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A RELATED WORK

LLM(-agent) for decision-making. The impressive capability of LLMs for reasoning (Bubeck
et al., 2023; Achiam et al., 2023; Wei et al., 2022b;a; Srivastava et al., 2023; Yao et al., 2023a) has
inspired a growing line of research on LLM for (interactive) decision-making, i.e., an LLM-based
autonomous agent interacts with the environment by taking actions repeatedly/sequentially, based
on the feedback it perceives. Some promises have been shown from a planning perspective (Hao
et al., 2023; Valmeekam et al., 2023; Huang et al., 2022b; Shen et al., 2023). In particular, for
embodied AI applications, e.g., robotics, LLMs have achieved impressive performance when used
as the controller for decision-making (Ahn et al., 2022; Yao et al., 2023b; Shinn et al., 2023; Wang
et al., 2023d; Driess et al., 2023; Significant Gravitas, 2023). However, the performance of decision-
making has not been rigorously characterized via the regret metric in these works. Very recently, Liu
et al. (2023e) has proposed a principled architecture for LLM-agent, with provable regret guarantees
in stationary and stochastic decision-making environments, under the Bayesian adaptive Markov
decision processes framework. In contrast, our work focuses on online learning and game-theoretic
settings, in potentially adversarial and non-stationary environments. Moreover, (first part of) our
work focuses on evaluating the intelligence level of LLM per se in decision-making (in terms of the
regret metric), while Liu et al. (2023e) focused on developing a new architecture that uses LLM as
an oracle for reasoning, together with memory and specific planning/acting subroutines, to achieve
sublinear (Bayesian) regret, in stationary and stochastic environments.

LLMs in multi-agent environments. The interaction of multiple LLM agents has garnered sig-
nificant attention lately. For example, Fu et al. (2023) showed that LLMs can autonomously improve
each other in a negotiation game by playing and criticizing each other. Similarly, (Du et al., 2023;
Liang et al., 2023; Xiong et al., 2023; Chan et al., 2024; Li et al., 2023c) showed that multi-LLM
debate can improve the reasoning and evaluation capabilities of the LLMs. Qian et al. (2023);
Schick et al. (2023); Wu et al. (2023) demonstrated the potential of multi-LLM interactions and
collaboration in software development, writing, and problem-solving, respectively. Zhang et al.
(2024) exhibited a similar potential in embodied cooperative environments. More formally, multi-
LLM interactions have also been investigated under a game-theoretic framework, to characterize the
strategic decision-making of LLM agents. Bakhtin et al. (2022); Mukobi et al. (2023) and Xu et al.
(2023b;a) have demonstrated the promise of LLMs in playing Diplomacy and WereWolf games,
respectively, which are both language-based games with a mixture of competitive and cooperative
agents. Note that these works utilized LLM to solve a specific rather than a general game. Related
to our work, Brookins & DeBacker (2023); Akata et al. (2023); Lorè & Heydari (2023); Brookins
& DeBacker (2023); Fan et al. (2023) have also used (repeated) matrix games as a benchmark to
evaluate the reasoning capability and rationality of LLM agents. In contrast to our work, these em-
pirical studies have not formally investigated LLM agents using the metric of regret, nor through the
lenses of online learning and equilibrium-computation, which are all fundamental in modeling and
analyzing strategic multi-agent interactions. Moreover, our work also provides theoretical results to
explain and further enhance the no-regret property of LLM agents.

LLMs & Human/Social behavior. LLMs have also been used to simulate the behavior of hu-
man beings, for social science and economics studies (Engel et al., 2023). The extent of LLMs
simulating human behavior has been claimed as a way to evaluate the level of its intelligence in a
controlled environment (Aher et al., 2023; Tsai et al., 2023). For example, Li et al. (2023b); Hong
et al. (2024); Zhao et al. (2023) showed that by specifying different “roles” to LLM agents, certain
collaborative/competitive behaviors can emerge. Argyle et al. (2023) showed that LLMs can emulate
response distributions from diverse human subgroups, illustrating their adaptability. Horton (2023)
argued that an LLM, as a computational model of humans, can be used as homo economicus when
given endowments, information, preferences, etc., to gain new economic insights by simulating its
interaction with other LLMs. Park et al. (2022; 2023) proposed scalable simulators that can generate
realistic social behaviors emerging in populated and interactive social systems, and the emerging be-
haviors of LLM agents in society have also been consistently observed in Chen et al. (2024; 2023).
Li et al. (2023d;a) studied the behavioral dynamics of LLM agents on social networks. These empir-
ical results have inspired our work, which can be viewed as an initial attempt towards quantitatively
understanding the emerging behavior of LLMs as computational human models, given the known
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justification of equilibrium being a long-run emerging behavior of learning dynamics (Fudenberg &
Levine, 1998) and strategic interactions (Young, 2004; Camerer, 2011).

Transformers & In-context-learning. LLMs nowadays are predominantly built upon the archi-
tecture of Transformers (Vaswani et al., 2017). Transformers have exhibited a remarkable capacity
of in-context-learning (ICL), which can construct new predictors from sequences of labeled exam-
ples as input, without further parameter updates. This has enabled the few-shot learning capability
of Transformers (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). The empirical successes
have inspired burgeoning theoretical studies on ICL. Xie et al. (2022) used a Bayesian inference
framework to explain how ICL works, which has also been adopted in Wang et al. (2023b); Jiang
(2023). Akyürek et al. (2023); Von Oswald et al. (2023); Dai et al. (2023); Giannou et al. (2023)
showed (among other results) that ICL comes from that Transformers can implement the gradient
descent (GD) algorithm. Bai et al. (2023) further established that Transformers can implement a
broad class of machine learning algorithms in context. Moreover, Ahn et al. (2023); Zhang et al.
(2023a); Mahankali et al. (2023) proved that a minimizer of the certain training loss among single-
layer Transformers is equivalent to a single step of GD for linear regression. Li et al. (2023e) es-
tablished generalization bounds of ICL from a multi-task learning perspective. Zhang et al. (2023b)
argued that ICL implicitly implements Bayesian model averaging, and can be approximated by the
attention mechanism. They also established a result on some regret metric. However, the regret
notion is not defined for (online) decision-making, and is fundamentally different from ours that
is standard in online learning and games. Also, we provide extensive experiments to validate the
no-regret behavior by our definition. More recently, the ICL property has also been generalized
to decision-making settings. Laskin et al. (2023); Lee et al. (2023); Lin et al. (2024) investigated
the in-context reinforcement learning (RL) property of Transformers under supervised pre-training,
for solving stochastic bandits and Markov decision processes. In contrast, our work focuses on on-
line learning settings with an arbitrary and potentially adversarial nature, as well as game-theoretic
settings. We also provide a new unsupervised loss to promote the no-regret behavior in our settings.

Online learning and games. Online learning has been extensively studied to model the decision-
making of an agent who interacts with the environment sequentially, with a potentially arbitrary
sequence of loss functions (Shalev-Shwartz, 2012; Hazan, 2016), and has a deep connection to game
theory (Cesa-Bianchi & Lugosi, 2006). In particular, regret, the difference between the incurred
accumulated loss and the best-in-hindsight accumulated loss, has been the core performance metric,
and a good online learning algorithm should have regret at most sublinear in time T , which is
referred to as being no-regret. Many well-known algorithms can achieve no-regret against arbitrary
loss sequences, e.g., multiplicative weight updates (MWU)/Hedge (Freund & Schapire, 1997; Arora
et al., 2012b), EXP3 (Auer et al., 2002), and more generally follow-the-regularized-leader (FTRL)
(Shalev-Shwartz & Singer, 2007) and follow-the-perturbed-leader (FTPL) (Kalai & Vempala, 2005).
In the bandit literature (Lattimore & Szepesvári, 2020; Bubeck et al., 2012), such a setting without
any statistical assumptions on the losses is also referred to as the adversarial/non-stochastic setting.
Following the conventions in this literature, the online settings we focus on shall not be confused
with the stationary and stochastic(-bandit)/(-reinforcement learning) settings that have been explored
in several other recent works on Transformers for decision-making (Lee et al., 2023; Lin et al., 2024).
Centering around the regret metric, our work has also explored the non-stationary bandit setting
(Besbes et al., 2014), as well as the repeated game setting where the environment itself consists of
strategic agents (Cesa-Bianchi & Lugosi, 2006).

A.1 COMPARISON WITH CONCURRENT WORK KRISHNAMURTHY ET AL. (2024)

After submitting the first version of our manuscript, we were aware of a concurrent work Krishna-
murthy et al. (2024), which considered using LLMs to solve multi-arm stochastic bandit problems
entirely in-context, with a focus on the exploration behaviors of LLMs. Specifically, Krishnamurthy
et al. (2024) claimed that LLMs may not show robust exploratory behaviors under a variety of
prompt configurations, although there does exist some successful prompt configuration that enabled
satisfactory exploratory behaviors. We here provide a detailed comparison between Krishnamurthy
et al. (2024) and the first experimental part of our paper, i.e., Section 3 and related appendices.

• (Focused settings). We mainly considered the full-information online learning setting with
potentially adversarial loss vectors, as well as the multi-agent repeated-game setting. In
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contrast, Krishnamurthy et al. (2024) focused on the stochastic setting with bandit feed-
back, where the loss vectors at different rounds are drawn i.i.d. from a fixed distribution.
Therefore, both the metrics and most results are not directly comparable. For example, i)
some failure cases in Krishnamurthy et al. (2024) for stochastic bandits did not appear in
our setting (as will be detailed next); ii) for some adversarial loss instances (e.g., those from
Feder et al. (1992), see the introduction in Section 3.4), the summarized history input that
was claimed essential in Krishnamurthy et al. (2024) is not very effective in our settings,
while a raw-history input as in our experiments can be more effective (see Section 3.4
and Figure C.6); iii) as studied in Krishnamurthy et al. (2024), uniform-like behaviors con-
stitute one of the main failures in stochastic bandits. However, uniform-like policies do
not necessarily correspond to failure cases in our setting, especially when the loss vectors
are highly adversarial (c.f. examples in Section 3.4). In particular, such a metric may be
irrelevant/inapplicable to validating the no-regret behaviors in our full-information non-
stochastic/adversarial settings. These results/facts demonstrated the fundamentally differ-
ent features in addressing the distinct settings in both works.

• (Configuration/Prompt design choices). Despite the negative results under many prompt
configurations, Krishnamurthy et al. (2024) still found one successful prompt configura-
tion that can lead to robust exploratory behaviors in stochastic bandits, which in fact shares
many similarities with our default prompt configurations. For example, Krishnamurthy
et al. (2024) found that asking the LLMs to output a distribution over the action space
(instead of one single action) can address the suffix failure for stochastic bandits, which
was indeed the default prompt we used in our settings. Moreover, as a standard technique,
our default prompt asked the model to have the Chain-of-Thought (CoT) reasoning, while
Krishnamurthy et al. (2024)’s successful prompt also emphasized the importance of CoT.
Krishnamurthy et al. (2024) also showed the importance of summarizing the history, i.e.,
summarizing the mean reward associated with each arm, while we found that when we
feed the LLMs with (raw) full-information feedback in the vector form, the LLMs may au-
tomatically choose to summarize the history and make decisions based on the summarized
statistics (c.f. the output examples in Appendix C.10).

• (Horizons v.s. No-regret behaviors). In light of the findings from Krishnamurthy et al.
(2024) that LLMs may fail when the problem horizon is long, we conduct experiments on
problems with comparable horizons as in Krishnamurthy et al. (2024). Our results show
that for the full-information non-stochastic setting we focused on, LLMs can still be no-
regret with longer horizons (Figure 3.2 and Table 1), under the loss sequences we studied.

• (Results in bandit setting & Failure cases). As an extension and sanity check of our
full-information-setting results, we have also experimented with the (adversarial) bandit
setting. This extension setting is more comparable to that in Krishnamurthy et al. (2024).
However, different from the focus therein, we did not ask the LLMs to directly explore in
context. Instead, we manually input a re-weighting estimate of the full-information loss
vector, a standard technique in online learning (Auer et al., 2002; Hazan, 2016; Lattimore
& Szepesvári, 2020), to balance exploration and exploitation. We viewed this approach as
a natural way to exploit the no-regret behaviors of LLMs in the full-information setting. In
fact, with such a re-weighting, we show in Table 2 that the failure cases in Krishnamurthy
et al. (2024) for the bandit setting may not appear, in the exact hard instance proposed
therein, even under a relatively long horizon of T = 100. Complementing Krishnamurthy
et al. (2024), our bandit-setting results may suggest that such human-intervened input may
enhance LLMs’ decision-making capabilities. This is perhaps also in line with the obser-
vation in Krishnamurthy et al. (2024) that some additional “human intervention” (i.e., the
summarized history input therein) may be critical in the (stochastic) bandit setting. Specif-
ically, in Table 2, we validate that although LLMs may fail in bandit-feedback settings
without interventions, such a simple re-weighting technique may be useful to handle ex-
ploration tasks by leveraging LLMs’ performance in the full-information setting.
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Hard MAB instance of
Krishnamurthy et al. (2024) TS UCB Successful case of

Krishnamurthy et al. (2024) Ours (GPT-4) Naive (GPT-4) Ours (GPT-4o) Naive (GPT-4o)

Median reward
(higher is better) 0.47 0.55 0.47 0.46 0.46 0.475 0.455

SuffFailFreq(T/2)
(lower is better) 0.01 0.02 0.00 0.00 0.00 0.00 0.2

n→MinFrac
(lower is better) 0.28 0.18 0.33 0.27 0.38 0.1 0.09

Table 2: Comparing Thompson Sampling (TS), Upper Confidence Bound (UCB), and the successful
prompt configuration of Krishnamurthy et al. (2024) (from Figure 4 therein) with our approaches
(named Ours in the table), on the hard MAB instance therein. We also conducted ablation studies
by removing our re-weighting technique (named Naive in the table). Note that both Ours and Naive
use distributional output, as it is the default prompt configuration we used throughout our paper.
Specifically, as introduced in Krishnamurthy et al. (2024), for this hard instance, rewards associated
with each arm follow a Bernoulli distribution, the horizon is T = 100, the number of actions is
n = 5, and the reward gap is 0.2. For GPT-4, the model adopted by Krishnamurthy et al. (2024),
we have observed similar results with their case using the distributional output, where although the
median reward is comparable with the successful cases, Naive suffers from the uniform-like failure
as indicated by a high n→MinFrac value. For GPT-4o, the model not studied by Krishnamurthy
et al. (2024), we have a slightly different observation that Naive (with distributional output as in
our default configurations) seems to still suffer from suffix failure, indicated by a slightly high
SuffFailFreq(T/2), while Krishnamurthy et al. (2024) reported that distributional output can avoid
such a failure for GPT-4. In contrast to Naive, our re-weighting technique enabled the LLMs to
avoid both the suffix and the uniform-like failures in this (stochastic) bandit-feedback case, without
external history summarization, and achieve comparable rewards.

B DEFERRED BACKGROUND

B.1 NOTATION

We use N and N+ to denote the sets of non-negative and positive integers, respectively. For a finite
set S , we use !(S) to denote the simplex over S . For d ↑ N+, we define [d] := {1, 2, . . . , d}. For
two vectors x, y ↑ Rd, we use ↓x, y↔ to denote the inner product of x and y. We define 000d and 111d as a
d-dimensional zero or one vector, and OOOd→d and Id→d as a d↗d-dimensional zero matrix and identity
matrix, respectively. We omit d when it is clear from the context. We define ei as a unit vector (with
proper dimension) whose i-th coordinate equal to 1. For p ↑ Rd, R > 0 and C ↘ Rd is a convex
set, define B(p, R, ≃ ·≃) := {x ↑ Rd

| ≃x⇐p≃ ⇒ R}, ProjC,↑·↑(p) = arg min
x↓C

≃x⇐p≃ (which
is well defined as C is a convex set), and clipR(x) := [ProjB(0,R,↑·↑2),↑·↑2

(xi)]i↓[d]. Define

Softmax(x) :=
(

e
xi∑

i→[d] exi

)

i↓[d]
and ReLU(x) = max(0, x) for x ↑ Rd. For A ↑ Rm→n with

Ai denoting its i-th column, we define ≃A≃op := max↑x↑2↔1 ≃Ax≃2, ≃A≃2,↗ := sup
i↓[n] ≃Ai≃2,

≃A≃F as the Frobenius norm, and A↘1 := An to denote the last column vector of A. We define
R+ := {x | x ⇑ 0}. For a set ”, define diam(”, ≃ · ≃) := sup

ω1,ω2↓! ≃ω1 ⇐ ω2≃. We define
(E) := 1 if E is true, and (E) := 0 otherwise. For a random variable sequence (Xn)n↓N and

random variables X, Y , we denote FX as the cumulative distribution function of a random variable
X , Xn

p

⇓ X if ⇔ε > 0, limn≃↗ P(|Xn ⇐ X| > ε) = 0, Xn

d
⇓ X if limn≃↗ FXn

(x) =

FX(x) for all x where FX(x) is continuous, X
d
= Y if FX(x) = FY (x) for all x, Xn

a.s.
⇓ X

if P(limn≃↗ Xn = X) = 1, and esssup(X) := inf{M ↑ R : P(X > M) = 0}. For a
random variable X , we use supp(X) to denote its support. For functions f, g : R ⇓ R, we define
g(x) = O(f(x)) if there exist x0, M < ↖ such that |g(x)| ⇒ M |f(x)| for all x > x0. We use f ⇐ to
denote the derivative of f . Let F : # ⇓ R be a continuously-differentiable, strictly convex function
defined on a convex set #. The Bregman divergence associated with F for points p, q is defined as
DF (p, q) := F (p) ⇐ F (q) ⇐ ↓↙F (q), p ⇐ q↔. For a sequence (ϑt)t↓[T ] for some T ↑ N+, we define
ϑa:b := (ϑa, · · · , ϑb) for 1 ⇒ a ⇒ b ⇒ T . If a > b, we define ϑa:b = ∝.
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B.2 ADDITIONAL DEFINITIONS

(Linear) Self-attention. One key component in Transformers (Vaswani et al., 2017), the backbone
of modern language models, is the (self-)attention mechanism. For simplicity, we here focus on
introducing the single-layer self-attention architecture. The mechanism takes a sequence of vectors
Z = [z1, . . . , zt] ↑ Rd→t as input, and outputs some sequence of [ẑ1, . . . , ẑt] ↑ Rd→t. For each
i ↑ [t] where i > 1, the output is generated by ẑi = (V z1:i↘1)ϖ((Kz1:i↘1)↭(Qzi)), where z1:i↘1

denotes the 1 to i⇐1 columns of Z, ϖ is either the Softmax or ReLU activation function, and for the
initial output, ẑ1 = 000d. Here, V, Q, K ↑ Rd→d are referred to as the Value, Query, and Key matrices,
respectively. Following the theoretical framework in Von Oswald et al. (2023); Mahankali et al.
(2023), we exclude the attention score for a token zi in relation to itself. For theoretical analysis, we
also consider the linear self-attention model, where ẑi = (V z1:i↘1)((Kz1:i↘1)↭(Qzi)). We write
this (linear) self-attention layer’s output as (L)SA(V,Q,K)(Z). We define an M -head self-attention
layer with ϱ = {(Vm, Qm, Km)}m↓[M ] as M-(L)SAε(Z) :=

∑
M

m=1 (L)SA(Vm,Qm,Km)(Z). We
define ≃ · ≃M-(L)SA as ≃ϱ≃M-(L)SA := maxm↓[M ] {≃Qm≃op, ≃Km≃op} +

∑
M

m=1 ≃Vm≃op.

Transformers. For a multi-layer perceptron (MLP) layer, it takes Z = [z1, . . . , zt] ↑ Rd→t as
input, with parameter ϱ = (W1, W2) ↑ Rd

↑
→d

↗ Rd→d
↑

such that for each i ↑ [t], the output is
ẑi := W2ϖ(W1zi) where ϖ is either Softmax or ReLU. We write the output of an MLP layer with
parameter ϱ as MLPε(Z). Defining ≃ · ≃MLP as ≃ϱ≃MLP := ≃W1≃op + ≃W2≃op and ResNet(f, Z) :=
Z + f(Z), we can define an L-layer Transformer with parameter ϱ = (ϱ(lm), ϱ(la))l↓[L] as

TFε(Z) := Z(L),

where the output Z(L) is defined iteratively from Z(0) = clipR(Z) := min(⇐R, max(R, Z)) and

Z(l) = clipR

(
ResNet

(
MLPε(la) ,ResNet

(
M-(L)SAε(lm) , Z(l↘1)

)))
,

for some R > 0. We define a class of Transformers with certain parameters as $d,L,M,d↑,BTF :=
{ϱ = (ϱ(lm), ϱ(la))l↓[L],m↓[M ] : ≃ϱ≃TF ⇒ BTF}, where M is the number of heads of self-attention,

≃ϱ≃TF := max
l↓[L]

{
≃ϱ(la)

≃M-(L)SA + ≃ϱ(lm)
≃MLP

}
, (B.1)

and BTF > 0 is some constant. When it is clear from the context, we may omit the subscripts and
write it as $ for simplicity. We assume R to be sufficiently large such that clip does not take effect
on any of our approximation results.

B.3 IN-CONTEXT LEARNING

In-context learning is an emergent behavior of LLMs (Brown et al., 2020), which means that these
models can adapt and learn from a limited number of examples provided within their immediate
input context. In in-context learning, the prompt is usually constituted by a length of T in-context
(independent) examples (xt, yt)t↓[T ] and (T + 1)-th input xT+1, so the LLM((zt)t↓[T ], xT+1) pro-
vides the inference of yT+1, where zt = (xt, yt).

B.4 ONLINE LEARNING ALGORITHMS

Follow-the-regularized-leader (FTRL). The follow-the-regularized-leader algorithm (Shalev-
Shwartz, 2007) is an iterative method that updates policy based on the observed data and a regu-
larization term. The idea is to choose the next policy that minimizes the sum of the past losses and
a regularization term.

Mathematically, given a sequence of loss vectors ϑ1, ϑ2, . . . , ϑt, the FTRL algorithm updates the
policy ω at each time step t as follows:

ωt+1 = arg min
ω↓!

(
t∑

i=1

↓ϑi, ω↔ + R(ω)

)
,
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where R(ω) is a regularization term. The regularization term R(ω) is introduced to prevent overfit-
ting and can be any function that penalizes the complexity of the model. A function R(ω) is said to
be ς-strongly convex with respect to a norm ≃ · ≃ if for all ω, ω⇐

↑ ”:

R(ω) ⇑ R(ω⇐) + ↓↙R(ω⇐), ω ⇐ ω⇐
↔ +

ς

2
≃ω ⇐ ω⇐

≃
2
2.

A key property that ensures the convergence and stability of the FTRL algorithm is the strong con-
vexity of the regularization term R(ω). Strong convexity of R(ω) ensures that the optimization
problem in FTRL has a unique solution. The FTRL algorithm’s flexibility allows it to encompass a
wide range of online learning algorithms, from gradient-based methods like online gradient descent
to decision-making algorithms like Hedge (Freund & Schapire, 1997).

