑉𝑞, 𝐸) with the feature set of 𝑉𝑞 is updated to
[𝐹𝑃 ∥𝐹𝑞] from the initial 𝐹𝑃 , where ∥ denotes the concatenation
operation.

3.3 Graph Feature Fusion Module
Within the situation-graph and the question-graph, and between
the situation-graph and the question-graph, there exist complex se-
mantic and spatial relationships. To comprehend these relationships,
we perform feature fusion in both intra-graph and inter-graph.

Intra-graph Fusion. Intra-graph feature fusion aims to capture
complex relations among nodes of the same graph via message
propagation. In this work, we adopt the Graph Transformer [12]
to facilitate the task, which includes the attention mechanism and
the positional encoding, benefiting the global perception while
avoiding over-smoothing.

Figure 3 illustrates the architecture of graph transformer, which
consists of two essential modules: a multi-head self-attention mod-
ule (MHA) and a feed-forward network (FFN), akin to vanilla Trans-
former [29]. Without loss of generality, given the situation-graph
𝐺𝑠 = (𝑉𝑠 , 𝐸), we use 𝑋 ′ = [𝐹𝑃 ∥𝐹𝐼 ∥𝐹𝑆 ] to denotes the node features
with 𝑥 ′

𝑖
∈ 𝑋 ′ represents the feature of node 𝑣𝑖 , and 𝑒𝑖, 𝑗 ∈ 𝐸 denotes

the edge between 𝑣𝑖 and 𝑣 𝑗 . The graph transformer method first
computer the Laplacian eigenvectors [4] 𝛿 of the graph𝐺𝑠 and uses
them as node positional information to inject into the node feature:
𝑋 = [𝑋 ′∥𝛿], where ∥ is the concatenation operation. The graph
transformer takes the 𝑋 and 𝐸 as inputs and passes them through
blocks of MHA and FFN modules. Let 𝑣𝑖 be one neighborhood node
of 𝑣𝑖 , the neighborhood feature set can accordingly be defined as

𝑋 , the specific one head attention and FFN are defined as follows:

𝐴ℎ (𝑋 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑋𝑊 ℎ
𝑄 (𝑋𝑊 ℎ

𝐾 )
𝑇 ·𝑊

�̃�
𝐸); (2)

𝐸 = 𝐸 +
𝐻∑︁
ℎ=1

𝑋𝑊 ℎ
𝑄 (𝑋𝑊 ℎ

𝐾 )
𝑇 ; (3)

𝐴𝑡𝑡 (𝑋 ) = 𝑋 +
𝐻∑︁
ℎ=1

𝐴ℎ (𝑋 )𝑋𝑊 ℎ
𝑉𝑊

ℎ
𝑂 ; (4)

𝐹𝐹𝑁 (𝑋 ) = 𝑋 + 𝑅𝑒𝑙𝑢 (𝑋𝑊1)𝑊2, (5)

where𝑊 ℎ
𝑄
,𝑊 ℎ

𝐾
,𝑊 ℎ

𝑉
,𝑊 ℎ

𝑂
,𝑊

�̃�
represents the weight matrices of the

Query (𝑋𝑊𝑄 ), Key (𝑋𝑊𝐾 ), Value (𝑋𝑊𝑉 ), Output (𝑋𝑊𝑂 ) and the
edge set for the ℎ-th head, and 𝐻 is the number of attention head.
𝑊1 and𝑊2 are the learnable parameters that constitute the FFN
with the inclusion of residual connections and normalization. The
node features from the final layer will be passed to MLP to compute
the output features.

Given the predefined situation-graph and question-graph, our
method passes these graphs through the Graph Transformer for
intra-graph feature propagation, and outputs the updated graph
with updated node and edge representations.