Connection to online gradient descent (OGD). The Online Gradient Descent (OGD) (Cesa-
Bianchi et al., 1996) algorithm is a special case of the FTRL algorithm when the regularization
term is the L2-norm square, i.e., R(ω) = 1

2≃ω≃
2
2 and ” = Rd. In OGD, at each time step t, the

policy ω is updated using the gradient of the loss function:

ωt+1 = ωt ⇐ ϑt.

Therefore, the connection between FTRL and OGD can be seen by observing that the update rule
for FTRL with L2-regularization can be derived from the OGD update rule.

Connection to the Hedge algorithm. The Hedge algorithm (Freund & Schapire, 1997) (also re-
ferred to as the Multiplicative Weight Update algorithm (Arora et al., 2012b)) is an online learning
algorithm designed for problems where the learner has to choose from a set of actions (denoted as
A) at each time step and suffers a loss based on the chosen action. The FTRL framework can be
used to derive the Hedge algorithm by considering an entropy regularization term. Specifically, the
regularization term is the negative entropy R(ω) =

∑
j↓[d] ωj log ωj (where d is the dimension of

policy ω), then the FTRL update rule yields the Hedge algorithm as

ω(t+1)j = ωtj

exp(⇐ϑtjωtj)∑
i↓[d] exp(⇐ϑtiωti)

for j ↑ [d].

Follow-the-perturbed-leader (FTPL). Given a sequence of loss vectors ϑ1, ϑ2, . . . , ϑt↘1, the
follow-the-perturbed-leader algorithm (Kalai & Vempala, 2005) at each time step t adds a random
perturbation vector εt to the original loss vectors and then selects the best-response action at (that is
potentially randomized due to εt) by solving:

at ↑ arg min
a↓A

εta +
t↘1∑

i=1

ϑia,

where the perturbation εt is sampled from a pre-defined distribution. Correspondingly, the policy ωt

is chosen by following equation:

ωt = E
[
arg min

ω↓!
↓εt, ω↔ +

t↘1∑

i=1

↓ϑi, ω↔

]
. (B.2)

Relationship between FTRL and FTPL. The FTRL and FTPL algorithms are deeply related. For
example, FTPL with perturbations of Gumbel distribution and FTRL with Entropy Regularization
(i.e., Hedge) are equivalent. In general, for the FTPL algorithm with any perturbation distribution,
one can always find an FTRL algorithm with a particular regularization such that their update rule is
equivalent. However, this relationship does not hold vice versa. For example, Hofbauer & Sandholm
(2002) showed that for FTRL with log barrier regularization, there does not exist an equivalent
perturbation distribution for FTPL.
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Restarting techniques for non-stationary online learning. For non-stationary online learning
problems, one common technique is restarting: one restarts the standard online learning algorithm
periodically (Besbes et al., 2014) (see also e.g., Wei & Luo (2021); Mao et al. (2020)). After each
restarting operation, the algorithm will ignore the previous history and execute as if it is the begin-
ning of the interaction with the environment. Since the variation of the loss sequences is bounded,
loss sequences between two consecutive restarting operations can be regarded as being almost sta-
tionary, which makes achieving an overall sublinear dynamic regret guarantee possible.

B.5 WHY FOCUSING ON LINEAR LOSS FUNCTION?

We note that focusing on the linear loss function ft(ω) := ↓ϑt, ω↔ does not lose much of gener-
ality. Specifically, for the general convex loss function (ft)t↓[T ], we have ft(ωA ,t) ⇐ ft(ω) ⇒

↓↙ft(ωA ,t), ωA ,t ⇐ ω↔ for any ω ↑ ”, which indicates

RegretA
(
(ft)t↓[T ]

)
⇒

T∑

t=1

E[↓↙ft(ωA ,t), ωA ,t↔] ⇐ inf
ω↓!

T∑

t=1

E[↓↙ft(ωA ,t), ω↔].

Therefore, one can regard the loss vector (ϑt)t↓[T ] as ϑt := ↙ft(ωA ,t) for t ↑ [T ], and control the
actual regret by studying the linear loss function (Hazan, 2016). The same argument on the general
convex ft can be applied to the dynamic-regret metric as well. In sum, an algorithm designed for
online linear optimization can be adapted to solve online convex optimization, with the understand-
ing that the instance received at round t corresponds to the gradient of the convex function evaluated
at the policy in that round.

B.6 SIX REPRESENTATIVE GENERAL-SUM GAMES

In game theory, there are six representative two-player general-sum games (Robinson & Goforth,

2005). Firstly, consider the win-win game represented by matrices A =

(
1 4
1 2

)
and B =

(
1 4
1 2

)

for players A and B, respectively. This setup fosters a cooperative dynamic, as both players receive
identical payoffs, encouraging strategies that benefit both parties equally.

In contrast, the prisoner’s dilemma, depicted by payoff matrices A =

(
1 3
2 4

)
and B =

(
4 3
2 1

)
,

illustrates the conflict between individual and collective rationality, where players are tempted to
pursue individual gain at the collective’s expense, often resulting in suboptimal outcomes for both.

In the unfair game, represented by A =

(
2 1
3 4

)
and B =

(
4 3
1 2

)
, the asymmetry in the payoff

structure places one player at a disadvantage, regardless of the chosen strategy. This imbalance often
reflects real-world scenarios where power or information asymmetry affects decision-making.

The cyclic game, with matrices A =

(
3 1
2 4

)
and B =

(
3 4
2 1

)
, presents a scenario where no

stable equilibrium exists. The best strategy for each player changes in response to the other’s actions,
leading to a continuous cycle of strategy adaptation without a clear resolution.

The biased game, depicted by A =

(
3 2
1 4

)
and B =

(
4 2
1 3

)
, inherently favors one player, often

reflecting situations where external factors or inherent advantages influence outcomes, leading to
consistently unequal payoffs.

Finally, the second-best game, with payoff matrices A =

(
1 2
3 4

)
and B =

(
1 4
3 2

)
, encapsulates

scenarios where players settle for less-than-optimal outcomes due to constraints like risk aversion
or limited options. This often results in players choosing safer, albeit less rewarding, strategies.

Each of these games exemplifies distinct aspects of strategic decision-making and interactions. From
cooperative to competitive and fair to biased scenarios, these matrices provide a rich landscape for
exploring the nuances of decision-making behavior in game theory.
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C DEFERRED RESULTS AND PROOFS IN SECTION 3

C.1 INTUITION WHY PRE-TRAINED LANGUAGE MODELS MIGHT EXHIBIT NO-REGRET
BEHAVIOR

Intuition why pre-trained language models might exhibit no-regret behavior. Transformer-
based LLMs have demonstrated impressive in-context-learning and few-/zero-shot learning capa-
bilities (Brown et al., 2020; Garg et al., 2022; Min et al., 2022). One theoretical explanation is
that, trained Transformers can implement the gradient descent algorithm on the testing loss in cer-
tain supervised learning problems (Akyürek et al., 2023; Von Oswald et al., 2023; Dai et al., 2023;
Ahn et al., 2023; Zhang et al., 2023a; Mahankali et al., 2023), which is inherently adaptive to the
loss function used at test time. On the other hand, it is known in online learning that the simple
algorithm of online gradient descent (Zinkevich, 2003) can achieve no-regret. Hence, it seems rea-
sonable to envision the no-regret behavior of such meta-learners in online learning, due to their fast
adaptability. However, it is not straightforward due to the fundamental difference between multi-
task/meta-learning and online learning settings, as well as the difference between stationary and
non-stationary/adversarial environments in decision-making. Next, we provide both experimental
and theoretical studies to validate this intuition.

C.2 VISUALIZATION OF INTERACTION PROTOCOLS

! = #
You are playing a matrix game for T rounds. There are A number of actions.. 

Human Moderator’s Prompt

You are playing a matrix game for T rounds. There are A number of actions. 
At each round, you need to choose a policy; it specifies your probability of choosing each action. 
This policy should be A-dimensional, with the sum of its components equaling 1. 
After that, you are shown the reward vector for choosing each action. Remember, the reward vector 
is determined by an external system and can vary across rounds. 
It is not decided by what policies you have chosen. The reward vector is also A-dimensional. 
You can adjust your policy based on the reward vectors for all previous rounds. You’re required to 
provide your policy in numeric format. 
Your response’s last line should be formatted as ‘Policy: [your A-dimensional policy]’. 
Let’s think step by step. Explicitly examining history is important. Please explain how you chose the 
policy by guessing what reward you might receive for each action according to the history.

! = $

LLM 3: My decision is ...LLM 3: My decision is ...
LLM 3: My decision is ...

LLM 3: My decision is ...LLM 2: My decision is ...
LLM 2: My decision is ...

LLM 3: My decision is ...LLM 1: My decision is ...
LLM 1: My decision is ...! = %

Figure C.1: Demonstration of the prompts and interaction protocol for multi-player repeated games.
A human moderator does not provide the game’s payoff matrices to the LLMs. Instead, at each
round, the human moderator provides each player’s own payoff vector history.

C.3 FRAMEWORKS FOR NO-REGRET BEHAVIOR VALIDATION

Trend-checking framework. We propose the following hypothesis test:

H0 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)↗
t=1

either diverges or converges to a positive constant

H1 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)↗
t=1

converges to 0 or a negative constant

with H0 and H1 denoting the null and alternative hypotheses, respectively. The notion of conver-
gence is related to T ⇓ ↖ by definition, making it challenging to verify directly with a finite T . As
an alternative, we propose a more tractable hypothesis test, albeit a weaker one, that still captures
the essence of our objective:

H0 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)
t↓[T ]

does not exhibit a decreasing pattern

H1 : The sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)
t↓[T ]

shows a decreasing pattern

where the “decreasing pattern” here refers to the case when more than 1/2 of the elements in the
sequence satisfies that RegretA

(
(fϑ )ϑ↓[t]

)
/t > RegretA

(
(fϑ )ϑ↓[t+1]

)
/(t + 1). Note that we will

only apply the framework when the sequence
(
RegretA

(
(fϑ )ϑ↓[t]

)
/t
)
t↓[T ]

is non-negative, since a
negative regret is even more favorable and directly implies no-regret behaviors.

Ideally, one should check if RegretA
(
(fϑ )ϑ↓[t]

)
/t approaches zero or some negative constant as t

goes to infinity. With a finite T value, testing these hypotheses provides a method to quantify this

29



Published as a conference paper at ICLR 2025

– whether we reject H0 offers a way to measure it. To this end, one needs to count the number of
RegretA

(
(fϑ )ϑ↓[t]

)
/t⇐RegretA

(
(fϑ )ϑ↓[t+1]

)
/(t+1) > 0, for which we use Proposition 1 below

to provide some understanding of (how small) the probability it happens under various counts. For
example, with the default choice of T = 25 in our experiments later, one can see from Proposition 1
that: PH0(E(17, 25)) < 0.032,PH0(E(19, 25)) < 0.0035,PH0(E(21, 25)) < 0.00014, i.e., one can
easily reject H0 with high probability. We will report the p-value of H0, denoted as ptrend, as the
output of this framework.
Proposition 1. (p-value of the null hypothesis). Define the event

E(s, T ) :=

{
The number of

RegretA
(
(fω )ω→[t]

)

t
↘

RegretA
(
(fω )ω→[t+1]

)

t + 1
> 0 for t = 1, . . . , T is at least s ⇒

T ↘ 1

2

}
.

Under the assumption that the null hypothesis H0 holds, the probability of this event happening is

bounded as PH0(E(s, T )) ⇒
1

2T↓1

∑
T↘1
t=s

(
T ⇐ 1

t

)
.

Proof. Under the null hypothesis H0, the probability p that RegretA
(
(fϑ )ϑ↓[t]

)
/t ⇐

RegretA
(
(fϑ )ϑ↓[t+1]

)
/(t + 1) > 0 is less than 1

2 . Therefore, if we consider the event E(s, T ),
we have

PH0(E(s, T )) =
T↘1∑

k=s

pk(1 ⇐ p)T↘1↘k

(
T ⇐ 1

k

)
⇒

1

2T↘1

T↘1∑

k=s

(
T ⇐ 1

k

)
(C.1)

since s ⇑
T↘1

2 .

On the underlying assumption for Equation (C.1). Our trend-checking framework was meant
to be designed for general sequences {at}

T

t=1 for which we do not know beforehand how they were
generated, since in the online learning setting, by definition, there should be no prior assumption on
how {Regret

t
/t}T

t=1 is generated, which very much depends on both how the loss sequences and
how the policies are generated (by the algorithms).

Our approach implicitly assumes that (at+1⇐at)T

t=1 is mutually independent. We used this assump-
tion since without knowing how {Regret

t
/t}T

t=1 were generated, one possible (statistical) assump-
tion to model arbitrarily changing sequences is that at each t, some new element is generated ran-
domly and independently, without being affected/biased by any previous elements in the sequence
(since we do not know a priori how to model it). Meanwhile, it is possible that the assumption might
not hold since it depends on how loss sequences are generated or how LLM behaves. However, it is
possible that Equation (C.1) still holds approximately. Specifically, we define

!t =
Regret

t

t
⇐

Regret
t+1

t + 1
,

and treat (!t)T

t=1 as random variables. We first compute the correlations among those random
variables in Figure C.2 using data from Section 3.2, where we can see that the correlations among
those random variables are indeed quite small. Meanwhile, this further implies that

E
[

T∑

t=1

1[!t > 0]

]
=

T∑

t=1

E [1[!t > 0]] ,

Var

(
T∑

t=1

1[!t > 0]

)
′

T∑

t=1

Var (1[!t > 0]) ,

i.e., the random variable
∑

T

t=1 1[!t > 0] indeed has the same first-order and second-order mo-
ment as in the case where those random variables {1[!t > 0]}t↓[T ] are independent. Therefore,
we regard a Binomial distribution (i.e., assuming {1[!t > 0]}t↓[T ] to be independent) to be an
approximation for the actual behaviors of

∑
T

t=1 1[!t > 0], which finally gives Equation (C.1). In
fact, when binary random variables have weak correlations (but are not necessarily independent),
using the Binomial distribution as an approximation for their summation is also used in the Systems
Engineering literature (Hoyland & Rausand, 2009).
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Figure C.2: The absolute value of Pearson correlation coefficient for the random variables {1[!t >
0]}t↓[T ] and {!t}t↓[T ] using data obtained in Section 3.2.

Dynamic regret GPT-4 GPT-3.5 Turbo FTRL FTPL

Full
information

Gradual variation
12.61 ± 7.01

(ptrend, φ̂0, preg) = (0.0, 0.58, 0.0)
19.09 ± 11.33

(ptrend, φ̂0, preg) = (0.0, 0.83, 0.0)
36.58 ± 24.51 35.19 ± 22.51

Abrupt variation
30.0 ± 19.91

(ptrend, φ̂0, preg) = (0.01, 0.87, 0.0)
33.65 ± 22.51

(ptrend, φ̂0, preg) = (0.08, 0.96, 0.0)
36.52 ± 27.68 36.24 ± 28.22

Bandit Gradual variation
21.39 ± 10.86

(ptrend, φ̂0, preg) = (0.0, 0.78, 0.0)
28.42 ± 21.6

(ptrend, φ̂0, preg) = (0.0, 0.83, 0.0)
37.64 ± 21.97 36.37 ± 20.7

Abrupt variation
35.94 ± 28.93

(ptrend, φ̂0, preg) = (0.42, 0.95, 0.0)
30.76 ± 25.48

(ptrend, φ̂0, preg) = (0.92, 1.01, 0.0)
36.52 ± 27.68 38.82 ± 26.17

Table 3: Dynamic regret of GPT-3.5 Turbo/GPT-4 in a non-stationary environment with either full-
information or bandit feedback. Every experiment is conducted with 25 rounds. No-regret behaviors
of GPT-3.5 Turbo/GPT-4 are validated by both of our frameworks (low p-values and φ̂0 < 1). The
only exception is GPT-3.5 Turbo on loss sequence with abrupt variations under bandit feedback. This
indicates that GPT-3.5 Turbo may not be capable of dealing with an abruptly changing environment
with limited feedback, although the average regret achieved eventually is still lower than that of
other baselines.

C.4 DEFERRED EXPERIMENTS FOR NON-STATIONARY ENVIRONMENTS IN SECTION 3.2

We experiment on the setting where the losses are still changing over time, but their total vari-
ations across time are bounded, more concretely, sublinear in T . Correspondingly, we consider
the stronger metric of dynamic regret here to measure the performance. Note that without con-
straining the variation of the loss vectors, dynamic regret can be linear w.r.t. T in the worst case.
Hence, we generate the loss vectors in two different ways: 1) Gradual variation. We firstly sam-
ple ϑ1 ∞ Unif([0, 10]d). Then for each t ⇑ 2, we uniformly and randomly generate ϑt+1 under
the constraint ≃ϑt+1 ⇐ ϑt≃↗ ⇒

1
⇑

t
, such that the variations over time are guaranteed to satisfy

∑
T↘1
t=1 ≃ϑt+1 ⇐ ϑt≃↗ = o(T ); 2) Abrupt variation. We randomly generate ϑ1 ∞ Unif([0, 10]d) and

m time indices {ti}i↓[m] from {1, 2, · · · , T}. At each time step ti for i ↑ [m], the sign of the loss
vector ϑti

is flipped, i.e., we let ϑti
∈ 10 · 111d ⇐ ϑti

. For the specific choice of T = 25 in our
experiments, we choose m = 3. For both cases, the average dynamic regret results are presented
in Table 3. GPT-4 achieves sublinear dynamic regret and outperforms FTRL/FTPL with Restart, a
standard variant of FTRL/FTPL for non-stationary online learning (see e.g., Besbes et al. (2014)).
We refer to Appendix B.4 for a detailed introduction of FTRL/FTPL with Restart.
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Figure C.3: Regret of pre-trained LLMs for online learning with bandit feedback in 4 different
settings. It performs comparably and sometimes even better than well-known no-regret learning
algorithms, variants of FTRL and FTPL with bandit-feedback.

C.5 DEFERRED EXPERIMENTS FOR BANDIT-FEEDBACK ENVIRONMENTS IN SECTION 3.2

Although pre-trained LLMs have achieved good performance in online learning with full-
information feedback, it is unclear whether they can still maintain no-regret with only bandit feed-
back. For such problems, we modify the prompt and protocol of interactions slightly, where we
still ask the LLM agent to provide a policy ωt at time step t, then sample one at ∞ ωt(·). In the
bandit setting, the LLM agent can only access (at, ϑtat

). Instead of directly feeding it to the agent,
we feed an estimate of the loss vector ϑ̂t ↑ Rd, where ϑ̂t(a) ∈

ϖt(a)
ωt(a) (at = a) for all j ↑ [d].

Note that such an operation of re-weighting the loss (when the loss is non-negative) by the inverse
of the probability is standard in online learning when adapting full-information-feedback no-regret
algorithms to the bandit-feedback ones (Auer et al., 2002). Later, we will also show the benefits of
such operations (c.f. Section 4). We compare the performance of pre-trained LLMs with that of the
counterparts of FTRL with bandit feedback, e.g., EXP3 (Auer et al., 2002) and the bandit-version of
FTPL (Abernethy et al., 2015), in both Figure C.3 and Table 3, where GPT-4 consistently achieves
lower regret.
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C.6 ADDITIONAL FIGURES FOR SECTION 3.3
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Figure C.4: Regret of GPT-4 and the FTRL algorithm in 6 randomly generated three-player general-
sum games. GPT-4 has comparable (even better) no-regret properties when compared with the FTRL
algorithm, according to the frameworks in Section 3.1 and the graphic trends..
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Figure C.5: Regret of GPT-4 and the FTRL algorithm in 6 randomly generated four-player general-
sum games. GPT-4 has comparable (even better) no-regret properties when compared with the FTRL
algorithm, according to the frameworks in Section 3.1 and the graphic trends.
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C.7 ADDITIONAL RESULTS FOR SECTION 3.4

For Example 2, we evaluate LLMs on both the c = 100 and c = 200 cases. The results and
comparisons are presented in Figure C.6 using a temperature of 0 to minimize the randomness
for such fixed problem instances, where we can confirm that GPT-4 with raw history identifies the
pattern and is able to achieve decreasing, negative regret during the first c = 100 or c = 200 rounds),
whereas FTRL, FTPL, and GPT-4 with only summarized history cannot detect the trend and then
make adaptive decisions. Meanwhile, after first c rounds, the LLM with raw history can identify
that the pattern for the loss vectors has changed to adjust its policy, and its regret grows more slowly
than the LLM with only summarized history.

Such observations further demonstrate the fundamental differences in the stochastic settings con-
sidered in Krishnamurthy et al. (2024) and our non-stochastic settings: the summarized history, an
essential factor for the successful configuration in Krishnamurthy et al. (2024), can be good statistics
in the i.i.d. setting (as a good estimate of the mean of the losses), while it loses information and can
be highly ineffective in the non-stochastic settings that are highly adversarial (Feder et al., 1992). In
contrast, with raw history, GPT-4 was able to better identify the pattern of the sequence and make
good predictions to achieve even negative regret values.
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Figure C.6: Comparing LLMs on Example 2 in Section 3.4 with raw history as the input and sum-
marized history as the input.

Explaining the better performance of LLMs on losses with trends via in-context learning.
LLMs’ in-context-learning capability of being able to infer the underlying trend in the above
case might offer one explanation for the observations above. Specifically, the task of predict-
ing ϑT+1 given past loss sequences ϑ1:T could be understood as an in-context learning problem
as follows: the demonstration/in-context dataset is given by the following input and label pairs
D = {xt, yt}t↓[T↘1], where xt = ϑ1:t and yt = ϑt+1 for each t ↑ [T ⇐ 1]. Then, LLMs given such
demonstration/context D will make prediction based on xT = ϑ1:T (to predict yT , i.e., the next loss
vector ϑT+1). In other words, in-context learning, in this case, is firstly learning the trend from the
T ⇐1 pairs of inputs and labels, and then making a prediction of the next loss. Hence, when there ex-
ists an underlying pattern, in-context-learning can accurately predict the next loss (when raw history
is given), and thus achieves good no-regret performance. This perspective may offer an explanation
of why LLMs can achieve better performance than FTRL/FTPL when the loss sequences have an
obvious trend. Note that, this may also be used to explain why raw-history-based input outperforms
the summarized-history-based input in the experiments above – the latter loses such a “context”
information, as the mean of the history losses is not sufficient to predict/infer the underlying trend
(even when there exists one). Finally, note that, this “trend prediction” explanation does not apply
to general loss sequences, for which our explanation in Section 4 that connects LLMs’ behaviors to
FTPL still applies.
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C.8 ABLATION STUDY ON THE PROMPT

Ablation study on online learning. To systematically understand the effects of our prompt on the
final performance of the LLM agent, we create three different variants of our prompt and report the
regret by using different prompts in Figure C.7. Specifically, for Ablation1, we remove examples
to illustrate the game rules. For Ablation2, we remove the number of iterations. For Ablation3,
we incorporate some hints for the LLM for decision-making, including the hints to suggest it to pay
attention to the loss history, to behave more greedily at the end of an episode, and also to explain
the reason of its decision step-by-step. The latter hint is a popular technique in prompt engineering
known as the Chain-of-Thought prompting (Wei et al., 2022b). Finally, we recall that d is the number
of actions in all prompts.
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Figure C.7: Ablation study on our prompt design.

Original prompt

You are solving a decision-making problem for 25 rounds.

There are $d$ number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components
should equal 1. After that, you will be shown the reward vector for
choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is
0.8 and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the
reward of each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward
vector [1, 2], then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous
rounds.

You’re required to provide your policy in numeric format.
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Your response’s last line should be formatted as
’Policy: [your $d$-dimensional policy]’.

Ablation1: no examples
You are solving a decision-making problem for 25 rounds.

There are $d$ number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components
should equal 1. After that, you will be shown the reward vector for
choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

Then your reward for this round will be calculated according to the
reward of each action and your probability of choosing
each action.

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous
rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your $d$-dimensional policy]’.

Ablation2: no round information
You are solving a decision-making problem.

There are $d$ number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components
should equal 1. After that, you will be shown the reward vector for
choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0
is 0.8 and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the
reward of each action and your probability of choosing each action.
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For example, if you choose the policy [0.2, 0.8] and get the reward
vector [1, 2], then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous
rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your $d$-dimensional policy]’.

Ablation3: adding hints
You are solving a decision-making problem for 25 rounds.

There are $d$ number of action (which is 0 to $d-1$).

At each round, you need to choose a policy,
it specifies your probability to choose each action.

This policy should be $d$-dimensional, and the sum of its components
should equal 1. After that, you will be shown the reward vector for
choosing each action.

Remember that this reward vector is decided by the external system
and can be potentially different for different rounds.

It is not decided by what policies you have chosen.
The reward vector is also $d$-dimensional.

It represents the reward of choosing action from 0 to $d-1$.

For example, a reward vector of [0.8, 3.2] means reward for action_0 is
0.8 and the reward for action_1 is 3.2.

Then your reward for this round will be calculated according to the
reward of each action and your probability of choosing each action.

For example, if you choose the policy [0.2, 0.8] and get the reward
vector [1, 2], then your expected reward is 0.2*1 + 0.8*2=1.8

Your goal is to maximize your accumulative expected reward.

You can adjust your policy based on the reward vectors for all previous
rounds.

You’re required to provide your policy in numeric format.

Your response’s last line should be formatted as
’Policy: [your $d$-dimensional policy]’.

Let’s think step by step. Explicitly examining history is important.

Please explain how you chose the policy by guessing
what reward you might receive for each action according to the history.

You should explore for first several rounds and behave greedily for
later rounds, for example, choosing one action with probability more
than 0.99.

Please also explain whether you are behaving more greedily and less
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Figure C.8: Regret of GPT-4 for repeated games under 3 different prompt ablations. Its performance
is consistent among three different prompts.
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Figure C.9: Comparisons of GPT-4 Turbo with GPT-4 and GPT-3.5 Turbo. Due to the symmetry of
agents in randomly generated games, we report the regret of one agent for ease of presentation. We
can see that GPT-4 Turbo performs on par with or better than GPT-4.

greedily by explicitly considering the policy you just used for
last round.

We can see in Figure C.7 that the performances of LLM agents are consistent under different variants
of the prompts.

Ablation study on repeated games. For the game setting, we also investigate whether explic-
itly informing LLM agents that they are ‘‘playing a repeated matrix game with
some other opponents’’ would affect the performance. Therefore, we evaluate three dif-
ferent prompts by informing LLM agents that they are playing a matrix game, solving
multi-arm bandit, or solving general decision-making problems, in the first line of the
prompt. We show the performance of such three prompts in Figure C.8, where it is seen that LLM
agents’ performance on repeated games is consistent among these variants of the prompts.

C.9 RESULTS FOR GPT-4 TURBO

When preparing our paper, we are aware of a more advanced version of GPT-4, GPT-4 Turbo.
Although GPT-4 has successfully exhibited no-regret behaviors in most problems, we also evaluate
and report the performance of its more advanced version here. Specifically, we compare GPT-4 and
GPT-4 Turbo for the repeated game scenario in Figure C.9, where we validate that GPT-4 Turbo
performs either comparably with or better than GPT-4.

C.10 LLM AGENTS’ EXPLANATION ON THEIR OUTPUT POLICIES

We here present two examples of LLMs’ explanations of their output policies, showing how they
reason in their decision-making.
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Output Example 1

Looking at the history of the reward vectors, it is clear to see that
the reward for choosing action 0 is consistently higher than that
for choosing action 1. This pattern is evident across all 5 rounds
of the game.

In the first round, the difference in rewards is 3.52, this remained
relatively stable with the difference in the last round being 3.52 as
well. It’s indicative that action 0 consistently brings a higher return
than action 1.

Therefore, I’ll lean more towards selecting action 0 in my policy.

However, acting deterministically, that is always choosing action 0,
would introduce the risk of becoming too predictable and letting the
opponent exploit this predictability

So, in order to maintain some unpredictability while still capitalizing
on the higher average return of action 0, I’ll set my policy
as follows: select action 0 with a probability of 0.8 and action 1
with a probability of 0.2.

This way, the majority of the time I’m choosing the action that gives
a higher reward, but I’m also occasionally choosing the
other action to
keep the opponent guessing, and avoid any predictable patterns that
can be exploited

So, my policy is as follows: Policy: [0.8, 0.2]

Output Example 2

The total reward from action_1 is 130.92 and the average reward is
around 10.07.

On the other hand, the total reward from action_0 is 33.418 and the
average reward is around 8.354.

Although action_0 has a less average reward, its highest reward is
26.977, which is considerably high and shows its potential.

For this round, I want to continue to explore action_0 but also
significantly exploit action 1 as it reliably gives higher reward.

So, I’d like to decrease the probability of selecting action_0 compared
to last time but still keep it in the policy as a possible option.

The policy for the previous round was not provided but assuming
it was more balanced, I’m now going to lean more towards action_1.

So, the policy will be: [0.3, 0.7]. Here, I’m behaving more greedily
compared to earlier rounds, as we are choosing the action which has
been giving us higher rewards with more probability.

As observed from the output, the LLM tends to use the history of the reward vectors by looking at
the “sum/average of the accumulated rewards”, and tends to introduce randomization in decision-
making, in order to be “less predictable and exploitable”. These are several key components in
achieving no-regret in online learning and games (Cesa-Bianchi & Lugosi, 2006), explaining the
empirical evidence we had in Section 3.
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C.11 CASE STUDIES ON REAL-WORLD APPLICATIONS

In this subsection, we evaluate the sequential decision-making abilities of LLMs in realistic scenar-
ios from the perspective of regret and dynamic regret. While several studies have explored sequential
decision-making using synthetic scenarios (Krishnamurthy et al., 2024; Wu et al., 2024b; Xia et al.,
2024; Akata et al., 2023) or real-world data scenarios (Liu et al., 2023b; Wang et al., 2023c; Wu
et al., 2024a), none have explicitly analyzed regret or dynamic regret. As a result, the theoretical
optimality of such a sequential decision-making process remains unclear.

Our first case study investigates single-agent sequential decision-making using real-world data,
leveraging the same dataset and experimental setup as (Liu et al., 2023b). The second case study
explores a two-player negotiation scenario, providing insights into dynamic interactions and their
impact on decision-making performance.

C.11.1 SEQUENTIAL RECOMMENDATION

We consider the task of sequential recommendation, a task that people have been employing LLMs
to solve with success (Liu et al., 2023b; Wang et al., 2023c; Wu et al., 2024a). Note that how
existing literature (Liu et al., 2023b) uses LLMs to solve this task fits exactly into our online learning
framework, where humans feed a history of items the user have interacted with to the LLM and then
ask the LLM to recommend the item (or several items) the user may want to interact next. The entire
process carries on repeatedly.

Formally, the problem is as follows. Given a sequence of history items the user has interacted with
(x1, x2, · · · , xt↘1), where each xi ↑ D for i ↑ [t ⇐ 1] and D is the collection of all items, the
LLM needs to recommend n items that the user might interact with in the next step t. Typically,
the LLM should also give a priority on the n items it recommends. For simplicity here, we here
assume they are of equal priority. In other words, at step t, the LLM will take an action at ↘ D
with |at| = n, hoping what the user will interact at step t belongs to at. Hence, the loss is given by
ϑt(at, xt) := 1[xt ∋↑ at]. Correspondingly, the regret by our definition is given by

Regret(x1:T ) =
T∑

t=1

ϑt(xt, at) ⇐ min
a

T∑

t=1

ϑt(xt, a).

We refer to (Liu et al., 2023b) for a more detailed introduction. Meanwhile, we use the real-world
data and follow the experimental setup of (Liu et al., 2023b).

In the left one of Figure C.10, we can observe that LLMs can achieve expressively low and sublinear
regret on such a real-world application with real-world data. As a comparison, in the right one of
Figure C.10, we replace the real-world data with synthetic data generated in a uniformly random way
(it is worth mentioning that the prompt setting still follows the setup of sequential recommendation
of Liu et al. (2023b)), where we can see that LLMs can still be no-regret. However, interestingly,
LLMs perform better on real-world data, which validates that real-world applications can exhibit
certain trends/structures, for which LLMs can exploit and achieve superior performance as we have
shown in our paper through synthetic problems with trends.

C.11.2 INTERACTIVE NEGOTIATION

The experiment was designed to simulate negotiation scenarios between two LLMs, designated as
LLM A and LLM B, across multiple turns. The primary objectives were to analyze multi-agent
sequential decision-making processes and quantify regret. For each repetition, an LLM generated
unique negotiation topics. Based on these topics, the LLM also created the context, objectives, and
relevant background information to design engaging and interactive negotiation scenarios.

Negotiation Process. The negotiation process was executed in a turn-based manner, with each
turn comprising three steps:

1. Intention Generation: Each LLM defined its goal for the turn, specifying what it aimed
to achieve with its response.
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Figure C.10: We evaluate GPT-4-Turbo and OpenAI o1 on both real-world data and uniformly
random synthetic data, where we can see both models can still achieve sublinear regret.

2. Response Generation: Based on the defined intention and the dialogue history, each LLM
generated a response.

3. Alternative Response Generation: Three distinct alternative replies were produced for
each original response. These alternatives represented diverse negotiation strategies or
perspectives while preserving the original intention.

Response Evaluation. After the dialogue concluded, all responses—both original and alterna-
tives—were evaluated using a scoring scale from 1 to 10 based on the following criteria for each
turn:

• Clarity: How clear and understandable the reply is.
• Relevance: How pertinent the reply is to the negotiation topic and the defined intention.
• Engagement: How engaging or persuasive the reply is in fostering further dialogue.
• Alignment with the Stated Intention: How well the conversation aligns with the turn’s

stated intention following the reply. For alternative replies, this was assessed by hypotheti-
cally replacing the original reply with an alternative and evaluating the alignment based on
the entire conversation.

Each response was scored using an LLM as the evaluator. Although human evaluation would be
preferable, the use of an LLM as a scorer was chosen for scalability. This approach is common in
the LLM domain and is sometimes referred to as G-eval (where “G” stands for GPT) (Liu et al.,
2023c).

Dynamic Regret Analysis. Finally, dynamic regret was calculated to measure suboptimality
by comparing the scores of the original replies against the highest-scoring alternative responses.
Since calculating regret typically requires hindsight knowledge of the best possible responses, which
requires rollout of every possible dialogues, we decide to analyze on dynamic regret. Dynamic
regret analysis provided a quantitative measure of decision-making effectiveness across turns. This
analysis offered insights into how regret dynamics can inform improved decision-making strategies
in real-world negotiation contexts.

Example. Here is an example from our simulation:

Step 1: Generate Topics and Backgrounds. Topics and backgrounds were generated using a
language model.

Topic: The Trade-Off Negotiation Between Eco-Tech Innovator and Traditional Manufacturing
Tycoon

Background of Player A: Eco-Tech Innovator (Jordan Green). Jordan Green is the CEO of a
rapidly growing startup, EcoWave Technologies, which specializes in developing sustainable
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energy solutions and eco-friendly manufacturing processes. With a background in environ-
mental science and engineering, Jordan is passionate about reducing carbon footprints and
promoting renewable energy sources. Their innovative products, such as biodegradable mate-
rials and energy-efficient machinery, have garnered attention and accolades within the green
tech community. However, despite the startup’s promise, EcoWave faces challenges in scaling
production and reaching wider markets due to limited financial resources and manufacturing
capabilities.

Background of Player B: Traditional Manufacturing Tycoon (Robert Steele). Robert Steele
is the owner of Steele Industries, a well-established manufacturing company known for its
mass production of consumer goods. With decades of experience in the industry, Robert has
built a reputation for efficiency and profitability, but his company has been criticized for its
environmental impact and reliance on outdated practices. Facing increasing pressure from
regulators and consumers to adopt sustainable practices, Robert is aware that failing to adapt
could threaten the future of his business. However, he is also concerned about the costs and
risks associated with transitioning to new technologies and processes, which could disrupt his
current operations.

Detailed Situation: Jordan and Robert have agreed to meet to discuss a potential partnership.
Robert is interested in integrating EcoWave’s sustainable technologies into his manufacturing
processes, which could help Steele Industries improve its environmental footprint and public
image. However, he is also hesitant about the costs associated with adopting these new tech-
nologies and is particularly concerned about how this might affect his established workforce
and production timelines. On the other hand, Jordan sees this as a golden opportunity to scale
EcoWave’s innovative solutions and gain access to Robert’s extensive distribution networks.
However, Jordan is wary of compromising on key values regarding environmental integrity
and sustainable practices, fearing that a partnership with a traditional manufacturer could di-
lute EcoWave’s mission. The negotiation aims to balance Robert’s need for cost-effectiveness
and operational continuity with Jordan’s commitment to sustainability and innovation. Both
players must navigate their differing priorities, explore potential compromises, and consider
the long-term implications of their decisions on their businesses and the environment.

Step 2: Generate Conversation. We iterated between Step 2-1 and Step 2-2 to create a conversa-
tion with a length of 20 turns. In this setup, each LLM (A and B) contributed 10 responses based on
the evolving conversation history.

Step 2-1: Intention Generation and Reply Generation. We provided the initial turn’s intention
for LLM A:

Intention: In my next response, I aim to outline potential trade-offs that both I and Robert
might consider in order to reach a mutually beneficial agreement. I will also suggest ways we
can ensure that the partnership aligns with their core values of sustainability and operational
efficiency. This will help set the stage for a constructive dialogue that addresses our respective
concerns and priorities.

Reply of Player A based on the intention: Thank you for meeting with me, Robert. I believe we
have a unique opportunity to collaborate that could benefit both EcoWave and Steele Industries.
I understand your concerns about the costs and risks of integrating new technologies, but I think
we can explore some trade-offs. For instance, if we can demonstrate the long-term cost savings
and efficiency gains from adopting sustainable practices, it might help alleviate some of your
concerns. Additionally, I’m open to discussing a phased implementation approach that allows
for gradual integration without disrupting your current operations. How do you feel about that,
and what trade-offs might you be willing to consider to make this partnership work?

Step 2-2: Alternative Generation. The LLM also generated three alternative responses based on
the aforementioned intention.

Alternative 1: I appreciate your concerns, Robert, and it’s great to see your commitment to
a smooth transition. Instead of jumping straight into a pilot project, how about we organize a
joint workshop with your key team members? This would allow us to collaboratively explore
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areas where EcoWave’s technologies can fit into your existing operations. We can analyze
potential impacts, address any workforce concerns, and identify specific processes that could
benefit from our innovations. This way, we ensure that everyone is on board and feels included
in the transition. What are your thoughts on setting up a workshop to discuss this further?

Alternative 2: I appreciate your concerns, Robert, and I think it’s important for us to find
a starting point that feels comfortable for you. Instead of a full-scale integration right away,
how about we explore a collaborative approach where we can jointly assess some specific
production lines that may benefit from our technologies? We could conduct a thorough analysis
of these areas together, identifying potential efficiency improvements and cost benefits through
a detailed study. This way, we can base our decisions on solid data while ensuring that your
existing operations remain stable. Additionally, I’d be more than willing to work closely with
your team to address any training needs that may arise. Would this kind of collaborative
assessment resonate with you?

Alternative 3: I appreciate your insights, Robert, and I recognize the importance of ensuring
a smooth transition. Instead of jumping straight into a pilot project, how about we start by
conducting a joint assessment of your current operations? This would allow us to pinpoint
specific areas where EcoWave’s technologies could fit seamlessly. By collaborating on this
assessment, we can address your concerns and tailor our solutions to your unique processes.
Additionally, I’d be happy to share case studies from other manufacturers who have success-
fully integrated our technologies, demonstrating the benefits they achieved without significant
disruptions. What do you think about this collaborative approach?

Figure C.11: We evaluate GPT-
4-Turbo and OpenAI o1 on two-
player Negotiation, where we can
see both model can achieve no-
regret in the regression framework.

Step 3: Evaluation. Each reply and its alternatives were eval-
uated using G-eval.

Experiment Setting. We set the maximum number of turns
to 10 and evaluated two language models: GPT-4-Turbo and
OpenAI’s o1 model. For each model, we tested performance
across 10 different scenarios.

Results. Interestingly, both models demonstrated no-
dynamic-regret behavior within the regression framework.
Both models also exhibited low p-values, with GPT-4-Turbo
achieving 0.09 and OpenAI o1 achieving 0.02. The detailed
results are shown in Figure C.11.

D DEFERRED RESULTS AND PROOFS IN SECTION 4

D.1 PRE-TRAINED LLMS HAVE SIMILAR REGRET AS HUMANS (WHO GENERATE DATA)

We first provide a direct observation based on some existing speculation on the capability of
Transformer-based LLMs. Recently, a growing literature has evidenced that the intelligence level of
LLM agents are determined by, and in fact mimic, those of human beings who generate the data for
pre-training the models (Park et al., 2022; Argyle et al., 2023; Horton, 2023). The key rationale was
that, LLMs (with Transformer parameterization) can approximate the pre-training data distribution
very well (Xie et al., 2022; Zhang et al., 2023b; Lee et al., 2023). In such a context, one can expect
that LLM agents can achieve similar regret as human decision-makers who generate the pre-training
data, as we formally state below.
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Observation 1. An LLM agent is said to be pre-trained with an ε-decision error if, for any arbitrary
t and loss sequences (ϑi)i↓[t], the following condition holds:

sup
ω↓!

Pdata(ω | (ϑi)i↓[t]) ⇐ PLLM(ω | (ϑi)i↓[t])
 ⇒ ε,

where Pdata and PLLM are the pre-training data distribution and the decision policy distribution of
the pre-trained LLM, respectively. Then, the regret of an LLM agent with ε-decision error is bounded
as:

(D-)RegretLLM
(
(ϑt)t↓[T ]

)
↑


(D-)Regretdata

(
(ϑt)t↓[T ]

)
± ε≃ϑt≃ sup

ω↓!
≃ω≃


,

where [a ± b] := [a ⇐ b, a + b].

Observation 1 shows that the pre-trained LLM-agent’s regret can be controlled by that of the pre-
training dataset and the decision error ε. A small ε can be achieved if LLM is constructed by a rich
function class, e.g., the Transformer architecture (Zhang et al., 2023b; Lin et al., 2024).

Proof of Observation 1. For given (ϑt)t↓[T ],
T∑

t=1



ωt↓!
PLLM(ωt | (ϑi)i↓[t↘1])↓ϑt, ωt↔dωt ⇒

T∑

t=1



ωt↓!

(
Pdata(ωt | (ϑi)i↓[t↘1]) + ε

)
↓ϑt, ωt↔dωt

holds, where we use the convention of PLLM(ωt | (ϑ0)) := PLLM(ωt) and Pdata(ωt | (ϑ0)) :=
Pdata(ωt). Hence,

RegretLLM((ϑt)t↓[T ]) =
T∑

t=1



ωt↓!
PLLM(ωt | (ϑi)i↓[t↘1])↓ϑt, ωt↔dωt ⇐ inf

ω↓!

T∑

t=1

↓ϑt, ω↔

⇒

T∑

t=1



ωt↓!

(
Pdata(ωt | (ϑi)i↓[t↘1]) + ε

)
↓ϑt, ωt↔dωt ⇐ inf

ω↓!

T∑

t=1

↓ϑt, ω↔

=
T∑

t=1



ωt↓!

(
Pdata(ωt | (ϑi)i↓[t↘1])

)
↓ϑt, ωt↔dωt ⇐ inf

ω↓!

T∑

t=1

↓ϑt, ω↔ +
T∑

t=1



ωt↓!
↓ϑt, εωt↔dωt

⇒ Regretdata((ϑt)t↓[T ]) + ε≃ϑ≃p≃ω≃qT

where 1
p
+ 1

q
= 1 and p, q ⇑ 1. Similarly, we can establish the lower bound for RegretLLM((ϑt)t↓[T ]).

To prove the result for the dynamic-regret case, we can simply change the term infω↓!
∑

T

t=1↓ϑt, ω↔

in the above derivation to
∑

T

t=1 infω↓!↓ϑt, ω↔.

D.2 BACKGROUND AND MOTIVATIONS FOR (GENERALIZED) QUANTAL RESPONSE

Formally, the quantal response is defined as follows:
Definition D.1 (Quantal response). Given a loss vector ϑ ↑ Rd, a noise distribution ε ∞ Pnoise, and
↼ > 0, the quantal response is defined as

P ϱ

quantal

(
a
 ϑ
)

= P
(

a ↑ arg min
a↑↓A

z(a⇐)

)
, where z = ϑ + ↼ε.

In essence, this implies that humans are rational but with respect to (w.r.t.) the latent variable
z, a perturbed version of ϑ, instead of ϑ per se. This addition of noise to the actual loss vector
characterizes the bounded rationality of humans in decision-making.

Further motivations for generalized quantal response. Note that a dynamic version of quantal
response in Definition 4.1 also has implications from behavior economics, and has been recently
used to model human behaviors in sequential decision-making (Ding et al., 2022) (in stochastic
and stationary environments). Indeed, such a response against multiple loss vectors is believed
to be natural, and has also been widely adopted in well-known no-regret learning algorithms of
smooth/stochastic fictitious play (Fudenberg & Kreps, 1993) and follow-the-perturbed-leader (Kalai
& Vempala, 2005), whose formal definitions can be found in Appendix B.4. Finally, note that the
response model in Definition 4.1 does not necessarily involve a sequential decision-making process,
i.e., the set of losses may not come from the history of an online learning process.
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D.3 THE EXAMPLE INSTANTIATING ASSUMPTION 1

Example 1 (An example instantiating Assumption 1). We consider a common decision-making task
that may generate the training data, recommender systems. An instance of the text data could be:
“On September 29, 2023, user X clicked movie A three times, movie B eight times, and movie C
five times”. This sentence corresponds to xNi↓1+1:Ni

for some i ↑ [t] and serves as a natural
language depiction of the numerical ϑi. The corresponding label xNt+1:Nt+1 can be obtained by
some user survey: “User X’s favorite movie is movie B”. Meanwhile, z represents user X’s latent,
genuine preference for each movie – information that is private to the user, and cannot be observed
or collected in the pre-training dataset. In this example, Assumption 1 suggests that x1:Nt

, which
records the frequency of interactions with each movie, serves as an imperfect estimate of the user’s
latent, genuine preference for the movies, while the text xNt+1:Nt+1 depicts the user’s favorite movie
only based on her latent z.