Inter-graph Fusion. For inter-graph feature propagation, our
method refers to bilinear graph networks (BAN) [13], as is illus-
trated in Figure 4. The original BANwork conducts message passing
between image-graph and question-graph in their work. Here, we
extend this work to our scene-graph case by analogously represent-
ing the learned situation-graph and question-graph as image-graph.
To be specific, our method first concatenate the situation-graph and
the question-graph, forming an initial joint embedding of scene
objects and situation descriptions, and questions. We note that the
joint embedding is aware of the words from the situation and ques-
tion descriptions with objects, but lacks the interaction between
questions and the situation description regarding the given scene.
Hence, our method then computes the fused embedding between
the vectors of the question words and the joint embedding, where
the question word vectors are obtained through the text encoder in
section 3.1. Finally, the fused embedding (ℎ𝑙,𝑖 in Figure 4) is further
updated through an MLP to explore their complex interactions.
Following the BAN [13], our method also stacked the modules mul-
tiple times (see the arrow in Figure 4) by reusing the fused feature
output (𝑜𝑙,𝑖 in Figure 4) as the input of question vectors recursively.

3.4 Answer Prediction
After obtaining the fused features, we concatenate the output fea-
tures of BAN module and input them into an MLP to predict a
candidate answer from the answer set 𝑎. To generate multiple an-
swers, we employ a decoding mechanism similar to ScanQA [3] and
calculate the final score using a binary cross-entropy loss function.

To obtain the object proposals, we feed the graph node features,
originating from the question-graph and are processed by the Graph
Transformer, into an MLP through max-pooling for decoding to
obtain the target object proposals. During training, our method
calculates the cross-entropy loss by comparing the decoded features
with the ground truth bounding box features for each target object.
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Figure 5: This image showcases one example from the SQA3D
Pro dataset. The left figure is the overhead view from the
SQA3D dataset, where the yellow arrow indicates the position
and orientation of the first-person perspective within the
current scene. The right figure contains the four additional
multi-view images supplemented by our dataset: the top-left
image is the front view, the top-right image is the back view,
the bottom-left image is the left view, and the bottom-right
image is the right view.

To reach the localization and rotation of scene objects, a similar
approach is employed where we also feed the graph node features,
originating from the question-graph and are processed by the Graph
Transformer, into an MLP through max-pooling for decoding. Dur-
ing training, we use the mean squared error (MSE) loss to compare
the predicted scene position (𝑠𝑝𝑜𝑠 ) and orientation (𝑠𝑟𝑜𝑡 ) obtained
from SQA3D with the ground truth preset values.

Our loss function is defined similarly to SQA3D, which includes
the answering loss, the position loss, the perspective loss, the lo-
cation loss, and the object detection loss. We set the final loss as a
simple linear combination of these losses, computed as:

𝐿 = 𝐿𝑎𝑛𝑠 + 𝜆1𝐿𝑜𝑏 𝑗 + 𝜆2𝐿𝑟𝑜𝑡 + 𝜆3𝐿𝑙𝑜𝑐 + 𝜆4𝐿𝑑𝑒𝑡 , (6)

where 𝜆1, 𝜆2, 𝜆3 and 𝜆4 are the weighting factors for the loss func-
tions. In our experiments, we set all these hyper-parameters to
1s.

4 SQA3D PRO DATASET.
In this section, we describe our proposed SQA3D Pro dataset, which
is an extension of the SQA3D dataset with additional multi-view
situation information. We note that the SQA3D dataset is currently
a publicly available dataset for 3D scene question answering, where
various situations from a first-person perspective are predefined
for each scene in ScanNet and provided in the form of textual de-
scriptions. Unfortunately, the overhead views and videos provided
in the SQA3D dataset only correspond to the global semantic infor-
mation of the entire scene and do not perfectly correspond to the
first-person perspective situations.

Inspired by the ScanQA dataset, which incorporates multi-view
image information of the entire scene into the model training pro-
cess, resulting in improved performance. Similarly, for the SQA3D
dataset, integrating multi-view information from each first-person
perspective into the training process is expected to enhance the
effectiveness of the method. Therefore, we also adopt the strategy of
incorporating multi-view images to complement the image informa-
tion of the first-person perspective situations in the SQA3D dataset,

Table 1: The question answering accuracy on the SQA3D
dataset. In the method column: "w/o s" denotes the method
without situation descriptions, "+ pos" indicates the provision
of object position information in addition to textual answers.

Method
Test set

Avg.
What Is How Can Which Other

ClipBERT [17] 30.2 60.1 38.7 63.3 42.5 42.7 43.3
SQA3D (w/o s) [20] 28.6 65.0 47.3 66.3 43.9 42.9 45.3
SQA3D [20] 31.6 63.8 46.0 69.5 43.9 45.3 46.6
SQA3D (+ pos) [20] 33.5 66.1 42.4 69.5 43.0 46.4 47.2
3D-Vista [41] 34.8 63.3 45.4 69.8 47.2 48.1 48.5

3DGraphQA 36.6 64.2 46.0 69.6 47.9 47.6 49.0
3DGraphQA(SQA3D Pro) 36.4 64.7 46.1 69.8 47.6 48.2 49.2

resulting in the creation of the SQA3D Pro dataset, as illustrated in
the Figure 5.

When supplementing themulti-view images, we select four view-
points: the front view, the back view, the left view, and the right view.
Particularly, if any of these views have missing information or are
facing a wall, we exclude them from the dataset. Since the SQA3D
dataset comprises 650 indoor scenes from the ScanNet dataset, with
6.8k unique situations and 20.4k situation descriptions, our dataset
provides approximately 23k additional multi-view images for the
6.8k unique situations in the SQA3D dataset.

5 EXPERIMENTS
In this section, we first describe the experimental setup of our
approach, including the datasets, implementation details, and eval-
uation metrics. Subsequently, we discuss the experimental results of
our approach. Finally, we conduct ablation experiments to validate
the performance of the main modules in our model.

5.1 Experimental Setup
Datasets. In this work, we validate our method on the ScanQA
dataset[3] and SQA3D dataset [20]. The ScanQA dataset [3] con-
tains 800 3D scenes, 41,363 questions, and 58,191 answers, which is
built upon ScanRefer [6] and Scan2Cap [7]. We follow the training,
validation, and testing set configurations as described in ScanQA
[3]. The SQA3D dataset [20] is designed for embodied scene un-
derstanding by integrating situation understanding and situated
reasoning. It was constructed using 650 scenes from ScanNet [9],
comprising 6.8k unique situations, 20.4k descriptions, and 33.4k
diverse reasoning questions related to these situations.

Implementation. We implement our model using the PyTorch
library, and all experiments are performed on a single Nvidia RTX
4090 GPU. We utilize the ADAM optimizer to train our model, with
an initial learning rate of 0.0001, and a batch size of 16. Our model
is trained for 80 epochs, after 40 epochs, the learning rate is reduced
to 0.00002 for convergence. Additionally, when the number of edges
in the graph structure is high, the batch size will also be decreased
to 14.

Evaluation Metrics. On the ScanQA dataset [3], we employ the
same evaluation metrics as the work [3], which include EM@1 and
EM@10, where EM denotes the exact match and EM@K represents
the percentage of predictions that exactly match any ground truth
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Figure 6: The qualitative comparison results between our method and SQA3D. From the figure, our approach achieves higher
accuracy in answering "what"-related questions, and can provide accurate bounding boxes for relevant objects. In contrast,
SQA3D’s answers are often inaccurate and fall short in providing bounding boxeswhich serve as auxiliary aids for understanding.
answer among the top 𝐾 predicted answers. Meanwhile, we utilize
BLEU-4, ROUGE, METEOR, and CIDEr as the sentence-level evalu-
ation metrics. On the SQA3D dataset [20], accuracy is determined
by the average accuracy of answers obtained for six predefined
questions. Similarly, our SQA3D Pro dataset also employs EM@1
and EM@10 as the evaluation metrics, consistent with SQA3D.