D.4 ALIGNMENT OF ASSUMPTION 1 WITH QUANTAL RESPONSE

Before presenting the technical lemma, based on Assumption 1, we denote the (potentially unkown)
mappings that decode semantic information in Assumption 1 into numeric values as f , g, such that
f(xNi↓1+1:Ni

) = ϑi ↑ Rd for each i ↑ [t] and g(xNt+1:Nt+1) = a ↑ A.
Lemma 1. Fix t ↑ [T ], ϖ > 0. If we model the noise of data collection to be i.i.d. Gaussian
distribution in the numeric value space, i.e.,

P
(

f(xNi↓1+1:Ni
)


i↓[t]

 z
)

=
t

i=1

P
(
f(xNi↓1+1:Ni

)
 z

)
△

t

i=1

exp

(
⇐

≃f(xNi↓1+1:Ni
) ⇐ z≃

2
2

2ϖ2

)
,

the prior distribution of the latent variable z is also Gaussian, i.e., z ∞ N (000d, ϖ2I), and the text
labels satisfy that P(g(xNt+1:Nt+1) | z) =

(
g(xNt+1:Nt+1) ↑ arg min

a↓A za

)
, then we have

P
(
g(xNt+1:Nt+1)

x1:Nt

)
= Pς

⇑
t+1

quantal

(
g(xNt+1:Nt+1)

 f(xNi↓1+1:Ni
)


i↓[t]

)
,

with Pnoise = N (000d, I) in Definition 4.1, i.e., the action a = g(xNt+1:Nt+1) extracted from the text
xNt+1:Nt+1 is a quantal response w.r.t. the loss vectors

(
f(xNi↓1+1:Ni

)
)
i↓[t]

.

Proof. Note that

P(z | x1:Nt
) =



ϖ1:t

P(z, ϑ1:t | x1:Nt
)dϑ1:t =



ϖ1:t

P(ϑ1:t | x1:Nt
)P(z | x1:Nt

, ϑ1:t)dϑ1:t.

For P(ϑ1:t | x1:Nt
), since we have assumed the existence of function f to decode ϑ1:t from x1:Nt

, it
holds that

P(ϑ1:t | x1:Nt
) =

t

i=1

↽
(
ϑi ⇐ f(xNi↓1+1:Ni

)
)
,

where we use ↽ to denote the d-dimensional Dirac-delta function. For P(z | x1:Nt
, ϑ1:t), by Assump-

tion 1, it holds that

P(z, x1:Nt
, ϑ1:t) = P(z, ϑ1:t)P(x1:Nt

| ϑ1:t),

which leads to P(x1:Nt
| ϑ1:t) = P(x1:Nt

| ϑ1:t, z) by Bayes rule. This implies that the random
variable x1:Nt

and z are independent conditioned on ϑ1:t. Therefore, it holds that P(z | x1:Nt
, ϑ1:t) =

P(z | ϑ1:t). Finally, we can compute

P(z | x1:Nt
) =



ϖ1:t

P(z, ϑ1:t | x1:Nt
)dϑ1:t =



ϖ1:t

t

i=1

↽(ϑi ⇐ f(xNi↓1+1:Ni
))P(z | ϑ1:t)dϑ1:t

= P
(
z |

(
ϑi = f(xNi↓1+1:Ni

)
)
i↓[t]

)
.
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Based on this, we conclude that

P(g(xNt+1:Nt+1) | x1:Nt
) =



z

P(g(xNt+1:Nt+1) | z, x1:Nt
)P(z | x1:Nt

)dz

=



z

P(g(xNt+1:Nt+1) | z)P(z | {ϑi = f(xNi↓1+1:Ni
)}i↓[t])dz

= P
(
g(xNt+1:Nt+1) |

(
ϑi = f(xNi↓1+1:Ni

)
)
i↓[t]

)

where the first equality is by the independence between xNt+1:Nt+1 and x1:Nt
conditioned on z,

due to Assumption 1. Therefore, it suffices to consider the probability of P(a | ϑ1:t) only, in order
to analyze P(g(xNt+1:Nt+1) | x1:Nt

), where we recall the definition that a = g(xNt+1:Nt+1). Since
z ∞ N (000d, ϖ2I), and ϑi | z ∞ N (z, ϖ2I), we have

z | ϑ1:t ∞ N



 1

t + 1

∑

i↓[t]

ϑi,
ϖ2

t + 1
I



 , (D.1)

by the posterior distribution of Gaussian distribution. Now we conclude that

P(a | ϑ1:t) =



z

P(a | z, ϑ1:t)P(z | ϑ1:t)dz =



z

P(a | z)P(z | ϑ1:t)dz

=



z

(a ↑ arg min
a↑↓A

za↑)P(z | ϑ1:t)dz =



z



a ↑ arg min
a↑↓A



 ϖ
▽

t + 1
ε +

1

t + 1

∑

i↓[t]

ϑi





a↑



P(ε)dε

=



z



a ↑ arg min
a↑↓A



ϖ
▽

t + 1ε +
∑

i↓[t]

ϑi





a↑



P(ε)dε = P



a ↑ arg min
a↑↓A



ϖ
▽

t + 1ε +
∑

i↓[t]

ϑi





a↑





= Pς
⇑

t+1
quantal

(a | ϑ1:t),

where P(ε) = N (000d, I). This completes the proof.

D.5 RELATIONSHIP BETWEEN FTPL AND DEFINITION 4.1

Fact 1. Performing generalized quantal response of Definition 4.1 at every iteration t ↑ [T ] w.r.t.
history loss vectors ϑ1:t↘1 is essentially executing an FTPL algorithm.

Proof. Before we move to the proof, we will define the random variable which has distribution Pnoise
as Znoise. Note that at round t ⇑ 2 (as the policy at round t = 1 is fixed), we have

P ϱt↓1

quantal(a | ϑ1:t↘1) := P
(

a ↑ arg min
a↑↓A

(
t↘1∑

i=1

ϑi + ↼t↘1ε

)
(a⇐)

)
(D.2)

which is exactly the case when εt in Equation (B.2) satisfies εt

d
= ↼t↘1ε.

D.6 FORMAL STATEMENT AND PROOF OF THEOREM 4.1

Theorem D.1. (Emergence of no-regret behavior). Under the assumptions
of Lemma 1, suppose the function class of LLMε is expressive enough such
that for all t ↑ [T ], maxε↓” Ex1:Nt+1⇓P

text

t

∑Nt+1

j=1 log LLMε (xj | x1:j↘1) =

max{qj↓{Vj↓1≃#(V)}}
j→[Nt+1]

Ex1:Nt+1⇓P
text

t

∑Nt+1

j=1 log qj (xj | x1:j↘1), where we define
q1(x1 | x1:0) := q1(x1), and ϱφ maximizes Equation (4.1). Then, there exist (simple) algo-
rithms using LLMεε to achieve no (dynamic) regret for (non-stationary) online learning with
full-information/bandit feedback. To be specific, for (2) and (4), by defining the variation bound∑

T↘1
t=1 ≃ϑt+1 ⇐ ϑt≃↗ ⇒ VT such that VT ⇒ T and VT = $(T ↼) for some ⇀ ↑ (0, 1), it holds that

for large enough T , d:
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(1) For online learning with full-information feedback, RegretLLMϑε

(
(ϑt)t↓[T ]

)
⇒ O

(▽
T log d

)
;

(2) For non-stationary online learning with full-information feedback, D-RegretLLMϑε

(
(ϑt)t↓[T ]

)
⇒

O
(
(log d VT )1/3T 2/3

)
;

(3) For online learning with bandit feedback, E

RegretLLMϑε

(
(ϑt)t↓[T ]

)
⇒

O
(
(log d)1/2dT 1/2+1/ log T log T

)
;

(4) For non-stationary online learning with bandit feedback, E

D-RegretLLMϑε

(
(ϑt)t↓[T ]

)
⇒

O
(
(T 2d2VT )1/3(log d)1/2T 1/ log T log T

)
.

Proof. Note that

max
{qj↓{Vj↓1≃#(V)}}

j→[Nt+1]

Ex1:Nt+1⇓P
text

t

Nt+1∑

j=1

log qj (xj | x1:j↘1)

= max
q↓#(VNt+1 )

Ex1:Nt+1⇓P
text

t
log q(x1:Nt+1)

= max
q↓#(VNt+1 )

⇐KL(P text

t
| | q) + Ex1:Nt+1⇓P

text

t
[P text

t
(x1:Nt+1)],

where KL(q | | p) denotes the Kullback–Leibler divergence between two distributions p, q. Now we
define LLMε(x1:Nt+1) =


Nt+1

t=1 LLMε(xj | x1:j↘1). It is easy to verify that LLMε(x1:Nt+1) ↑

!(VNt+1), i.e., it also defines a valid joint distribution over tokens. Therefore, we have

max
ε↓”

Ex1:Nt+1⇓P
text

t

Nt+1∑

j=1

log LLMε (xj | x1:j↘1) = max
ε↓”

Ex1:Nt+1⇓P
text

t
log LLMε(x1:Nt+1).

Now, due to our assumption that

max
ε↓”

Ex1:Nt+1⇓P
text

t

Nt+1∑

j=1

log LLMε (xj | x1:j↘1)

= max
{qj↓{Vj↓1≃#(V)}}

j→[Nt+1]

Ex1:Nt+1⇓P
text

t

Nt+1∑

j=1

log qj (xj | x1:j↘1) ,

we conclude that
min
ε↓”

KL(P text

t
| | LLMε) = min

q↓#(VNt+1 )
KL(P text

t
| | q) = 0,

which implies that LLMεε = P text

t
. Correspondingly, if we define LLMεε(xNt+1:Nt+1 | x1:Nt

) to
be the distribution induced by the joint distribution LLMεε(x1:Nt+1), it holds that

LLMεε(xNt+1:Nt+1 | x1:Nt
) = P(xNt+1:Nt+1 | x1:Nt

).

In other words, intuitively, LLMεε has learned the corresponding pre-training distribution per-
fectly. Note that this has been a common assumption in the Bayesian perspective of ICL
(Xie et al., 2022; Lee et al., 2023; Zhang et al., 2023b). Therefore, to analyze the ac-
tions taken by LLMεε , it suffices to consider P(g(xNt+1:Nt+1) | x1:Nt

), which is equal to
Pς

⇑
t+1

quantal

(
g(xNt+1:Nt+1)

 f(xNi↓1+1:Ni
)


i↓[t]

)
by Lemma 1. Therefore, we proved that LLMεε

is essentially mimicking the well-known no-regret algorithm, FTPL with perturbation distribution
as N (000d, ϖ2tI) for round t ↑ [T ], according to Equation (D.2) of Fact 1, for which we can establish
the corresponding regret guarantee for each case:

(1) Combining the above result with Lemma 2, we can derive the regret bound for online learning
with full-information feedback.

(2) Combining the above result with Lemma 2 and Lemma 4, we get that

D-RegretLLMϑε
((ϑi)i↓[T ]) ⇒ min

#T↓[T ]

2T

!T

C


!T log d + 2!T VT ,
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for some constant C. We firstly consider the following problem

min
u>0

2T

u
C


u log d + 2uVT ,

where the optimal solution is uφ =
(

C
2
T

2 log d

4V
2
T

)1/3
. Therefore, if we have uφ

↑ [1, T ], we can
choose !T = ̸uφ

7, which results in a regret bound of

D-RegretLLMϑε
((ϑi)i↓[T ]) ⇒

2T
▽

uφ
C


log d + 4uφVT = O

(
(log d VT )1/3T 2/3

)
.

Now we check the conditions for uφ
↑ [1, T ]. It is direct to see that since VT ⇒ T , uφ

⇑ 1 holds as

long as d is sufficiently large. To ensure uφ
⇒ T , we get the condition VT ⇑ C


log d

4T
, which holds

as long as T is large enough.

(3) Combining the above result with Lemma 3, we can prove a regret guarantee for online learning
with bandit feedback.

(4) Combining this result with Lemma 3 and Lemma 4, it holds that

E[D-RegretLLMϑε
((ϑi)i↓[T ])] ⇒ min

#T↓[T ]

2T

!T

C(log d)
1
2 d!

1
2+ 1

log T

T
log !T + 2!T VT ,

for some constant C. By adopting a similar analysis as that of (2), we choose uφ =
(

C
↑
T

2
d
2

V
2
T

)1/3

for some constant C ⇐. If uφ
↑ [1, T ], we choose !T = ̸uφ

7 and derive the following regret:

E[D-RegretLLMϑε
((ϑi)i↓[T ])] ⇒ O

(
(T 2d2VT )1/3(log d)1/2T 1/ log T log T

)
.

Now we check the condition of uφ
↑ [1, T ]. Note that since VT ⇒ T , uφ

⇑ 1 holds as long as d is

sufficiently large. For uφ
⇒ T , we have VT ⇑


C↑d2

T
, which holds as long as T is large enough.

Now, we present Lemma 2 - Lemma 4. Before proceeding, we assume ≃ϑt≃↗ ⇒ B = 1 for
simplicity of presentations hereafter. The results and proof are not affected by the constant bound
B.
Lemma 2 (Regret guarantee of FTPL with full-information feedback). Suppose the noise distri-
bution of FTPL satisfies that εt ∞ N (000d, ⇁2

t
I) in Equation (B.2) and ⇁t = ϖ

▽
t, then for online

learning with full-information feedback,

RegretFTPL((ϑi)i↓[T ]) ⇒ 4

(
ϖ +

1

ϖ

)
T log d = O(


T log d).

Proof. By Theorem 8 of Abernethy et al. (2014), we have

RegretFTPL((ϑi)i↓[T ]) ⇒


2 log d

(
↼T +

T∑

t=1

1

↼t

≃ϑt≃
2
↗

)
.

Therefore, plugging ⇁t = ϖ
▽

t and ≃ϑt≃
2
↗

⇒ 1 provides

RegretFTPL((ϑi)i↓[T ]) ⇒


2 log d

(
ϖ
▽

T +
T∑

t=1

1

ϖ
▽

t

)
⇒ 4

(
ϖ +

1

ϖ

)
T log d,

completing the proof.

Lemma 3 (Regret guarantee of FTPL with bandit feedback). Suppose the noise distribution of FTPL
satisfies that εt ∞ N (000d, ⇁2

t
I) in Equation (B.2) and ⇁t = ϖ

▽
t, then for online learning with bandit

feedback,

E[RegretFTPL((ϑi)i↓[T ])] ⇒ O((log d)
1
2 dT

1
2+ 1

log T log T ).
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Proof. The proof of the bandit problem is more complex. We first define the following notation. We
denote Gt =

∑
t

t↑=1 ⇐ϑt↑ , Ĝt =
∑

t

t↑=1 ⇐ϑ̂t↑ , %(G) = maxω↓ω, G↔, %t(G) = E↽⇓N (000d,I)%(G +
⇁tε), and D$t

to be the Bregman divergence with respect to %t, where we recall the construction of
the empirical estimator ϑ̂t↑ of ϑt↑ in Section 3.2. By Li & Tewari (2017), ωt = ↙%t(Ĝt). Now due
to the convexity of %,

%(GT ) = %(E[ĜT ]) ⇒ E[%(ĜT )].

Therefore,

E[RegretFTPL((ϑi)i↓[T ])] = %(GT ) ⇐ E
[

T∑

t=1

↓ωt, ⇐ϑ̂t↔

]
⇒ E

[
%(ĜT ) ⇐

T∑

t=1

↓ωt, ⇐ϑ̂t↔

]
.

By recalling the definition of the Bregman divergence, we have

⇐

T∑

t=1

↓ωt, ⇐ϑ̂t↔ = ⇐

T∑

t=1

↓↙%t(Ĝt), ⇐ϑ̂t↔ = ⇐

T∑

t=1

↓↙%t(Ĝt), Ĝt ⇐ Ĝt↘1↔

=
T∑

t=1

D$t
(Ĝt, Ĝt↘1) + %t(Ĝt↘1) ⇐ %t(Ĝt).

Therefore,

E

RegretFTPL((ϑi)i↓[T ])



⇒ E
[

T∑

t=1

D$t
(Ĝt, Ĝt↘1)

]

  
(i)

+E
[

T∑

t=1

%t(Ĝt↘1) ⇐ %t↘1(Ĝt↘1)

]

  
(ii)

+E
[
%(ĜT ) ⇐ %T (ĜT )

]

  
(iii)

.

(iii) ⇒ 0 due to the convexity of %. For (ii), we use Lemma 10 of Abernethy et al. (2014) to obtain

E
[

T∑

t=1

%t(Ĝt↘1) ⇐ %t↘1(Ĝt↘1)

]
⇒ ⇁TE↽[%(ε)] ⇒ O(


2T log d).

For (i), by Theorem 8 of Li & Tewari (2017), for any α ↑ (0, 1), the following holds:

E
[

T∑

t=1

D$t
(Ĝt, Ĝt↘1)

]
⇒

T∑

t=1

⇁⇀↘1
t

4d

α(1 ⇐ α)

⇒
4d

α(1 ⇐ α)
O(T

1+ϖ

2 ).

By tuning α = 2
log T

, we proved that E[RegretFTPL((ϑi)i↓[T ])] ⇒ O((log d)
1
2 dT

1
2+ 1

log T log T ).

Lemma 4. Denote the variation of loss vectors as LT =
∑

T↘1
t=1 ≃ϑt+1 ⇐ ϑt≃↗. Suppose there

exists an algorithm A for online learning with full-information feedback with regret guarantee that
RegretA ((ϑi)i↓[T ]) ⇒ f(T, d) for some function f , where T denotes the horizon and d denotes the
policy dimension. Then, there exists another algorithm A ⇐ that can achieve

D-RegretA ↑((ϑi)i↓[T ]) ⇒ min
#T↓[T ]

(
T

!T

+ 1

)
f(!T , d) + 2!T LT .

Similarly, suppose there exists an algorithm B for online learning with bandit feedback with regret
guarantee that E


RegretB((ϑi)i↓[T ])


⇒ g(T, d) for some function g; then there exists another

algorithm B⇐ that can achieve

E[D-RegretB↑((ϑi)i↓[T ])] ⇒ min
#T↓[T ]

(
T

!T

+ 1

)
g(!T , d) + 2!T LT .

49



Published as a conference paper at ICLR 2025

Proof. We denote A ⇐ as the algorithm that restarts A every !T iterations. We break the time index
[T ] into m batches T1:m of size !T (except for, possibly the last batch). Denote ϑφ

i
:= minj↓[d] ϑij .

By Equation (6) of Besbes et al. (2014), it holds that for each k ↑ [m]

min
j↓[d]

(
∑

t↓Tk

ϑt

)

j

⇐

∑

t↓Tk

ϑφ

t
⇒ 2!T Lk,

where we define Lk =
∑

t↓Tk
≃ϑt+1 ⇐ ϑt≃↗. Therefore, we have

D-RegretA ↑((ϑi)i↓[T ]) ⇒ min
j↓[d]




∑

t↓[T ]

ϑt





j

⇐

∑

t↓[T ]

ϑφ

t
+

∑

k↓[m]

RegretA ((ϑi)i↓[Tk]) (D.3)

⇒ 2!T (
∑

k↓[m]

Lk) + (T/!T + 1)g(!T , d).

By Equation (4) of Besbes et al. (2014) that
∑

k↓[m] Lk ⇒ LT and this inequality holds for any

!T ↑ [T ], we proved D-RegretA ↑((ϑi)i↓[T ]) ⇒ min#T↓[T ]

(
T

#T

+ 1
)

f(!T , d) + 2!T LT .

Similarly, if we take the expectation for Equation (D.3), it holds that

E[D-RegretB↑((ϑi)i↓[T ])] ⇒ min
j↓[d]




∑

t↓[T ]

ϑt





j

⇐

∑

t↓[T ]

ϑφ

t
+

∑

k↓[m]

E[RegretB((ϑi)i↓[Tk])]

⇒ min
#T↓[T ]

(
T

!T

+ 1

)
g(!T , d) + 2!T LT ,

thus completing the proof.

Combining the results above completes the proof for Theorem 4.1.

D.6.1 IMPLICATIONS OF THEOREM 4.1 FOR REPEATED GAMES

Remark D.1 (Implication for playing repeated games). First, we note that the no-regret guarantee
in the online setting is stronger than and thus implies that in the game setting, since regret by
definition handles arbitrary/adversarial environments, while in playing games the opponents are not
necessarily as adversarial. Second, it is folklore that if all players in the repeated game follow no-
regret learning algorithms, then the time-average policies of all players during learning constitute
an approximate coarse correlated equilibrium of the game (Cesa-Bianchi & Lugosi, 2006). Hence,
the results (1) and (2) in Theorem 4.1 imply that a coarse correlated equilibrium will emerge in the
long run from the interactions of the LLM agents (under certain assumptions as in the theorem).

D.7 EXTENDING THEOREM 4.1 WITH RELAXED ASSUMPTIONS

D.7.1 RELAXATION UNDER MORE GENERAL DATA DISTRIBUTIONS

We first remark on the possibility of relaxing the Gaussian assumptions on the data distributions.
Remark D.2 (Relaxing the Gaussian distribution assumption). In the proof of Lemma 1, to obtain
the result that the action is a quantal response w.r.t. ϑ1:T , one does not necessarily require both the
prior distribution of z and the conditional distribution of ϑi given z to be Gaussian. Instead, for any
joint distribution P(z, ϑ1:T ), as long as its posterior distribution satisfies Equation (D.1), it would
suffice. It is a combined effect of both the prior and the conditional distributions.

More formally, we can extend Theorem 4.1 to the case with a much more general prior task distribu-
tion than the Gaussian one, where the key is that Equation (D.1) only needs to hold approximately.
Theorem D.2. In Theorem 4.1, we can relax the assumption on P(z) to one where we only require
P(z) to be i.i.d for each coordinate of z and 0 < P(zj) < ↖, |↙P(zj)| < ↖ for any j ↑ [d], zj ↑ R,
and the bounds for (1) and (2) of Theorem 4.1 still hold, with only a degradation of O(d2 log T ).
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The key idea of the proof is that when t is large enough, the prior distribution does not affect the
posterior distribution, which is also referred to as the Bernstein–von Mises theorem (Van der Vaart,
2000).

Proof. Since we extend Theorem 4.1 to settings with general task prior distribution only requiring
the coordinates to be i.i.d, from now on, we consider the j-th coordinate only. To begin with, fix
t ↑ [T ], we define the log-likelihood of the posterior as

Lt(zj) := log
t

i=1

1

ϖd(2ω)d/2
e↘

1
2ϱ2 (ϖij↘zj)

2

= ⇐t log ϖ ⇐
t

2
log 2ω ⇐

t∑

i=1

1

2ϖ2
(ϑij ⇐ zj)

2.

Then, the MLE estimator ẑj,t is defined as

ẑj,t := arg max
zj↓R

Lt(zj) =
1

t

t∑

i=1

ϑij .

We also define Ĵt : R ⇓ R as:

Ĵt(zj) := ⇐
↙

2Lt(zj)

t
=

1

ϖ2
.

For Assumption 1 of Kasprzak et al. (2022) to hold, any ↽ > 0, M2 > 0 suffices.

For Assumption 2 of Kasprzak et al. (2022) to hold, we can choose M̂1 = maxzj↓[↘⇁,1+⇁]
1

P(zj)

For Assumption 7 of Kasprzak et al. (2022) to hold, we choose ↽ to be ϖ.

For Assumption 8 of Kasprzak et al. (2022) to hold, one can choose M2 = ς

2 .

For Assumption 9 of Kasprzak et al. (2022) to hold, we have

κ ⇒ ⇐ sup
(zj↘ẑj)2⇒⇁

Lt(zj) ⇐ Lt(ẑj,t)

t
= ⇐

1

2ϖ2t
sup

(zj↘ẑj,t)2⇒⇁

t∑

i=1

(ϑij ⇐ ẑj,t)
2

⇐ (ϑij ⇐ zj)
2 =

1

4ϖ
.

For Assumption 10 of Kasprzak et al. (2022) to hold, we choose M1 = sup
zj↓[↘⇁,1+⇁]

⇔P(zj)
P(zj)

,

M̃1 = sup
zj↓[↘⇁,1+⇁] |P(zj)| since we have assumed that 0 < P(zj) < ↖, |↙P(zj)| < ↖.

By Theorem 6.1 of Kasprzak et al. (2022), we have


zj

|P(zj/
▽

t + ẑj | (ϑij)i↓[t]) ⇐ Ce↘
1

2ϱ2 z
2
j |dzj

=
▽

t



zj

|P(zj | (ϑij)i↓[t]) ⇐ N (ẑj ,
ϖ2

t
)|dzj ⇒ D1t

↘1/2 + D2t
1/2e↘tκ + 2D̂(t, ↽),

where C is the normalization constant and

D1 =


M̃1M̂1

ϖ





▽
3ϖ2

2

(
1 ⇐


D̂(t, ↽)

)M2 + M1





D2 =
2M̂1Ĵ

p

t
(ẑj , ↽)

(2ω)1/2(1 ⇐ D̂p(t, ↽))

D̂(t, ↽) = e↘
1
2 (

⇑
t↘1)2

Ĵp

t
(ẑj , ↽) =

1

ϖ2
+

↽M2

3
.
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Therefore, we conclude that the TV distance between z (conditioned on (ϑi)i↓[t]) and N

(
ẑ, ς

2

t

)

satisfies that


z

P(z | (ϑi)i↓[t]) ⇐ N

(
ẑ,

ϖ2

t

) dz ⇒

d∑

j=1



zj

P(zj | (ϑij)i↓[t]) ⇐ N

(
ẑj ,

ϖ2

t

) dzj ⇒ O(d/t),

due to the independence of (zj)j↓[d] conditioned on ϑ1:t. Now we denote algorithm ⊋FTPL to be the
FTPL algorithm w.r.t. the noise distribution P(z | (ϑi)i↓[t]), and FTPL to be the algorithm w.r.t. the
noise distribution N (ẑ, ς

2

t
). Therefore, we have

RegretFTPL((ϑ)i↓[T ]) ⇐ Regret⊋FTPL((ϑ)i↓[T ])
 ⇒

T∑

t=1

d≃ωt ⇐ ω̂t≃↗

⇒ d
T∑

t=1



z

P(z | (ϑi)i↓[t]) ⇐ N (ẑ,
ϖ2

t
)
dz = O(d2 log T ).

In other words, using P(z | (ϑi)i↓[t]) as the noise distribution only increases the regret by
O(d2 log T ). Similarly, it is easy to see that

D-RegretFTPL((ϑ)i↓[T ]) ⇐ D-Regret⊋FTPL((ϑ)i↓[T ])
 ⇒ O(d2 log T ),

which completes the proof.

D.7.2 RELAXATION UNDER DECISION-IRRELEVANT PRE-TRAINING DATA

We then remark on the possible relaxation when the training data may not all come from decision-
making tasks.
Remark D.3 (Pre-training with relaxed data assumptions). Note that the pre-training (text) data are
so far assumed to be related to decision-making problems (though not necessarily sequential ones),
see Assumption 1 and Example 1 for instance. It can also be generalized to the text datasets involv-
ing Question-Answering (Q-A), a typical task in natural language processing, where the true/fact
answer, sampled answers from different human users (with possibly wrong or biased answers), cor-
respond to the latent z (and associated maximizer a) and ϑ1:t, respectively. Moreover, in practice,
the pre-training data may also involve non-decision-making/Q-A texts, given the diversity of the
datasets. For such scenarios, we will make the assumptions on the data distribution conditioned on
the prompt for decision-making. Specifically, when interacting with the LLM, human users will pro-
vide prompts (see e.g., our Figure C.1), to induce it to make decisions. This will query the conditional
distribution of

P
(
g(xNt+1:Nt+1)

x1:Nt
, decision-making prompt

)

to generate the control action. Correspondingly, Assumption 1 will thus only need to be made on

P
(
z, ϑ1:t, x1:Nt+1 , decision-making prompt

)
,

while we do not need to make such assumptions on other prompts, e.g., corpora that are not related
to decision-making.

D.8 COMPARISON WITH LEE ET AL. (2023); LIN ET AL. (2024); LIU ET AL. (2023E)

Similar assumptions and pre-training objectives have also been considered in the very recent work of
Lee et al. (2023); Lin et al. (2024); Liu et al. (2023e) for studying in-context reinforcement learning
property of Transformers/LLM-agents under supervised pre-training. Lee et al. (2023) established
its equivalence to posterior sampling (Osband et al., 2013), an important RL algorithm with provable
regret guarantees when the environments are stationary, and Lin et al. (2024) generalized the study to
the setting of algorithm distillation as in Laskin et al. (2023). Liu et al. (2023e) adopted the similar
data generation assumption as Lee et al. (2023) without assuming optimal labels are available in
the pre-training datasets, but leverages external oracles for planning. Consequently, the resulting
LLM agent would still perform the posterior sampling algorithm. However, these results cannot
directly imply the no-regret guarantee in our online learning setting, due to the known fact that
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posterior sampling can perform poorly under potentially adversarial or non-stationary environments
(Zimmert & Seldin, 2021; Liu et al., 2023d). In contrast, we here establish the equivalence of the pre-
trained LLM to the FTPL algorithm (under different pre-training data distribution specifications),
with the ability to handle arbitrary loss sequences, even though the LLMs are only trained on a
fixed/stationary distribution of texts (tasks).

D.9 DETAILS OF ESTIMATING THE PARAMETERS OF OUR HYPOTHETICAL MODEL

To further validate our model and data distribution assumptions, we also propose to estimate the
parameter {↼t}t↓[T↘1] in Definition 4.1, using data from interacting with LLMs (following the
same protocol as before), with Pnoise being a standard normal distribution (note that we do not
need to estimate ↼0 by Definition 4.1). Specifically, given n episodes of the LLM agent’s behavior
{(ϑ(j)

t
, ω(j)

t
)t↓[T ]}j↓[n], motivated by our Lemma 1 and Theorem 4.1, we estimate {↼t}t↓[T↘1] by

solving the following problem

ϖφ
↑ arg min

ς>0

∑

t↓[T↘1]

∑

j↓[n]

∥∥∥ω(j)
t+1 ⇐ Pς

⇑
t+1

quantal

(
·

 ϑ
(j)
1:t

)∥∥∥
1
, ↼φ

t
= ϖφ

▽
t + 1, ⇔t ↑ [T ⇐ 1].

We solve this single-variable optimization problem by grid search over [0, 10]. We then run the
generalized quantal response model with the estimated {↼φ

t
}t↓[T↘1] on another unseen test set, and

compare it with the behavior of the actual LLM agents. We use all the interaction data from Sec-
tion 3.2 and split it in half for training and testing.

We also use the same framework to understand the regrettable behaviors in Section 3.4. This analysis
uses all the data from Section 3.4. We first find that such fitting procedures do not yield good
predictions for LLMs on those counter-examples. Therefore, we resort to a more expressive model
by directly fitting each ↼t as

↼φ

t
↑ arg min

ϱt>0

∑

j↓[n]

∥∥∥ω(j)
t+1 ⇐ P ϱt

quantal

(
·

 ϑ
(j)
1:t

)∥∥∥
1

separately for each t ↑ [T⇐1]. Even under the expressive model, LLMs fail to follow the generalized
quantal response for the counter-examples with noisy alternating or adaptive loss sequences, as
Figure 4.1 shows the gap between GPT-4 (dynamic) regret and the our model’s (dynamic) regret.

E DEFERRED RESULTS AND PROOFS IN SECTION 5

E.1 BASIC LEMMAS

Lemma 5 (Double iterated limit). For a sequence (amn)m,n↓N+ , suppose that limm,n≃↗ amn =
L. Then the following are equivalent:

• For each m, limn≃↗ amn exists;

• limm≃↗ limn≃↗ amn = L.
Lemma 6 (Hoeffding’s inequality). Let X1, X2, . . . , Xn be independent random variables bounded
by the intervals [ai, bi], respectively. Define X̄ = 1

n

∑
n

i=1 Xi and let µ = E[X̄] be the expected
value of X̄ . Then, for any t > 0,

P(|X̄ ⇐ µ| ⇑ t) ⇒ 2 exp

(
⇐

2n2t2∑
n

i=1(bi ⇐ ai)2

)
.

Lemma 7 (Uniform convergence =∀ Interchanging limit and infimum). If (fn : X ⇓ R)n↓N+ is
a sequence of continuous functions that uniformly converge to a function f : X ⇓ R on the domain
X , then limn≃↗ infx↓X fn(x) = infx↓X f(x) holds.

E.2 DEFERRED PROOF FOR THE ARGUMENTS IN SECTION 5.1

In this section, we prove some properties of L(ϱ, k, N) under certain regularity conditions of f, h.
Throughout this subsection, we will assume the following condition holds.
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Condition 1. For h : R ⇓ R+ and f : R ↗ N+
⇓ R+, suppose h(·) and f(·, k) are both

continuous and non-decreasing functions for any k ↑ N+. The derivative h⇐ : R ⇓ R is also a
continuous function. Moreover, f satisfies that log f(R1, k1) ⇐ log f(R1, k2) ⇑ log f(R2, k1) ⇐

log f(R2, k2) for R1 ⇑ R2 and k1 ⇑ k2, i.e., log f is supermodular. Lastly, f is a function such
that limk≃↗

f(R1,k)
f(R2,k) = ↖ · (R1 > R2) + (R1 = R2), with the convention of ↖ · 0 = 0. Lastly,

(ϑ(j)
t

)t↓[T ],j↓[N ] are continuous random variables supported on [⇐B, B]T→N .
Claim 1 (Iterated limit of L(ϱ, k, N) is the same as double limit of L(ϱ, k, N)). It holds that:

lim
N≃↗

lim
k≃↗

L(ϱ, k, N) = lim
N,k≃↗

L(ϱ, k, N) = lim
k≃↗

lim
N≃↗

L(ϱ, k, N) = h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

Proof. Step 1. Proving limN≃↗ limk≃↗ L(ϱ, k, N) = h
(
maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

Firstly, as both h and f are non-negative (Condition 1), and
E

(ϖ(j)
t

)t→[T ],j→[N]

[
h(maxj↓[N ] RegretLLMϑ

((ϑ(j)
t

)t↓[T ]))
]

exists, we have by dominated conver-
gence theorem that

lim
k≃↗

L(ϱ, k, N) = E lim
k≃↗

[∑
j↓[N ] h(RLLMϑ

((ϑ(j)
t

)t↓[T ]))f(RLLMϑ
((ϑ(j)

t
)t↓[T ]), k)

∑
j↓[N ] f(RLLMϑ

((ϑ(j)
i

)t↓[T ]), k)

]

= E
(ϖ(j)

t
)t→[T ],j→[N]


h(max

j↓[N ]
RLLMϑ

((ϑ(j)
t

)t↓[T ]))



where RLLMϑ
denotes an abbreviation of RegretLLMϑ

. By (Ahsanullah et al., 2013, Chapter 11), we
have h(maxj↓[N ] RegretLLMϑ

((ϑ(j)
t

)t↓[T ]))
p

⇓ h(maxϖ1,...,ϖT
RegretLLMϑ

((ϑt)t↓[T ])) when N ⇓

↖. Hence, we have limN≃↗ limk≃↗ L(ϱ, k, N) = h(maxϖ1,...,ϖT
RegretLLMϑ

((ϑt)t↓[T ])) holds.

Step 2. Proving limN,k≃↗ L(ϱ, k, N) = h(maxϖ1,...,ϖT
RegretLLMϑ

((ϑt)t↓[T ])).

Now, we will calculate limN,k≃↗ L(ϱ, k, N).
Lemma 8. For any 0 < ε < 1, it follows that

lim
N,k≃↗

∑
N

i=1 f(Xi, k)H(Xi) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k)H(Xi) (H(Xi) > 1 ⇐ ε/2)
= 0

and

lim
N,k≃↗

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε/2)
= 0

hold with probability 1, where Xi’s are i.i.d. random variables, esssup(H(Xi)) = 1, and H : R ⇓

R+ is a continuous non-decreasing function.

Proof of Lemma 8. Since f(·, k), H are non-negative and non-decreasing functions, we have
∑

N

i=1 f(Xi, k)H(Xi) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k)H(Xi) (H(Xi) > 1 ⇐ ε/2)
⇒

(1 ⇐ ε)f(H↘1(1 ⇐ ε), k)|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}|

(1 ⇐ ε/2)f(H↘1(1 ⇐ ε/2), k)|{i ↑ [N ] | (H(Xi) > 1 ⇐ ε/2)}|

and we know that
|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}|

|{i ↑ [N ] | (H(Xi) > 1 ⇐ ε/2)}|

a.s.
⇓

F (1 ⇐ ε)

1 ⇐ F (1 ⇐ ε/2)

as N ⇓ ↖, where F is the cumulative distribution function of random variable H(X). Therefore,
we have

0 ⇒ lim
N,k≃↗

∑
N

i=1 f(Xi, k)H(Xi) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k)H(Xi) (H(Xi) > 1 ⇐ ε/2)

⇒ lim
N,k≃↗

(1 ⇐ ε)f(H↘1(1 ⇐ ε), k))|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}|

(1 ⇐ ε/2)f(H↘1(1 ⇐ ε/2), k))|{i ↑ [N ] | (H(Xi) > 1 ⇐ ε/2)}|

⇒
a.s.

lim
N,k≃↗

(1 ⇐ ε)f(H↘1(1 ⇐ ε), k))

(1 ⇐ ε/2)f(H↘1(1 ⇐ ε/2), k))

F (1 ⇐ ε)

1 ⇐ F (1 ⇐ ε/2)
= 0.
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By a similar argument, we have

lim
N,k≃↗

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε/2)
= 0

with probability 1.

One key idea in the proof above is the use of some truncation level ε for H(X) with
esssup(H(X)) = 1. By Lemma 8, we have

lim
N,k≃↗

∑
N

i=1 f(Xi, k)H(Xi) (H(Xi) > 1 ⇐ ε)
∑

N

i=1 f(Xi, k)H(Xi)
= lim

N,k≃↗

∑
N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε)
∑

N

i=1 f(Xi, k)
= 1,

since

0 ⇒

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k)
⇒

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε/2)

holds with probability 1. Therefore, for any 0 < ε < 1, we have

lim
N,k≃↗

L(ϱ, k, N) = E lim
N,k≃↗

[∑
j↓[N ] h(RLLMϑ

((ϑ(j)
t

)t↓[T ]))f(RLLMϑ
((ϑ(j)

t
)t↓[T ]), k)

∑
j↓[N ] f(RLLMϑ

((ϑ(j)
i

)t↓[T ]), k)

]

= h

(
max

ϖ1,...,ϖT

RLLMϑ
((ϑt)t↓[T ])

)

↗ E lim
N,k≃↗





∑
j↓[N ]

h(RLLM
ϑ
((ϖ(j)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

f(RLLMϑ
((ϑ(j)

t
)t↓[T ]), k) (

h(RLLM
ϑ
((ϖ(j)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

> 1 ⇐ ε)

∑
j↓[N ] f(RLLMϑ

((ϑ(j)
i

)t↓[T ]), k) (
h(RLLM

ϑ
((ϖ(j)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

> 1 ⇐ ε)





⇑ (1 ⇐ ε)h( max
ϖ1,...,ϖT

RLLMϑ
((ϑt)t↓[T ]))

which implies limN,k≃↗ L(ϱ, k, N) = h(maxϖ1,...,ϖT
RegretLLMϑ

((ϑt)t↓[T ])) since

L(ϱ, k, N) ⇒ h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)

by definition of L, the fact that h is non-decreasing, and by setting ε ⇓ 0 to obtain

L(ϱ, k, N) ⇑ h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

Here, we used the fact that (ϑt)t↓[T ] has a continuous distribution, RegretLLMϑ
((ϑt)t↓[T ]) is a con-

tinuous function, and the non-decreasing property and continuity of h (Condition 1), which lead
to:

esssup
(
h
(
RegretLLMϑ

((ϑt)t↓[T ])
))

= max
ϖ1,...,ϖT

h
(
RegretLLMϑ

((ϑt)t↓[T ])
)

= h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

(E.1)
Equation (E.1) will be used frequently in the overall proof in Appendix E.2.

Step 3. Proving limk≃↗ limN≃↗ L(ϱ, k, N) = h
(
maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

Lastly, if N ⇓ ↖, similarly by dominated convergence theorem we have

lim
N≃↗

L(ϱ, k, N) = E lim
N≃↗




∑

j↓[N ] h
(
RLLMϑ

(
(ϑ(j)

t
)t↓[T ]

))
f(RLLMϑ

((ϑ(j)
t

)t↓[T ]), k)

∑
j↓[N ] f

(
RLLMϑ

(
(ϑ(j)

i
)t↓[T ]

)
, k
)





=
E
[
h
(
RLLMϑ

(
(ϑ(j)

t
)t↓[T ]

))
f
(
RLLMϑ

(
(ϑ(j)

t
)t↓[T ]

)
, k
)]

E
[
f
(
RLLMϑ

(
(ϑ(j)

i
)t↓[T ]

)
, k
)] .

Thus, limN≃↗ L(ϱ, k, N) always exists for every k. Now, we use the known prop-
erty of double iterated limit (Lemma 5), and obtain that limk≃↗ limN≃↗ L(ϱ, k, N) =
h(maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])).
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Claim 2 (Uniform convergence of L(ϱ, k, N) (with respect to k and N )). L(ϱ, k, N) uniformly
converges to h(maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])) on the domain $.

Proof. We will provide a similar analysis as Lemma 8 as follows:

Lemma 9. For any 0 < ε < 1, 0 < ↽ < 1, and k ↑ N+, we have

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε)
= Õ

(
A(k, H, ε)

(
1

1 ⇐ FH,X(1 ⇐ ε/2)
+

1
▽

N

))

with probability at least 1 ⇐ ↽, where Xi’s are i.i.d. random variables, esssup(H(Xi)) =
1, H : R ⇓ R+ is a continuous non-decreasing function, A(k, t, ε) :=

(1↘↽)f((t/ esssup(t(X)))↓1(1↘↽),k)
(1↘↽/2)f((t/ esssup(t(X)))↓1(1↘↽/2),k) , for any non-decreasing function t : R ⇓ R+, and Ft,X

is a cumulative distribution function of random variable t(X)/esssup(t(X)).

Proof of Lemma 9. With the same argument as the proof of Lemma 8, we have

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε/2)
⇒

f(H↘1(1 ⇐ ε), k)|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}|

f(H↘1(1 ⇐ ε/2), k)|{i ↑ [N ] | (H(Xi) > 1 ⇐ ε/2)}|
.

It holds that 1
N

|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}| = FH,X(1 ⇐ ε) + Õ(1/
▽

N) with probability at
least 1⇐ ↽/2 due to Hoeffding’s inequality (Lemma 6). Similarly, we have 1

N
|{i ↑ [N ] | (H(Xi) >

1 ⇐ ε/2)}| = 1 ⇐ FH,X(1 ⇐ ε/2) + Õ(1/
▽

N) with probability at least 1 ⇐ ↽/2. Therefore,

|{i ↑ [N ] | (H(Xi) < 1 ⇐ ε)}|

|{i ↑ [N ] | (H(Xi) > 1 ⇐ ε/2)}|
=

FH,X(1 ⇐ ε)

1 ⇐ FH,X(1 ⇐ ε/2)
+ Õ(


1/N) ⇒

1

1 ⇐ FH,X(1 ⇐ ε/2)
+ Õ(


1/N),

with probability at least 1 ⇐ ↽. Finally, we have

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε)
<

∑
N

i=1 f(Xi, k) (H(Xi) < 1 ⇐ ε)
∑

N

i=1 f(Xi, k) (H(Xi) > 1 ⇐ ε/2)
⇒ A(k, H, ε)

(
1

1 ⇐ FH,X(1 ⇐ ε/2)
+ Õ(

1
▽

N
)

)
.

Note that limk≃↗ A(k, H, ε) = 0, since limk≃↗

f(R1,k)
f(R2,k) = ↖ · (R1 > R2) + (R1 = R2). By

Lemma 9 with H(RLLMϑ
((ϑt)t↓[T ])) =

h(RLLM
ϑ
((ϖt)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

, we have

∑N
i=1 f(RLLMϑ

((ω(i)t )t→[T ]), k)

(
h(RLLM

ϑ
((ω

(i)
t

)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ωt)t→[T ]))

→ 1↑ ε

)

∑N
i=1 f(RLLMϑ

((ω(i)t )t→[T ]), k)

=
1

1 +

∑
N

i=1 f(RLLM
ϑ
((ω

(i)
t

)t→[T ]),k)



 h(RLLM
ϑ
((ς

(i)
t

)
t→[T ]))

h(max
ς1,...,ςT

RLLM
ϑ
((ςt)t→[T ]))

<1↑ε





∑
N

i=1 f(RLLM
ϑ
((ω

(i)
t

)t→[T ]),k)



 h(RLLM
ϑ
((ς

(i)
t

)
t→[T ]))

h(max
ς1,...,ςT

RLLM
ϑ
((ςt)t→[T ]))

↓1↑ε





→
1

1 +A(k,H, ε)( 1
1↑FH,RLLM

ϑ
((ςt)t→[T ])

(1↑ε/2) + Õ(
√

1/N))
,
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where we recall the shorthand notation of RLLMϑ
= RegretLLMϑ

. Note that A(k, H, ε) = A(k, h, ε)
and FH,RLLM

ϑ
= Fh,RLLM

ϑ
hold by the definitions of Ft,X and A(k, t, ε) in Lemma 9. Therefore,

1 ⇑

∑
N

i=1 f(RLLMϑ
((ϑ(i)

t
)t↓[T ]), k)

h(RLLM
ϑ
((ϖ(i)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

∑
N

i=1 f(RLLMϑ
((ϑ(i)

t
)t↓[T ]), k)

⇑

∑
N

i=1 f(RLLMϑ
((ϑ(i)

t
)t↓[T ]), k)

h(RLLM
ϑ
((ϖ(i)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

(
h(RLLM

ϑ
((ϖ(i)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

⇑ 1 ⇐ ε)

∑
N

i=1 f(RLLMϑ
((ϑ(i)

t
)t↓[T ]), k) (

h(RLLM
ϑ
((ϖ(i)

t
)t→[T ]))

h(maxς1,...,ςT
RLLM

ϑ
((ϖt)t→[T ]))

⇑ 1 ⇐ ε)

↗
1

1 + A(k, h, ε)( 1
1↘Fh,RLLM

ϑ
((ςt)t→[T ])

(1↘↽/2) + Õ(


1/N))

⇑
1 ⇐ ε

1 + A(k, h, ε)( 1
1↘Fh,RLLM

ϑ
((ςt)t→[T ])

(1↘↽/2) + Õ(


1/N))

with probability at least 1 ⇐ ↽.