5.2 Experimental Results
In this section, we compare the performance of 3DGraphVQA on
the SQA3D dataset [20] and the ScanQA dataset [3] with various
SOTA methods, including SQA3D [20], ScanQA [3], CLIP-PVQA
[22], Multi-CLIP [10] and 3D-VisTA[41]. The results are presented
in Table 1 and Table 2.

We begin by conducting experiments on the SQA3D dataset.
Our method uses the complete reasoning architecture described
in Section 3. We set up both question and scene graphs, and both
undergo graph reasoning using Graph Transformer. Additionally,
in the fusion process, we use a bilinear graph network [13] for inter-
graph fusion. As shown in Table 1, SQA3D performs better on Is
and Can questions, but gets poorer results onWhat questions. This
is because SQA3D has a simpler reasoning process, making it easier
to answer binary questions with fewer answer options. However,
due to the comprehensive graph reasoning of our approach, we
achieve the best results onWhat andWhich questions. Particularly,
since we also utilize the SQA3D Pro dataset as supplemental im-
age modality for the current scenario, our method also achieved
improved performance on the SQA3D dataset. In Figure 6 we also
illustrate the qualitative comparison results between our method
and SQA3D.

We then conduct experiments on the ScanQA dataset. ScanQA is
a question-answering dataset containing only scenes and specific
questions, and no prior work has constructed dynamic scene graphs
on ScanQA. To better facilitate graph reasoning, we set up only
one question graph for graph reasoning. Since we only have one
graph, there is no need for inter-graph fusion learning. However,
we still aim to achieve appropriate multimodal fusion of text and
graph during the multimodal fusion process. To achieve this, we
refer to BUTD [2], which is a method that combines bottom-up and
top-down attention mechanisms. The bottom-up attention focuses
on the visual features themselves using a feed-forward attention
mechanism, while the top-down attention relies on textual features
to predict attention distribution in visual features. By inputting the
node features after graph reasoning and the encoded question de-
scription, we enable the question features to receive more attention
from matching graph nodes. As shown in Table 2, we have achieved
the SOTA performance, especially in EM@10, where our method
exceeds other SOTA methods by a large margin.

5.3 Ablation Study
In this section, we conduct various ablation experiments to validate
the effectiveness of different modules in our pipeline including
scene graph construction, graph reasoning, as well as bilinear graph
networks.

SceneGraphConstruction.Given that 3DGraphVQA is an end-
to-end network architecture where target features and bounding
boxes are dynamically acquired, we need to dynamically construct
graph nodes and edges. Specifically, for the construction of graph
nodes, our method directly takes the objects as the graph nodes
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Table 2: The question answering accuracy on ScanQA dataset. Each entry denotes the values of "test w/ object" / "test w/o object".

Method EM@1 EM@10 BLEU-4 ROUGE METEOR CIDEr

Image+MCAN [3] 22.3 / 20.8 53.1 / 51.2 14.3 / 9.7 31.3 / 29.2 12.1 / 11.5 60.4 / 55.6
ScanRefer+MCAN [3] 20.6 / 19.0 52.4 / 49.7 7.5 / 7.8 30.7 / 28.6 12.0 / 11.4 57.4 / 53.4
ScanQA [3] 23.5 / 20.9 56.5 / 54.1 12.0 / 10.8 34.3 / 31.1 13.6 / 12.6 67.3 / 60.2
CLIP-PVQA [22] 23.9 / 21.4 / 14.6 / 11.7 35.2 / 32.4 13.9 / 13.3 69.5 / 62.8
Multi-CLIP [10] 24.0 / 21.5 / 12.7 / 12.9 35.4 / 32.6 14.0 / 13.4 68.7 / 63.2
3D-Vista [41] 27.0 / 23.0 57.9 / 53.5 16.0 / 11.9 38.6 / 32.8 15.2 / 12.9 76.6 / 62.6