Now, for any ε > 0 and ↽ > 0, we have

0 ⇒ h

(
max

ϖ1,...,ϖT

RLLMϑ
((ϑt)t↓[T ])

)
⇐ L(ϱ, k, N)

⇒ h

(
max

ϖ1,...,ϖT

RLLMϑ
((ϑt)t↓[T ])

)

1 ⇐
(1 ⇐ ↽)(1 ⇐ ε)

1 + A(k, h, ε)( 1
1↘Fh,RLLM

ϑ
((ςt)t→[T ])

(1↘↽/2) + Õ(


1/N))



 .

Note that

1⇐Fh,RLLM
ϑ
((ϖt)t→[T ])(1⇐ε/2) = P

(
h
(
RegretLLMϑ

(
(ϑt)t↓[T ]

))
> (1 ⇐ ε/2)h

(
max

ϖ1,...,ϖT

RegretLLMϑ

(
(ϑt)t↓[T ]

)))

is a continuous function of ϱ, since we assume LLMε is a continuous function of ϱ, (ϑt)t↓[T ] has a
continuous distribution, and RegretLLMϑ

((ϑt)t↓[T ]) is a continuous function of LLMε and (ϑt)t↓[T ].
Since we consider a compact $ (as several recent works on analyzing Transformers (Bai et al., 2023;
Lin et al., 2024)), we have p(ε) := minε↓” 1 ⇐ Fh,RLLM

ϑ
((ϖt)t→[T ])(1 ⇐ ε/2) > 0. Therefore,



1 ⇐
(1 ⇐ ↽)(1 ⇐ ε)

1 + A(k, h, ε)( 1
1↘Fh,RLLM

ϑ

(1↘↽/2) + Õ(


1/N))



 ⇒

(
1 ⇐

(1 ⇐ ↽)(1 ⇐ ε)

1 + A(k, h, ε)( 1
p(↽) + Õ(


1/N))

)
,

(E.2)

and we know that limN,k≃↗ 1 + A(k, h, ε)( 1
p(↽) + Õ(


1/N)) = 1, which is not dependent

on ϱ. Thus, we can conclude that limN,k≃↗ sup
ε↓” |h(maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])) ⇐

L(ϱ, k, N)| = 0, as we can choose arbitrarily small ε, ↽.

Claim 3 (Double iterated limit of supremum). It holds that:

lim
N≃↗

lim
k≃↗

sup
ε↓”

L(ϱ, k, N) ⇐ h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)  = 0.

Proof. Since h(maxϖ1,...,ϖT
RegretLLMϑ

((ϑt)t↓[T ])) ⇑ L(ϱ, k, N), we will prove

lim
N≃↗

lim
k≃↗

sup
ε↓”

h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
⇐ L(ϱ, k, N) = 0.

Lemma 10.
∑

N

i=1 f(Xi,k1)h(Xi)∑
N

i=1 f(Xi,k1)
⇒

∑
N

i=1 f(Xi,k2)h(Xi)∑
N

i=1 f(Xi,k2)
holds if 0 <k1 ⇒ k2 for any real-valued

(Xi)i↓[N ].
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Proof. By multiplying (
∑

N

i=1 f(Xi, k1))(
∑

N

i=1 f(Xi, k2)) on both sides of the for-
mula, we know that it is equivalent to

∑
1↔i ↖=j↔N

f(Xi, k1)h(Xi)f(Xj , k2) ⇒∑
1↔i ↖=j↔N

f(Xi, k1)h(Xj)f(Xj , k2). This is equivalent to
∑

1↔i ↖=j↔N

(f(Xi, k1)f(Xj , k2) ⇐ f(Xj , k1)f(Xi, k2))(h(Xi) ⇐ h(Xj)) ⇒ 0,

which is true since if Xi ⇑ Xj , (f(Xi, k1)f(Xj , k2) ⇐ f(Xj , k1)f(Xi, k2)) ⇒ 0 due to the
log-increasing difference of f (Condition 1), as log f(Xj , k1) ⇐ log f(Xj , k2) ⇑ log f(Xi, k1) ⇐

log f(Xi, k2) if Xi ⇑ Xj .

Therefore, L(ϱ, k, N) is a non-decreasing function of k if N is fixed, which indicates that

lim
k≃↗

sup
ε↓”

h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
⇐ L(ϱ, k, N)

exists, as L(ϱ, k, N) is also bounded. Therefore, by Lemma 5 and Claim 2, we know that

lim
N≃↗

lim
k≃↗

sup
ε↓”

L(ϱ, k, N) ⇐ h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

) 

exists and this value should be 0.

Claim 4. It holds that

lim
N,k≃↗

inf
ε↓”

L(ϱ, k, N) = lim
N≃↗

lim
k≃↗

inf
ε↓”

L(ϱ, k, N) = inf
ε↓”

h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)
.

Proof. Firstly, by Lemma 7, we have limN,k≃↗ infε↓” L(ϱ, k, N) =
infε↓” h(maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])). Plus, we already know that L(ϱ, k, N) is

a monotonically non-decreasing function of k for any fixed N (Lemma 10), and it is
bounded, limk≃↗ infε↓” L(ϱ, k, N) always exists. Therefore, by Lemma 5 , we also have
limN≃↗ limk≃↗ infε↓” L(ϱ, k, N) = infε↓” h(maxϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])).

E.3 DEFINITION OF THE EMPIRICAL LOSS FUNCTION

Definition E.1 (Empirical loss function). We define the empirical loss L̂ computed with NT samples
as follows:

L̂(ϱ, k, N, NT ) :=
1

NT

NT∑

s=1




∑

j↓[N ] h
(

RegretLLMϑ
((ϑ(j)

s,t
)t↓[T ])

)
f
(

RegretLLMϑ
((ϑ(j)

s,t
)t↓[T ]), k

)

∑
j↓[N ] f

(
RegretLLMϑ

((ϑ(j)
s,t

)t↓[T ]), k
)





(E.3)

where (ϑ(j)
s,t

)j↓[N ],t↓[T ] denotes the s-th sample of (ϑ(j)
t

)j↓[N ],t↓[T ] for estimating L(ϱ, k, N).

E.4 DEFERRED PROOFS OF THEOREM E.1 AND THEOREM 5.1

Theorem E.1. (Generalization gap). Suppose LLMε is Lipschitz-continuous with respect to the
model parameter ϱ, then for any 0 < ε < 1/2, with probability at least 1 ⇐ ε, we have

L

(
ϱ̂k,N,NT

, k, N
)

⇐ inf
ε↓”

L(ϱ, k, N) ⇒ Õ




√

dε + log(1/ε)

NT



 , (E.4)

for any N and sufficiently large k, where dε is the dimension of the parameter ϱ.

Through a careful use of Berge’s Maximum Theorem (Berge, 1877), we prove that the right-
hand side of Equation (E.4) does not depend on k and N , which allows us to take the limit of
limN≃↗ limk≃↗ without affecting the generalization bound.
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Before proving the theorem, we remark on what LLM structure enjoys the Lipschitz-continuity.
We provide two auxiliary results in the following proposition. The first result is from (Bai et al.,
2023, Section J.1), which is about the Lipschitzness of Transformers. The second result is regarding
processing the output of Transformers. In particular, the output of Transformers is usually not
directly used, but passed through some matrix multiplication (by some matrix A), followed by some
projection Operator (to be specified later).
Proposition 2. The L-layer Transformer TFε as defined in Appendix B.2 is CTF-Lipschitz contin-
uous with respect to ϱ with CTF := L

(
(1 + B2

TF
)(1 + B2

TF
R3)

)L

BTFR(1 + BTFR2 + B3
TF

R2),
i.e.,

≃TFε1(Z) ⇐ TFε2(Z)≃2,↗ ⇒ CTF≃ϱ1 ⇐ ϱ2≃TF

where ≃ · ≃TF is as defined in Equation (B.1), and R, Z, BTF are as introduced in Appendix B.2.
Moreover, the function Operator(A · TFε(·)↘1) is ≃A≃opCTF-Lipschitz continuous with respect
to ϱ, i.e.,

≃Operator(A · TFε1(Z)↘1) ⇐ Operator(A · TFε2(Z)↘1)≃2 ⇒ ≃A≃opCTF≃ϱ1 ⇐ ϱ2≃TF.

Here, Operator is either the projection operator onto some convex set, or the Softmax function.

Proof. The first result is from (Bai et al., 2023, Section J.1). The second result comes from

• If Operator is a projection onto the convex set, then ≃Operator(x) ⇐

Operator(y)≃2 ⇒ ≃x ⇐ y≃2;

• If Operator is Softmax, then ≃Softmax(x) ⇐ Softmax(y)≃2 ⇒ ≃x ⇐ y≃2 (Gao &
Pavel, 2017, Corollary 3).

Note that the only condition that we require for Operator is its non-expansiveness.

Proof of Theorem E.1. Let CLLM denote the Lipschitz-continuity constant for LLMε with respect to
some norm ≃ · ≃LLM, where ≃ · ≃LLM denotes any norm defined on the parameter space of LLM (e.g.,
the norm ≃ · ≃TF above in Proposition 2). Now, we prove that regret is also a Lipschitz-continuous
function with respect to the LLM’s parameter.
Lemma 11 (Lipschitzness of regret). The function RegretLLMϑ

is CReg := BCLLMT -Lipschitz con-
tinuous with respect to ϱ, i.e.,

RegretLLMϑ1
((ϑt)t↓[T ]) ⇐ RegretLLMϑ2

((ϑt)t↓[T ])
 ⇒ CReg≃ϱ1 ⇐ ϱ2≃LLM.

Proof. By definition, we have

RegretLLMϑ1
((ϑt)t↓[T ]) ⇐ RegretLLMϑ2

((ϑt)t↓[T ])
 =



T∑

t=1

↓ϑt, LLMε1(Zt↘1) ⇐ LLMε2(Zt↘1)↔



= B
T∑

t=1

≃LLMε1(Zt↘1) ⇐ LLMε2(Zt↘1)≃

⇒ BCLLMT≃ϱ1 ⇐ ϱ2≃LLM

where Zt := (ϑ1, . . . , ϑt, c) for all t ↑ [T ] and Z0 = (c) where c is a d-dimensional vector.

Now, we will prove the Lipschitzness of

C
(
(ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ

)
:=

∑
j↓[N ] h(RegretLLMϑ

((ϑ(j)
t

)t↓[T ]))f(RegretLLMϑ
((ϑ(j)

t
)t↓[T ]), k)

∑
j↓[N ] f(RegretLLMϑ

((ϑ(j)
t

)t↓[t]), k)

(E.5)

with respect to the model parameter ϱ.
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Claim 5. For any R > 0, there exists φR > 0 such that if φ > φR, we have


∑
n↓[N ] xnf(xn, φ)
∑

n↓[N ] f(xn, φ)
⇐

∑
n↓[N ] ynf(yn, φ)

∑
n↓[N ] f(yn, φ)

 ⇒ 2≃x ⇐ y≃↗

for every x, y ↑ Rn such that |xi| ⇒ R, |yi| ⇒ R for all i ↑ [N ].

Proof. If φ = ↖, we have

lim
β≃↗

(

∑
n↓[N ] xnf(xn, φ)
∑

n↓[N ] f(xn, φ)
⇐

∑
n↓[N ] ynf(yn, φ)

∑
n↓[N ] f(yn, φ)



/
≃x ⇐ y≃↗

)
=

| maxn↓[N ] xn ⇐ maxn↓[N ] yn|

≃x ⇐ y≃↗
⇒ 1

holds. Moreover, consider the following constrained optimization problem:

max
x,y↓Rn

(

∑
n↓[N ] xnf(xn, φ)
∑

n↓[N ] f(xn, φ)
⇐

∑
n↓[N ] ynf(yn, φ)

∑
n↓[N ] f(yn, φ)



/
≃x ⇐ y≃↗

)

subject to |xi| ⇒ R, |yi| ⇒ R for all i ↑ [N ],

whose optimum is denoted as F (R, φ). Then, since ≃x≃↗ ⇒ R and ≃y≃↗ ⇒ R is a compact set,
by Berge’s Maximum Theorem (Berge, 1877), we have that F (R, φ) is a continuous function for φ.
Moreover, we know that F (R, ↖) ⇒ 1, which indicates that we can find a large enough φR such
that if φ > φR, F (R, φ) ⇒ 2.

Note that Claim 5 does not hold if either xi or yi is unbounded. Now, we will apply Claim 5 to
Equation (E.5). We can guarantee that

RegretLLMϑ
((ϑt)t↓[T ])

 ⇒ diam(”, ≃ · ≃2)TB.

Also, note that the domain of h : R ⇓ R+ is effectively constrained to the range that
RegretLLMϑ

((ϑt)t↓[T ]) can achieve, which means that we can regard h as h : [⇐diam(”, ≃ ·

≃2)TB, diam(”, ≃ · ≃2)TB] ⇓ R+. Due to the continuity of h⇐, and the fact that h has a com-
pact domain, we know that h(·) is Ch-Lipschitz continuous for some Ch > 0 on this interval of
[⇐diam(”, ≃ · ≃2)TB, diam(”, ≃ · ≃2)TB].
Lemma 12 (Lipschitzness of C in Equation (E.5)). The function C in Equation (E.5) is Ccost :=
2ChCReg-Lipschitz continuous with respect to ϱ, if k > kdiam(!,↑·↑2)TB for some kdiam(!,↑·↑2)TB >
0, i.e.,

C
(
(ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ1

)
⇐ C

(
(ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ2

)  ⇒ Ccost≃ϱ1 ⇐ ϱ2≃LLM.

Proof.
C((ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ1) ⇐ C((ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ2)



⇒
(i)

2≃h(RegretLLMϑ1
((ϑ(j)

t
)t↓[T ])) ⇐ h(RegretLLMϑ2

((ϑ(j)
t

)t↓[T ]))≃↗

⇒
(ii)

2Ch≃RegretLLMϑ1
((ϑ(j)

t
)t↓[T ]) ⇐ RegretLLMϑ2

((ϑ(j)
t

)t↓[T ])≃↗

⇒
(iii)

2ChCReg≃ϱ1 ⇐ ϱ2≃LLM = Ccost≃ϱ1 ⇐ ϱ2≃LLM.

Here, (i) holds due to Claim 5, (ii) holds since h is Ch-Lipschitz continuous on the range of
RegretLLMϑ

((ϑt)t↓[T ]), and (iii) holds due to Lemma 11.

For completeness of the paper, we provide the definition of covering set and covering number.
Definition E.2 (Covering set and covering number). For ↽ > 0, a metric space (X, ≃ ·≃), and subset
Y ↘ X , set C ∃ Y is a ↽-covering of Y when Y ↘ ¬c↓CB(c, ↽, ≃ · ≃) holds. ↽-covering number
N(↽; Y, ≃ · ≃) is defined as the minimum cardinality of any covering set.
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By (Wainwright, 2019, Example 5.8), for any r > 0, we can verify that the ↽-covering number
N(↽; B(0, r, ≃ · ≃LLM), ≃ · ≃LLM) can be bounded by

log N(↽; B(0, r, ≃ · ≃LLM), ≃ · ≃LLM) ⇒ dε log(1 + 2r/↽),

where dε is the dimension of the LLM’s whole parameter. For example, if we use the ≃ · ≃TF and
consider the Transformer model as defined in Appendix B.2, for any r > 0,

log N(↽; B(0, r, ≃ · ≃LLM), ≃ · ≃LLM) ⇒ L(3Md2 + 2d(dd⇐ + 3md2)) log(1 + 2r/↽).

Since we consider a compact $ (as several recent works on analyzing Transformers (Bai et al., 2023;
Lin et al., 2024)), let R” := diam($, ≃ · ≃LLM) (which corresponds to BTF for the Transformer
models as defined in Appendix B.2, with ≃ · ≃LLM = ≃ · ≃TF), then there exists a set $0 with
log |$0| = dε log(1 + 2R”/↽) such that for any ϱ ↑ $, there exists a ϱ0 ↑ $0 with

C
(
(ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ

)
⇐ C

(
(ϑ(j)

t
)t↓[T ],j↓[N ], k, ϱ0

)  ⇒ Ccost↽.

Then, by the standard result from statistical learning theory (Wainwright, 2019, Chapter 5), when
trained with NT samples, for every 0 < ε < 1/2, with probability at least 1 ⇐ ε, we have

L(ϱ̂k,N,NT
, k, N) ⇐ inf

ε↓”
L(ϱ, k, N) ⇒

√
2(log |$0| + log(2/ε))

NT

+ 2Ccost↽.

Setting ↽ = #(


log(ε)/NT ), we further obtain

L(ϱ̂k,N,NT
, k, N) ⇐ inf

ε↓”
L(ϱ, k, N) ⇒ Õ




√

log |$0| + log(1/ε)

NT





with probability at least 1 ⇐ ε, completing the proof.

Theorem 5.1. (Regret). Suppose3 for any k ↑ N+, h, f(·, k) are non-decreasing, and log f is a
supermodular function (i.e., log f(R1, k1) ⇐ log f(R1, k2) ⇑ log f(R2, k1) ⇐ log f(R2, k2) for
R1 ⇑ R2 and k1 ⇑ k2). Then, with high probability, we have

h

(
lim

N↔↗
lim

k↔↗
max

↘ςt↘↗≃B

RegretLLM
ϑ̂
k,N,NT

(
(ϖt)t→[T ]

)
)

↔ h

(
inf
ϑ→!

max
↘ςt↘↗≃B

RegretLLM
ϑ

(
(ϖt)t→[T ]

))
+ Õ






dϑ

NT



 .

Proof. The limit on the right-hand side of Equation (E.4) remains as Õ

(
dϑ+log(1/↽)

NT

)
, since we

firstly take limk≃↗ and then take limN≃↗, thanks to the fact that Theorem E.1 holds for large
enough k and any N . Next, we have

lim
N≃↗

lim
k≃↗

L(ϱ̂k,N,NT
, k, N) ⇐ h

(
lim

N≃↗

lim
k≃↗

max
↑ϖt↑↗↔B

RegretLLM
ϑ̂
k,N,NT

((ϑt)t↓[T ])

) 

⇒ lim
N≃↗

lim
k≃↗

L(ϱ̂k,N,NT
, k, N) ⇐ h

(
max

↑ϖt↑↗↔B

RegretLLM
ϑ̂
k,N,NT

((ϑt)t↓[T ])

) +

lim
N≃↗

lim
k≃↗

h
(

max
↑ϖt↑↗↔B

RegretLLM
ϑ̂
k,N,NT

((ϑt)t↓[T ])

)
⇐ h

(
lim

N≃↗

lim
k≃↗

max
↑ϖt↑↗↔B

RegretLLM
ϑ̂
k,N,NT

((ϑt)t↓[T ])

) 

⇒ lim
N≃↗

lim
k≃↗

sup
ε↓”

L(ϱ, k, N) ⇐ h

(
max

↑ϖt↑↗↔B

RegretLLMϑ
((ϑt)t↓[T ])

)  + 0 = 0,

due to the continuity of h and Claim 3. Finally, we have

lim
N≃↗

lim
k≃↗

inf
ε↓”

L(ϱ, k, N) = inf
ε↓”

h

(
max

ϖ1,...,ϖT

RegretLLMϑ
((ϑt)t↓[T ])

)

due to Claim 4, which, combined with the fact that h is non-decreasing, completes the proof.

3Note that these conditions on h, f are in addition to those specified after Equation (5.2).
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As a result, the coarse correlated equilibrium will emerge as the long-term interactions of multiple
such learned LLMs, as stated in the following corollary.
Corollary 1. (Emerging behavior: Coarse correlated equilibrium). For a sufficiently large NT , if
each agent in the matrix game plays according to LLM

ε̂k,N,NT

, then the time-averaged policy for
each agent will constitute an approximate coarse correlated equilibrium of the game.
Remark E.1 (Dynamic-regret loss). So far, we have focused on the canonical online learning set-
ting with regret being the metric. One can also generalize the results to the non-stationary setting,
with dynamic regret being the metric. Specifically, one can define the dynamic-regret-loss function
as follows:

L(ϱ, k, N) := E
[∑

j↓[N ] h(D-RegretLLMϑ
((ϑ(j)

t
)t↓[T ]))f(D-RegretLLMϑ

((ϑ(j)
t

)t↓[T ]), k)
∑

j↓[N ] f(D-RegretLLMϑ
((ϑ(j)

i
)t↓[T ]), k)

]
.

Then, one can also establish similar results as before, since the analysis does not utilize other
properties of the regret except its boundedness, and the Lipschitz-continuity of LLM with respect to
ϱ. To be specific, Lemma 11 holds due to the reason that we can bound the difference of the regret
with the term 

T∑

t=1

↓ϑt, (LLMε1(Zt↘1) ⇐ LLMε2(Zt↘1))↔

 ,

as well as the fact that infωi↓!↓ϑi, ωi↔ will be canceled. One can verify that all the arguments in
Appendix E.2 also hold for similar reasons.

E.5 DETAILED EXPLANATION OF OPTIMIZING EQUATION (5.2) WITH SINGLE-LAYER
SELF-ATTENTION MODEL

We consider the following structure of single-layer self-attention model g (see a formal introduction
in Appendix B.2):

g(Zt; V, K, Q, vc, kc, qc) := (V ϑ1:t + vc111
↭
t
)Softmax ((Kϑ1:t + kc111

↭
t
)↭ · (Qc + qc)) , (E.6)

where Zt = (ϑ1, . . . , ϑt, c) and V, K, Q ↑ Rd→d correspond to the value, key, and query matrices,
respectively, vc, kc, qc ↑ Rd correspond to the bias terms associated with V, K, Q, and c ∋= 000d is a
constant vector. We then have the following result.
Theorem E.2. Consider the policy space ” = B(0, R!, ≃ · ≃) for some R! > 0. The configuration
of a single-layer self-attention model in Equation (E.6) (V, K, Q, vc, kc, qc) such that K↭(Qc +

qc) = vc = 000d and V = ⇐R!
T∑

T↓1
t=1 1/t

&↘1E
∥∥∥∥

∑
T

t=1 ϑt

∥∥∥∥ϑ1ϑ
↭
2


&↘1 is a first-order stationary

point of Equation (5.2) with N = 1, h(x) = x2. Moreover, if & is a diagonal matrix, then plugging
this configuration into Equation (E.6), and projecting the output with Proj!,↑·↑ would perform
FTRL with an L2-regularizer for the loss vectors (ϑt)t↓[T ].