3DGraphQA 25.6 / 22.3 58.7 / 56.1 15.1 / 12.9 36.9 / 33.0 14.7 / 13.6 74.6 / 62.9

Figure 7: This figure depicts the EM@1 (the left indicator)
and EM@10 (the right indicator) results of our method on
SCA3D and ScanQA datasets. In this context, the horizontal
axis represents the number of edges in the graph, ranging
from no edges to 2, 4, 6, 8, 10, and fully connected graphs.
The vertical axis represents accuracy, with the values of the
left side indicating the accuracy of EM@1, and the values of
the right side indicating EM@10.

and incorporates the features of each object as node features in the
graph.

For the construction of graph edges, our method initially experi-
ments with unconnected graphs or fully connected graphs. In the
unconnected graph setup, we only inject the node features into
the graph reasoning process. Conversely, in the fully connected
graph setup, all edge weights of the bounding nodes were set to 1s
and injected into the graph reasoning process along with the node
features. In addition, considering the strong correlation between
the problem design of the SQA3D dataset and the surrounding ob-
jects of the current perspective, we set edge nodes based on the
prior information of each target bounding box. Here, we rank the
objects closest to the current graph node’s bounding box, and the
top-ranked objects are selected within the neighborhood range,
meaning the edge weight between this target and the current graph
node is set to 1; otherwise, it is set to 0. We set the neighborhood
range to 2, 4, 6, 8, and 10. As shown in Figure 7, the best performance
is achieved when the neighborhood range is set to 8 targets. On
the contrary, when using unconnected or fully connected graphs,
the effect of both is relatively inferior.

Moreover, as we employed a dual-graph design for inter-graph
processing, consisting of situation-graph and question-graph, we
also compare the results with those obtained from a single-graph
design. In this setup, we concatenate the situation description fea-
ture and question encoding feature into the node features as a
single fusion graph. As shown in the table 3, we demonstrated
that simultaneous inter-graph processing with situation-graph and
question-graph yields superior results.

Table 3: The ablation study of our 3DGraphQA. We show the
EM@1 and EM@10 results on SQA3D dataset.

Method EM@1 EM@10

Graph Tansformer single Graph 48.32 88.09
Graph Tansformer without BAN 48.05 87.41
GAT 47.88 84.97
Graph Tansformer 5L 48.54 88.44
Graph Tansformer 10L 49.04 88.75
Graph Tansformer 10L on SQA3D Pro 49.18 89.23

Graph Reasoning Methods. There are various methods for
reasoning over graph structures in the graph reasoning field. In this
work, during the graph reasoning process, our method adopt the
former constructed graphs as inputs to the Graph Transformer. Ad-
ditionally, we conduct ablation experiments with different numbers
of layers in the Graph Transformer, i.e. selecting 5 and 10 layers for
comparison. As shown in the table, employing Graph Transformer
with 10 layers outperformed the other setup.

Bilinear Graph Networks. Finally, we compared the results
with and without the module of bilinear graph networks. When
discarding bilinear graph networks, we concatenated the node fea-
tures of the scene graph and question graph together and directly
decoded the features. The results demonstrated that without the
presence of bilinear graph networks, the accuracy of the answers
decreased, which validates the effectiveness of the bilinear graph
networks.

6 CONCLUSION
In this paper, we present 3DGraphQA, a novel graph-based 3D
question answering method. The key premise of our method is
that graph reasoning can facilitate the complex relation reasoning
between 3D scene objects. To accomplish this goal, our method
first constructs the scene graph based on the scene and injects
the situation description and question description separately to
form the situation-graph and the question-graph. Subsequently,
for the intra-graph and inter-graph feature fusion of the situation-
graph and the question-graph, we propose intra-graph message
passing based on Graph Transformer and inter-graph message pass-
ing based on the Bilinear Attention Network (BAN). Experimental
results demonstrate the effectiveness of our proposed approach.
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