In practical training, such stationary points of the loss may be attained by first-order optimization
algorithms of (stochastic) gradient descent, the workhorse in machine learning.

E.6 DEFERRED PROOF OF THEOREM E.2

Theorem E.2. Consider the policy space ” = B(0, R!, ≃ · ≃) for some R! > 0. The configuration
of a single-layer self-attention model in Equation (E.6) (V, K, Q, vc, kc, qc) such that K↭(Qc +

qc) = vc = 000d and V = ⇐R!
T∑

T↓1
t=1 1/t

&↘1E
∥∥∥∥

∑
T

t=1 ϑt

∥∥∥∥ϑ1ϑ
↭
2


&↘1 is a first-order stationary

point of Equation (5.2) with N = 1, h(x) = x2. Moreover, if & is a diagonal matrix, then plugging
this configuration into Equation (E.6), and projecting the output with Proj!,↑·↑ would perform
FTRL with an L2-regularizer for the loss vectors (ϑt)t↓[T ].

Proof. We will locally use A = [d] without losing generality as A is finite with |A| = d, and will
interchangeably use ϑi(j) and ϑij for notational convenience. Define a := K↭(Qc + qc) ↑ Rd and
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bt↘1 := φ111t↘1 := k↭
c
(Qc+ qc)111t↘1 ↑ Rt↘1. With N = 1, h(x) = x2, and the choice of ”, the loss

function (Equation (5.2)) can be written as follows:

f(V, a, (bt)t↓[T↘1], vc) := E
(

T∑

t=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1) + R!≃

T∑

t=1

ϑt≃2

)2

,

where for t = 1, we use the output of the single-layer self-attention as vc and we will write it as
(V ϑ1:0 + vc111

↭
0)Softmax(ϑ↭1:0a + b0) for notational consistency with t ⇑ 2. Also, we will define

empty sum
∑0

i=1 ai = 0 for any sequence (ai)i↓N+ .

Step 1. Calculating ▷f

▷a
.

For x ↑ [d], we calculate the corresponding directional derivative with the following equation for
t ⇑ 2:
ϑ

ϑax
ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1)

=
ϑ

ϑax

t↑1∑

i=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)ei

exp(e↭i (ω
↭
1:t↑1a+ bt↑1))

∑t↑1
s=1 exp(e

↭
s(ω

↭
1:t↑1a+ bt↑1))

=

∑t↑1
i=1 ω

↭
t (V ω1:t↑1 + vc111

↭
t↑1)ei exp(e

↭
i (ω

↭
1:t↑1a+ bt↑1))

ϑe↭
i
(ω↭1:t↓1a+bt↓1)

ϑax
(
∑t↑1

s=1 exp(e
↭
s(ω

↭
1:t↑1a+ bt↑1)))

(
∑t↑1

s=1 exp(e
↭
s(ω

↭
1:t↑1a+ bt↑1)))2

↑

∑t↑1
i=1 ω

↭
t (V ω1:t↑1 + vc111

↭
t↑1)ei exp(e

↭
i (ω

↭
1:t↑1a+ bt↑1))

(∑t↑1
s=1 exp(e

↭
s(ω

↭
1:t↑1a+ bt↑1))

ϑe↭
s
(ω↭1:t↓1a+bt↓1)

ϑax

)

(
∑t↑1

s=1 exp(e
↭
s(ω

↭
1:t↑1a+ bt↑1)))2

.

Plugging a = 000d and vc = 000d, and (bt = φ111t)t↓[T↘1] provides

▷

▷ax

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1)


a=000d,vc=000d,(bt=β111t)t→[T↓1]

=
t↘1∑

i=1

ϑ↭
t
V ϑiϑix

(t ⇐ 1)
⇐

t↘1∑

i=1

ϑ↭
t
V ϑi

(∑
t↘1
s=1 ϑsx

)

(t ⇐ 1)2
.

For t = 1, as ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1) = ϑ↭1vc, ▷

▷ax

ϑ↭
t
(V ϑ1:t↘1 +

vc111
↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1)


a=000d,vc=000d,(bt=β111t)t→[T↓1]

= 0, so we can use the same for-

mula as t ⇑ 2 with empty sum
∑

t↘1
i=1 . Using the above calculation, we can further compute

▷f

▷ax


a=000d,vc=000d,(bt=β111t)t→[T↓1]

as follows:

ϑf(V, a, (bt)t→[T↑1], vc)

ϑax

∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

= E ϑ

ϑax

(
T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)2 ∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

= E
[(

T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

ϑ

ϑax

(
T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

]

= E
[(

T∑

t=1

ω
↭
tV

t↑1∑

i=1

1
t↑ 1

ωi +R!↓

T∑

t=1

ωt↓2

)
T∑

t=1

(
t↑1∑

i=1

ω
↭
tV ωiωix

(t↑ 1)
↑

t↑1∑

i=1

ω
↭
tV ωi

(∑t↑1
s=1 ωsx

)

(t↑ 1)2

)]
(E.7)

= 0,
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where we used the fact that ϑi is drawn from a symmetric distribution, and flipping the sign of the
variable as ⇐ϑi yields the same distribution, which leads to the following:

E
[(

T∑

t=1

ϑ↭
t
V

t↘1∑

i=1

1

t ⇐ 1
ϑi + R!≃

T∑

t=1

ϑt≃2

)
T∑

t=1




t↘1∑

i=1

ϑ↭
t
V ϑiϑix

(t ⇐ 1)
⇐

t↘1∑

i=1

ϑ↭
t
V ϑi

(∑
t↘1
s=1 ϑsx

)

(t ⇐ 1)2




]

= E
[(

T∑

t=1

ϑ↭
t
V

t↘1∑

i=1

1

t ⇐ 1
ϑi + R!≃

T∑

t=1

ϑt≃2

)
T∑

t=1



⇐

t↘1∑

i=1

ϑ↭
t
V ϑiϑix

(t ⇐ 1)
+

t↘1∑

i=1

ϑ↭
t
V ϑi

(∑
t↘1
s=1 ϑsx

)

(t ⇐ 1)2




]
.

This yields Equation (E.7)=0.

Step 2. Calculating ▷f

▷vc

.

We will use the following equation for t ⇑ 2:
▷

▷vc

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1)

=
▷

▷vc

t↘1∑

i=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)ei

exp(e↭
i
(ϑ↭1:t↘1a + bt↘1))∑

t↘1
s=1 exp(e↭s (ϑ↭1:t↘1a + bt↘1))

= ϑt.

For t = 1, we define ▷

▷vc

ϑ↭1(V ϑ1:0 + vc111
↭
0)Softmax(ϑ↭1:0a + b0) = ϑ1, so that we can use the same

formula as t ⇑ 2. Therefore, we can calculate ▷f

▷vc


a=000d,vc=000d,(bt=β111t)t→[T↓1]

as follows:

ϑf(V, a, (bt)t→[T↑1], vc)

ϑvc

∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

= E ϑ

ϑvc

(
T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)2 ∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

= E
[(

T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

ϑ

ϑvc

(
T∑

t=1

ω
↭
t (V ω1:t↑1 + vc111

↭
t↑1)Softmax(ω

↭
1:t↑1a+ bt↑1) +R!↓

T∑

t=1

ωt↓2

)∣∣∣∣
a=000d,vc=000d,(bt=ϖ111t)t→[T↓1]

]

= E
[(

T∑

t=2

ω
↭
tV

t↑1∑

i=1

1
t↑ 1

ωi +R!↓

T∑

t=1

ωt↓2

)
T∑

t=1

ωt

]
= 0.

The last line is due to the same reason as the last part of Step 1.

Step 3. Calculating ▷f

▷V
.

We calculate the following equation, which will be used to calculate ▷f

▷V


a=000d,vc=000d,(bt=β111t)t→[T↓1]

for t ⇑ 2:
▷

▷V
ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1)


a=000d,vc=000d,(bt=β111t)t→[T↓1]

=
▷

▷V

t↘1∑

i=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)ei

exp(e↭
i
(ϑ↭1:t↘1a + bt↘1))∑

t↘1
s=1 exp(e↭s (ϑ↭1:t↘1a + bt↘1))


a=000d,vc=000d,(bt=β111t)t→[T↓1]

=
t↘1∑

i=1

ϑtϑ
↭
i

exp(e↭
i
(ϑ↭1:t↘1a + bt↘1))∑

t↘1
s=1 exp(e↭s (ϑ↭1:t↘1a + bt↘1))


a=000d,vc=000d,(bt=β111t)t→[T↓1]

=
t↘1∑

i=1

1

t ⇐ 1
ϑtϑ

↭
i
.

For t = 1, note that ▷

▷V
ϑ↭
t
vc = OOOd→d, so we can use the same formula as t ⇑ 2 with empty sum∑

t↘1
i=1 .
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Therefore, we have

▷f(V, a, (bt)t↓[T↘1], vc)

▷V


a=000d,vc=000d,(bt=β111t)t→[T↓1]

= E ▷

▷V

(
T∑

t=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1) + R!≃

T∑

t=1

ϑt≃2

)2 
a=000d,vc=000d,(bt=β111t)t→[T↓1]

= E
[(

T∑

t=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1) + R!≃

T∑

t=1

ϑt≃2

)
a=000d,vc=000d,(bt=β111t)t→[T↓1]

▷

▷V

(
T∑

t=1

ϑ↭
t
(V ϑ1:t↘1 + vc111

↭
t↘1)Softmax(ϑ↭1:t↘1a + bt↘1) + R!≃

T∑

t=1

ϑt≃2

)
a=000d,vc=000d,(bt=β111t)t→[T↓1]

]

= E
[(

T∑

t=1

ϑ↭
t
V

t↘1∑

i=1

1

t ⇐ 1
ϑi + R!≃

T∑

t=1

ϑt≃2

)
T∑

t=1

t↘1∑

i=1

1

t ⇐ 1
ϑtϑ

↭
i

]

= E
[(

T∑

t=1

t↘1∑

i=1

(
1

t ⇐ 1
ϑ↭
t
V ϑi

)(
1

t ⇐ 1
ϑtϑ

↭
i

)
+ R!T≃

T∑

t↑=1

ϑt↑≃2ϑtϑ
↭
i

)]

= E
[(

T∑

t=1

t↘1∑

i=1

d∑

x=1

d∑

y=1

vxyϑtxϑiy

(
1

t ⇐ 1

)2

[ϑtzϑiw](z,w) + R!T≃

T∑

t↑=1

ϑt↑≃2ϑtϑ
↭
i

)]

=
T∑

t=1

t↘1∑

i=1

d∑

x=1

d∑

y=1

1

(t ⇐ 1)2
[ϖxzvxyϖyw](z,w) + E

[
R!T≃

T∑

t↑=1

ϑt↑≃2ϑtϑ
↭
i

]

=

(
T↘1∑

t=1

1

t

)
&V & + E

[
R!T≃

T∑

t↑=1

ϑt↑≃2ϑtϑ
↭
i

]
.

Therefore, if V φ = R!
T∑

T↓1
t=1 1/t

&↘1E
[
≃
∑

T

t=1 ϑt≃2ϑtϑ
↭
i

]
&↘1, then

▷f

▷V


a=000d,vc=000d,(bt=β111t)t→[T↓1],V =V ε

= Od→d. Lastly, we have

▷f

▷K


K↭(Qc+qc)=vc=000d,V =V ε

=

(
▷f

▷a

▷a

▷K

) 
a=000d,vc=000d,(bt=β111t)t→[T↓1],V =V ε

= OOOd→d

▷f

▷Q


K↭(Qc+qc)=vc=000d,V =V ε

=

(
▷f

▷a

▷a

▷Q

) 
a=000d,vc=000d,(bt=β111t)t→[T↓1],V =V ε

= OOOd→d

▷f

▷qc


K↭(Qc+qc)=vc=000d,V =V ε

=

(
▷f

▷a

▷a

▷qc

) 
a=000d,vc=000d,(bt=β111t)t→[T↓1],V =V ε

= 000d

which means that such configurations are first-order stationary points of Equation (5.2) with N = 1,
h(x) = x2, and ” = B(0, R!, ≃ · ≃).

E.7 DEFERRED PROOF OF THEOREM 5.2

Theorem 5.2. Consider the policy space ” = B(0, R!, ≃ · ≃) for some R! > 0. The configu-
ration of a single-layer linear self-attention model in Equation (5.3) (V, K, Q, vc, kc, qc) such that
K↭(Qc + qc) = vc = 000d and V = ⇐2R!&↘1E

(
≃
∑

T

t=1 ϑt≃ϑ1ϑ
↭
2

)
&↘1 is a global optimal solu-

tion of Equation (5.2) with N = 1, h(x) = x2. Moreover, every global optimal configuration of
Equation (5.2) within the parameterization class of Equation (5.3) has the same output function g.
Additionally, if & is a diagonal matrix, then plugging any global optimal configuration into Equa-
tion (5.3), and projecting the output with Proj!,↑·↑ is equivalent to FTRL with an L2-regularizer.
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This theorem involves the analysis of a non-convex optimization problem through stationary point
analysis. We identified the set of stationary points. By constructing the optimization problem as
shown in Equation (E.13), we significantly reduced the candidate set for optimal points using our
novel argument on the expected value of a nonnegative definite matrix. The main challenge here was
to address the global optimization problem in a non-convex setting, which required the exploitation
of the particular Transformer architecture.

Proof. The output of the single-layer linear self-attention structure is as follows:

g(Zt; V, K, Q, vc, kc, qc)

=
t∑

i=1

(V ϑiϑ
↭
i
(K↭(Qc + qc)) + (V k↭

c
(Qc + qc) + vc(Qc + qc)

↭K) ϑi + vck
↭
c
(Qc + qc)) ,

(E.8)
which can be expressed with a larger class

g(Zt,A, φ,C, ↽) :=
t∑

i=1

(Aϑiϑ
↭
i
φ + Cϑi + ↽), (E.9)

where A ↑ Rd→d, φ,C, ↽ ↑ Rd. Then, if a minimizer of

f(A, φ,C, ↽) : = E
(

T∑

t=1

↓ϑt,
t↘1∑

i=1

(Aϑiϑ
↭
i
φ + Cϑi + ↽)↔ ⇐ inf

ω↓!

〈
T∑

t=1

ϑt, ω

〉)2

can be expressed as A = V, φ = K↭(Qc + qc),C = V k↭
c
(Qc + qc) + vc(Qc + qc)↭K, φ =

vck↭
c
(Qc+ qc), then we can conclude that the corresponding V, Q, K, vc, qc, kc are also a minimizer

of

E
(

T∑

t=1

↓ϑt, g(Zt↘1)↔ ⇐ inf
ω↓!

〈
T∑

t=1

ϑi, ω

〉)2

,

since the corresponding V, Q, K, vc, qc, kc constitute a minimizer among a larger class. Now, since
” = B(000d, R!, ≃ · ≃), we can rewrite f as

f(A, φ,C, ↽) = E
(

T∑

t=1

↓ϑt,
t↘1∑

i=1

(Aϑiϑ
↭
i
φ + Cϑi + ↽)↔ + R!

∥∥∥∥
T∑

t=1

ϑi

∥∥∥∥
2

)2

. (E.10)

Step 1. Finding condition for ▷f

▷⇁
= 0.

Due to the Leibniz rule, if we calculate the partial derivative of Equation (E.10) w.r.t. ↽, we have

▷f(A, φ,C, ↽)

▷↽
=

▷

▷↽
E
(

T∑

t=1

↓ϑt,
t↘1∑

i=1

(Aϑiϑ
↭
i
φ + Cϑi + ↽)↔ + R!≃

T∑

t=1

ϑt≃2

)2

= E ▷

▷↽

(
T∑

t=1

↓ϑt,
t↘1∑

i=1

(Aϑiϑ
↭
i
φ + Cϑi + ↽)↔ + R!≃

T∑

t=1

ϑt≃2

)2

= E
T∑

t=1

ϑt

(
T∑

t=1

t↘1∑

i=1

(t ⇐ 1)ϑ↭
t

(Aϑiϑ
↭
i
φ + Cϑi + ↽) + R!≃

T∑

t=1

ϑt≃

)
. (E.11)

Since the expectation of either odd-order polynomial or even-order polynomial times ≃ · ≃2 is 0, due
to that ϑt follows a symmetric distribution, we have

E
T∑

t=1

(t ⇐ 1)ϑtR!

∥∥∥
T∑

t=1

ϑt

∥∥∥
2

= 0, E
T∑

t=1

(t ⇐ 1)ϑt

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi = 0.
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Now, we calculate

E
T∑

t=1

(t ⇐ 1)ϑt

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Aϑiϑ

↭
i
φ = E

T∑

t1=1

T∑

t=1

t↘1∑

i=1

(t1 ⇐ 1)ϑt1ϑ
↭
t
Aϑiϑ

↭
i
φ

=
(i)

E
T∑

t=1

t↘1∑

i=1

(t ⇐ 1)ϑtϑ
↭
t
Aϑiϑ

↭
i
φ = E

T∑

t=1

(t ⇐ 1)2ϑtϑ
↭
t
A&φ =

1

6
T (2T 2

⇐ 3T + 1)&A&φ,

where (i) holds since if t1 ∋= t, due to the independence of ϑt, ϑt1 , we can use Eϑt = 0. Lastly,

E
T∑

t=1

(t ⇐ 1)ϑt

T∑

t=1

t↘1∑

i=1

ϑ↭
t
↽ = E

T∑

t1=1

T∑

t=1

(t1 ⇐ 1)(t ⇐ 1)ϑt1ϑ
↭
t
↽ =

1

6
T (2T 2

⇐ 3T + 1)&↽.

Plugging the above equations into Equation (E.11), we have
▷f(A, φ,C, ↽)

▷↽
=

1

6
T (2T 2

⇐ 3T + 1)(&A&φ + &↽).

Due to the optimality condition, we have
A&φ + ↽ = 0. (E.12)

Step 2. Plugging the optimality condition for ▷f

▷⇁
into Equation (E.10).

Plugging Equation (E.12) to Equation (E.10), f can be written as

f(A,φ,C, ⇐A&φ) = E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t

(A(ϑiϑ
↭
i

⇐ &)φ + Cϑi) + R!

∥∥∥∥
T∑

t=1

ϑt

∥∥∥∥
2

)2

= E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
A(ϑiϑ

↭
i

⇐ &)φ

)2

  
(i)

+E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)2

+ E
(

R!

∥∥∥∥
T∑

t=1

ϑt

∥∥∥∥
2

)2

+ 2E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
A(ϑiϑ

↭
i

⇐ &)φ

)(
T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)

  
(ii)

+ 2E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
A(ϑiϑ

↭
i

⇐ &)φ

)(
R!

∥∥∥∥
T∑

t=1

ϑt

∥∥∥∥
2

)

  
(iii)

+ 2E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)(
R!

∥∥∥∥
T∑

t=1

ϑt

∥∥∥∥
2

)
.

For the part (i), we have

E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
A(ϑiϑ

↭
i

⇐ &)φ

)2

= E
[

T∑

t1=1

t1↘1∑

i1=1

T∑

t=1

t↘1∑

i=1

φ↭(ϑi1ϑ
↭
i1

⇐ &)A↭ϑt1ϑ
↭
t
A(ϑiϑ

↭
i

⇐ &)φ

]

=
(1)

E
[

T∑

t=1

t↘1∑

i1=1

t↘1∑

i=1

φ↭(ϑi1ϑ
↭
i1

⇐ &)A↭ϑtϑ
↭
t
A(ϑiϑ

↭
i

⇐ &)φ

]

=
(2)

E
[

T∑

t=1

t↘1∑

i=1

φ↭(ϑiϑ
↭
i

⇐ &)A↭ϑiϑ
↭
i
A(ϑiϑ

↭
i

⇐ &)φ

]

=
(T ⇐ 1)T

2
φ↭E [(ϑiϑ

↭
i

⇐ &)A↭&A(ϑiϑ
↭
i

⇐ &)] φ (E.13)

=
(T ⇐ 1)T

2
φ↭E

[
(
▽

&A(ϑiϑ
↭
i

⇐ &))↭(
▽

&A(ϑiϑ
↭
i

⇐ &))
]
φ.
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Here, (1) holds because if t1 ∋= t, we know that Eϑt1 = Eϑt = 0, and they are independent, and (2)
holds because if i1 ∋= i, we can calculate E(ϑi1ϑ

↭
i1

⇐ &) = Od→d. In addition, we can easily check

that (ii) and (iii) are 0 as they are polynomials of odd degrees and we have Z
d
= ⇐Z. Note that

Equation (E.13) is minimized when P(
▽

&A(ϑiϑ
↭
i

⇐ &)φ = 000d) = 1.

If A ∋= Od→d, suppose that the singular value decomposition of A = U’V yields that ’ is a
diagonal matrix whose first diagonal element is non-zero, and U, V are orthogonal matrices. Then,
we want to find φ that

▽
&U’V (ϑiϑ

↭
i

⇐ &)φ = 000d for any ϑi such that p(ϑi) ∋= 0, where p indicates
the probability density function of loss vectors. Since & and U are invertible, we only need to
consider ’V (ϑiϑ

↭
i

⇐ &)φ = 000d. Since ’’s first diagonal component is non-zero, we will consider
equation e↭1’V (ϑiϑ

↭
i

⇐ &)φ = 0. This is equivalent to V1(ϑiϑ
↭
i

⇐ &)φ = 0, where V1 is the first row
of V , and is a non-zero vector.

Now, we will generally consider ax,y(v) := vv↭x ⇐ y where x, y, v ↑ Rd and ax,y : B(000d, 2ε1, ≃ ·

≃) ⇓ Rd function. Then, we can check that the Jacobian of ax,y(v) is vx↭ + (v · x)I , and we
can find that the determinant of the Jacobian is nonzero when v = ε1x if x ∋= 000d. Therefore, the
volume of (V1(ϑiϑ

↭
i

⇐ &)) for ϑi ↑ B(000d, cz, ≃ · ≃) is greater than the volume of (V1(vv↭ ⇐ &)) for
v ↑ B(ε1V

↭
1 , ε2, ≃ · ≃), where cz is a constant such that B(000d, cz, ≃ · ≃) ↘ supp(Z), and ε1, ε2 > 0

satisfy that ε1|V1| + ε2 < cz . Here, we define ε2 > 0 sufficiently small so that the determinant
of Jacobian(vv↭V ↭

1 ⇐ &V ↭
1 ) > 0 for v ↑ B(ε1V

↭
1 , ε2, ≃ · ≃), and v ⇓ vv↭V ↭

1 ⇐ &V ↭
1 is a one-

to-one correspondence, by inverse function theorem. Therefore, the volume of (V1(vv↭ ⇐ &)) for
v ↑ B(ε1V

↭
1 , ε2, ≃ · ≃) can be calculated as

[Volume (V1(vv↭ ⇐ &)) for v ↑ B(ε1V
↭
1 , ε2, ≃ · ≃)] =



v↓B(↽1V
↭
1 ,↽2,↑·↑)

det(Jacobian(V1(vv↭ ⇐ &)))
dv > 0.

Therefore, Volume(V1(vv↭ ⇐ &)) where v ↑ B(ε1V
↭
1 , ε2, ≃ · ≃) is non-zero, so that we can find d

loss vectors {ϑi}i↓[d] such that the vectors {V1(ϑiϑ
↭
i

⇐ &)}i↓[d] are linearly independent. Hence, if
we want to minimize Equation (E.13), either A = Od→d or φ = 000d should hold. In both cases,
Equation (E.9) can be re-written as

g(Zt;A, φ,C, ↽) :=
t∑

i=1

Cϑi,

and this is covered by the original parametrization (Equation (E.8)) with K↭(Qc + qc) = vc = 000d.

Step 3. Calculating ▷f

▷C .

Now, we optimize over C, by minimizing the following objective:

f(C) : = E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi + R!≃

T∑

t=1

ϑt≃

)2

= E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)2

  
(i)

+2E
((

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)
R!≃

T∑

t=1

ϑt≃

)
+ E

(
R!≃

T∑

t=1

ϑt≃

)2

=
T (T ⇐ 1)

2
Tr (C↭&C&) + 2E



B
T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi≃

T∑

j=1

ϑj≃



 + E
(

R!≃

T∑

t=1

ϑt≃

)2

.
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Here, (i) can be calculated as follows:

E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
t
Cϑi

)2

= E
(

T∑

t1=1

t1↘1∑

i1=1

T∑

t=1

t↘1∑

i=1

ϑ↭
i1
C↭ϑt1ϑ

↭
i
Cϑi

)

=
(1)

E
(

T∑

t=1

i↘1∑

i1=1

t↘1∑

i=1

ϑ↭
i1
C↭ϑiϑ

↭
i
Cϑi

)
= E

(
T∑

t=1

i↘1∑

i1=1

t↘1∑

i=1

ϑ↭
i1
C↭&Cϑi

)

=
(2)

E
(

T∑

t=1

t↘1∑

i=1

ϑ↭
k
C↭&Cϑi

)
=
(3)

ETr

(
T∑

t=1

t↘1∑

i=1

C↭&Cϑiϑ
↭
k

)
=

T (T ⇐ 1)

2
Tr (C↭&C&) ,

since (1) holds because if t1 ∋= t, we already know that Eϑt = Eϑt1 = 0, (2) holds due to a similar
reason, and (3) comes from Tr(AB) = Tr(BA).

We calculate ▷f(C)
▷C :

▷f(C)

▷C = T (T ⇐ 1)&C& + 2R!E



≃

T∑

j=1

ϑj≃

T∑

t=1

t↘1∑

i=1

ϑtϑ
↭
i



 .

Hence, the optimal C = ⇐
2R”

T (T↘1)&
↘1E

(
≃
∑

T

j=1 ϑj≃
∑

T

t=1

∑
t↘1
i=1 ϑtϑ

↭
i

)
&↘1.

Now, we see that for the special case of & = I , we have C = ⇐R!E
(
≃
∑

T

j=1 ϑj≃ϑtϑ
↭
i

)
. If we

calculate the (a, b)-coordinate of C, we need to calculate

Eϖ





√√√√
d∑

o=1

(
T∑

s=1

ϑso)2ϑiaϑkb



 .

If a ∋= b, then since Z is symmetric, the term above becomes zero. Therefore, we only need to

consider the case when a = b, which is Eϖ

∑
d

o=1(
∑

T

s=1 ϑso)2ϑiaϑka


, and it will be the same

value for all a ↑ [d] since ϑi’s coordinates are independent.

Now, we calculate the scale of Eϖ

∑
d

o=1(
∑

T

s=1 ϑso)2ϑi1ϑk1


. We have Z :=

∑
d↓1
o=1 (

∑
T

s=1 ϖso)2

T (d↘1)
a.s.
⇓ 1 as d ⇓ ↖ (by the law of large numbers) and we define W :=

∑
s ↖=i,k

ϑs1/
▽

T which is independent of ϑi1 and ϑk1.

Eω






d∑

o=1

(
T∑

s=1

ωso)2ωi1ωk1



 = EZ,W,ωi1,ωk1


T (d↑ 1)Z + (

↔

TW + ωi1 + ωk1)2ωi1ωk1



= EZ,W,ωi1,ωk1↓0


T (d↑ 1)Z + (

↔

TW + ωi1 + ωk1)2ωi1ωk1 ↑


T (d↑ 1)Z + (
↔

TW + ωi1 ↑ ωk1)2ωi1ωk1



= EZ,W,ωi1,ωk1↓0



 4(
↔
TW + ωi1)ωk1

T (d↑ 1)Z + (
↔
TW + ωi1 + ωk1)2 +


T (d↑ 1)Z + (

↔
TW + ωi1 ↑ ωk1)2

ωi1ωk1



 .

Taking d ⇓ ↖, we have


T (d ⇐ 1)Z + (
▽

TW + ϑi1 + ϑk1)2 +


T (d ⇐ 1)Z + (
▽

TW + ϑi1 ⇐ ϑk1)2

2
▽

Td

d
⇓ 1,

which further implies
▽

Td
4(

▽
TW + ϑi1)ϑk1

T (d ⇐ 1)Z + (
▽

TW + ϑi1 + ϑk1)2 +


T (d ⇐ 1)Z + (
▽

TW + ϑi1 ⇐ ϑk1)2
ϑi1ϑk1

d
⇓

▽

Td
4(

▽
TW + ϑi1)ϑk1

2
▽

Td
ϑi1ϑk1 = 2(

▽

TW + ϑi1)ϑi1ϑk1
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as d ⇓ ↖. Therefore,

lim
d≃↗

EZ,W,ϖi1,ϖk1⇒0




▽

Td
4(

▽
TW + ϑi1)ϑk1

T (d ⇐ 1)Z + (
▽

TW + ϑi1 + ϑk1)2 +


T (d ⇐ 1)Z + (
▽

TW + ϑi1 ⇐ ϑk1)2
ϑi1ϑk1





= EZ,W,ϖi1,ϖk1⇒0

[
2(

▽

TW + ϑi1)ϑi1ϑk1

]
= Eϖi1,ϖk1⇒0


ϑ2
i1ϑk1



which is a constant. The last equality came from the fact that W , ϑi1, ϑk1 are independent random
variables, and expectation of ϑi1 is zero. Therefore, the output of the single-layer linear self-attention
provides us with online gradient descent with step-size $(R!/

▽
Td). In the online learning liter-

ature, we usually set the gradient step size as $(R!/
▽

Td) (Hazan, 2016, Theorem 3.1), which is
consistent with the result above.

E.8 EMPIRICAL VALIDATION OF THEOREM E.2 AND THEOREM 5.2

We now provide empirical validations for Theorem E.2 and Theorem 5.2. We provide the training
details and the results as follows.

E.8.1 EMPIRICAL VALIDATION OF THEOREM E.2

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimen-
sionality d to 32, with the loss vector ϑi’s distribution Z following a standard normal distribution
N (0, 1). During training, we conducted 40,000 epochs with a batch size of 512. We employed the
Adam optimizer, setting the learning rate to 0.001. We initialized the value, query, and key vectors
(vc, qc, kc) as zero vectors.

Our empirical analysis aims to demonstrate that the optimized model inherently emulates online
gradient descent. To illustrate this, we will focus on two key convergence properties: K↭Q ap-
proaching the zero matrix OOOd→d and V converging to a111d111

↭
d

+ bId→d, where a and b are con-
stants in R. The conditions K↭Q = OOOd→d and V = a111d111

↭
d

+ bId→d imply that the function
g(Zt; V, Q, K) =

∑
t

i=1(b ⇐ a)ϑi, effectively emulating the process of an online gradient descent
method. We repeated 10 times of the experiments. For verifying K↭Q = OOOd→d, we will measure
Frobenius norm (≃ · ≃F ) of K↭Q. Also for measuring the closeness of V and a111d111

↭
d

+ bId→d, we
will measure mina,b↓R ≃V ⇐ (a111d111

↭
d

+ bId→d)≃F /b. The results are demonstrated in the first plot of
Figure E.1.

E.8.2 EMPIRICAL VALIDATION OF THEOREM 5.2

We now focus on two key convergence properties: K↭(Q111d+qc) approaching the zero vector 000d and
V converging to a111d111

↭
d
+ bId→d, where a and b are constants in R. The conditions K↭(Q111d + qc) =

000d and V = a111d111
↭
d

+ bId→d imply that the function g(Zt; V, Q, K) =
∑

t

i=1(b ⇐ a)ϑi, effectively
emulating the process of an online gradient descent method. We repeated 10 times. For verifying
K↭(Q111d + qc) = 000d, we will measure 2-norm of K↭(Q111d + qc). Also for measuring the closeness
of V and a111d111

↭
d

+ bId→d, we will measure mina,b↓R ≃V ⇐ (a111d111
↭
d

+ bId→d)≃F /b. The results are
demonstrated in the second plot of Figure E.1.

E.9 DISCUSSIONS ON THE PRODUCTION OF FTRL WITH ENTROPY REGULARIZATION

Now, we will consider projecting a single-layer linear self-attention model into a constrained domain
such as a simplex, which is more amenable to the Experts Problem setting. To this end, we con-
sider the following parameterization by adding an additional non-linear structure for the single-layer
linear self-attention:

g(Zt; V, K, Q, vc, kc, qc) = Operator

(
t∑

i=1

(V ϑi + vc)((Kϑi + kc))
↭

· (Qc + qc))

)
, (E.14)

where the Operator denotes projection to the convex set.
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Figure E.1: Empirical validation of Theorem E.2 (top), Theorem 5.2 (middle), and Conjecture 3
(bottom). The observed convergence in Theorem E.2 and Conjecture 3’s result suggests that config-
uration in Theorem E.2 and Conjecture 3 are not only the local optimal point, but it has the potential
as being the global optimizer.

Conjecture 3. Assume & = I . Then, the configuration that K↭(Qc + qc) = vc = 000d and V =

#̃
(
⇐

1
⇑

nd

)
Id→d is a first-order stationary point of Equation (5.2) with N = 1 and h(x) = x2 when

LLMε is parameterized with Equation (E.14), Operator = Softmax, and ” = !(A). This
configuration performs FTRL with an entropy regularizer which is a no-regret algorithm.

We provide an idea for proving the conjecture, together with its numerical validation. Also, we
have observed in Figure E.1 that Theorem E.2 and Conjecture 3 might also be a global optimizer, as
training results have provided the configuration that Theorem E.2 and Conjecture 3 have suggested.

To be specific, we will consider

f(V, a,ϖ, vc) = E




T∑

t=1

d∑

s=1

ωts

exp

e
↭
s

∑t↑1
j=1(V ωjω

↭
ja+ (ϖV + vca

↭)ωj + vcϖ)


∑d
y=1 exp


e
↭
y
∑t↑1

j=1(V ωjω
↭
ja+ (ϖV + vca

↭)ωj + vcϖ)
 ↑min

s

T∑

t=1

ωts





2

and will try to prove that a = 000d, vc = v111d, V = kI is a first-order stationary point.

Step 1. Calculating ▷f

▷vc

.

We use the following formula: for x ↑ [d] and t ⇑ 2, we have

ϑ

ϑvcx
exp

(
e
↭
y

t∑

i=1

(V ωiω
↭
i a+ (ϖV + vca

↭)ωi + vcϖ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e
↭
y

t∑

i=1

(V ωiω
↭
i a+ (ϖV + vca

↭)ωi + vcϖ)

)
ϑ

ϑvcx

(
e
↭
y

t∑

i=1

(V ωiω
↭
i a+ (ϖV + vca

↭)ωi + vcϖ)

)∣∣∣∣
a=000d,vc=v111d,V =kI

= exp

(
e
↭
y

t∑

i=1

(V ωiω
↭
i a+ (ϖV + vca

↭)ωi + vcϖ)

)
t∑

i=1

(a↭
ωiω

↭
i ex + ϖ)

∣∣∣∣
a=000d,vc=v111d,V =kI

= tϖ exp(vϖ) exp(ϖk
t∑

i=1

ωiy),
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and for t = 1, ▷

▷vcx

exp
(
e↭
y

∑
t

i=1(V ϑiϑ
↭
i
a + (φV + vca↭)ϑi + vcφ)

) 
a=000d,vc=v111d,V =kI

= 0, so

we can use the same formula with t ⇑ 2. Thus, we have

ϑ

ϑvcx




T∑

t=1

d∑

s=1

ωts

exp

e
↭
s

∑t↑1
j=1(V ωjω

↭
ja+ (ϖV + vca

↭)ωj + vcϖ)


∑d
y=1 exp


e
↭
y
∑t↑1

j=1(V ωjω
↭
ja+ (ϖV + vca

↭)ωj + vcϖ)
 ↑min

s

T∑

t=1

ωts




∣∣∣∣
a=000d,vc=v111d,V =kI

= ϖ exp(vϖ)

T∑

t=1

t

d∑

s=1

ωts

∑d
y=1 exp

∑t↑1
j=1 ϖkωjy


exp

∑t↑1
j=1 ϖkωjs


↑

∑d
y=1 exp

∑t↑1
j=1 ϖkωjs


exp

∑t↑1
j=1 ϖkωjy



∑d
y=1 exp


e
↭
y
∑t↑1

j=1 ϖV ωj

2

= 0.

Therefore,

▷f(V, a, φ, vc)

▷vcx


a=000d,vc=v111d,V =kI

= E
[


T∑

t=1

d∑

s=1

ϑts

exp
(
e↭
s

∑
t↘1
j=1(V ϑjϑ

↭
j
a + (φV + vca↭)ϑj + vcφ)

)

∑
d

y=1 exp
(
e↭y

∑
t↘1
j=1(V ϑjϑ

↭
j
a + (φV + vca↭)ϑj + vcφ)

) ⇐ min
s

T∑

t=1

ϑts





▷

▷vcx




T∑

t=1

d∑

s=1

ϑts

exp
(
e↭
s

∑
t↘1
j=1(V ϑjϑ

↭
j
a + (φV + vca↭)ϑj + vcφ)

)

∑
d

y=1 exp
(
e↭y

∑
t↘1
j=1(V ϑjϑ

↭
j
a + (φV + vca↭)ϑj + vcφ)

) ⇐ min
s

T∑

t=1

ϑts




]

a=000d,vc=v111d,V =kI

= 0.

Step 2. Calculating ▷f

▷V
.

The following formula will be used for calculating ▷f

▷V


a=000d,vc=v111d,V =kI

: for r, c ↑ [d], we have

▷

▷Vrc

exp

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
a=000d,vc=v111d,V =kI

= exp

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
▷

▷Vrc

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
a=000d,vc=v111d,V =kI

= exp

(
t∑

i=1

kφϑiy + vφ

)
t∑

i=1

φ111(y = r)ϑic.

Therefore,

ϑf(V, a,ϖ, vc)
ϑVrc

∣∣∣∣
a=000d,vc=v111d,V =kI

= E
[


T∑

t=1

d∑

s=1

ωts

exp

e
↭
s

∑t↑1
j=1(V ωjω

↭
ja+ (ϖV + vca

↭)ωj + vcϖ)


∑d
y=1 exp


e
↭
y
∑t↑1

j=1(V ωjω
↭
ja+ (ϖV + vca

↭)ωj + vcϖ)
 ↑min

s

T∑

t=1

ωts





ϑ

ϑVrc




T∑

t=1

d∑

s=1

ωts

exp

e
↭
s

∑t↑1
j=1(V ωjω

↭
ja+ (ϖV + vca

↭)ωj + vcϖ)


∑d
y=1 exp


e
↭
y
∑t↑1

j=1(V ωjω
↭
ja+ (ϖV + vca

↭)ωj + vcϖ)
 ↑min

s

T∑

t=1

ωts




]∣∣∣∣

a=000d,vc=v111d,V =kI

= E
[


T∑

t=1

d∑

s=1

ωts

exp
∑t↑1

j=1 ϖkωjs + vϖ



∑d
y=1 exp

∑t↑1
j=1 ϖV ωjy + vϖ

 ↑min
s

T∑

t=1

ωts
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(
T∑

t=1

d∑

s=1

ωts

∑t↑1
j=1 ϖ111(s = r)ωjc exp

∑t↑1
j=1 ϖkωjs + vϖ

∑d
y=1 exp

∑t↑1
j=1 ϖkωjy + vϖ



∑d
y=1 exp

∑t↑1
j=1 ϖkωjy + vϖ

2

↑

T∑

t=1

d∑

s=1

ωts

exp
∑t↑1

j=1 ϖkωjs + vϖ

∑d
y=1

∑t↑1
j=1 ϖ111(y = r)ωjc exp

∑t↑1
j=1 ϖkωjy + vϖ



∑d
y=1 exp

∑t↑1
j=1 ϖkωjy + vϖ

2

)]

= ϖE
[


T∑

t=1

d∑

s=1

ωts

exp
∑t↑1

j=1 ϖkωjs



∑d
y=1 exp

∑t↑1
j=1 ϖV ωjy

 ↑min
s

T∑

t=1

ωts





(∑T
t=1

∑t↑1
j=1

∑d
y=1 ωtrωjc exp


ϖk

∑t↑1
j=1 ωjr


exp


ϖk

∑t↑1
j=1 ωjy



∑d
y=1 exp


ϖk

∑t↑1
j=1 ωjy

2

  
(i)

↑

∑T
t=1

∑t↑1
j=1

∑d
y=1 ωtyωjc exp


ϖk

∑t↑1
j=1 ωjr


exp


ϖk

∑t↑1
j=1 ωjy



∑d
y=1 exp


ϖk

∑t↑1
j=1 ωjy

2

  
(ii)

)]
.

We can observe the followings: 1) if r1 ∋= c1 and r2 ∋= c2, ▷f

▷Vr1c1


a=000d,vc=v111d,V =kI

=

▷f

▷Vr2c2


a=000d,vc=v111d,V =kI

holds, and 2) ▷f

▷Vr1r1


a=000d,vc=v111d,V =kI

= ▷f

▷Vr2r2


a=000d,vc=v111d,V =kI

.

Step 3. Calculating ▷f

▷β
.

The following formula will be used for calculating ▷f

▷β


a=000d,vc=v111d,V =kI

:

▷

▷φ
exp

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
a=000d,vc=v111d,V =kI

= exp

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
▷

▷φ

(
e↭
y

t∑

i=1

(V ϑiϑ
↭
i
a + (φV + vca

↭)ϑi + vcφ)

)
a=000d,vc=v111d,V =kI

= tvφ exp

(
t∑

i=1

kφϑiy + vφ

)
.

Further, we have

ϑ

ϑϖ
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Step 4. Calculating ▷f

▷a
.
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Note that the value does not depend on x, which means that ▷f

▷a


a=000d,vc=v111d,V =kI

= c̃111d for some

constant c̃.

E.9.1 NUMERICAL ANALYSIS OF STEP 2 AND STEP 4

In Steps 2 and 4 above, we were not able to show that a k whose value becomes zero exists. We hence

provide some empirical evidence here. First, we attach the estimated ▷f

▷Vrc


a=000d,vc=v111d,V =kI

(r ∋=
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c), ▷f

▷Vrr


a=000d,vc=v111d,V =kI

, ▷f

▷ax


a=000d,vc=v111d,V =kI

and ▷f

▷ax


a=000d,vc=v111d,V =kI

graph with respect to

k value when ϑts ∞ Unif([0, 1]) for all t ↑ [T ], s ↑ [d]. While the graph of ▷f

▷V


a=000d,vc=v111d,V =kI

is not stable, we can see that k for ▷f

▷Vrc


a=000d,vc=v111d,V =kI

= 0, ▷f

▷Vrr


a=000d,vc=v111d,V =kI

= 0 and

▷f

▷ax


a=000d,vc=v111d,V =kI

= 0 is very similar in Figure E.2. We used the Monte Carlo estimation of

1, 000, 000 times.

E.9.2 EMPIRICAL VALIDATION

Our model architecture is defined as follows: the number of layers T is set to 30 and the dimen-
sionality d to 32, with the loss vector li’s distribution Z following a standard normal distribution
N (0, 1). During training, we conducted 40,000 epochs with a batch size of 512. We employed the
Adam optimizer, setting the learning rate to 0.001. We focus on two key convergence properties:
K↭(Q111 + qc) approaching the zero vector 000d and V converging to a111d111

↭
d

+ bId→d, where a and b
are constants in R. The conditions K↭(Q111 + qc) = 000d and V = a111d111

↭
d

+ bId→d imply that the
function g(Zt; V, Q, K) =

∑
t

i=1(b ⇐ a)li, effectively emulating the process of an online gradient
descent method. We repeated 10 times. For verifying K↭(Q111 + qc) = 000d, we will measure 2-norm
of K↭(Q111 + qc). Also for measuring the closeness of V and a111d111

↭
d

+ bId→d, we will measure
mina,b↓R ≃V ⇐ (a111d111

↭
d
+ bId→d)≃2,2/b. The results are demonstrated in the third plot of Figure E.1.

E.10 COMPARISON WITH IN-CONTEXT-LEARNING ANALYSES IN SUPERVISED LEARNING

The very recent studies by Ahn et al. (2023); Zhang et al. (2023a); Mahankali et al. (2023)
have demonstrated that if Zt = ((x1, y1), . . . , (xt, yt), (xt+1, 0)) and the “instruction tuning”
loss (i.e., E[≃ŷt+1 ⇐ yt+1≃

2]) is being minimized with a single-layer linear self-attention model,
then a global optimizer among single-layer linear self-attention models yields the output ŷn+1 =
↼
∑

n

i=1 yix
↭
i
xn+1. This output can be interpreted as a gradient descent algorithm, indicating that

a single-layer linear self-attention model implicitly performs gradient descent. However, in the on-
line learning setting where there are no y-labels, such an implicit gradient descent update-rule is
hard to define. Compared to the previous studies, our global optimizer among single-layer linear
self-attention models is an explicit and online gradient descent update for online learning. With a
different loss (regret-loss v.s. instruction-tuning-loss), the techniques to obtain the seemingly similar
results are also fundamentally different.

E.11 DETAILS OF SECTION 5.4

Randomly generated loss sequences. We use the same loss vectors as those in Section 3.2 for
randomly generated loss functions, and compare the results with that using GPT-4. The results show
that with regret-loss, both the trained single-layer self-attention model and the trained Transformers
with multi-layer self-attention structures can achieve comparable regrets as FTRL and GPT-4. The
results can be found in Figure E.3.

Loss sequences with certain trends. We investigate the case where the loss sequences have pre-
dictable trends such as linear-trend or sine-trend. One might expect that the performance of the
trained Transformer would surpass the performance of traditional no-regret learning algorithms such
as FTRL, since they may not be an optimal algorithm for the loss sequence with a predictable trend.
We modify the training distribution by changing the distribution of random variable Z (which gen-
erates the loss vectors ϑt) to follow two kinds of trends: linear and sine functions. The results, as il-
lustrated in Figure E.4, show that the trained single-layer self-attention model and the trained Trans-
former with multi-layer self-attention structures with regret-loss outperformed GPT-4 and FTRL in
terms of regret, when the loss sequence is a linear trend. Similarly, Figure E.4 shows that the trained
Transformer with multi-layer self-attention structures with regret-loss is comparable to GPT-4 and
outperformed FTRL in terms of regret, when the loss sequence is a sine-trend. Note that the training
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Figure E.2: Calculation of 20 ▷f

▷Vrc


a=000d,vc=v111d,V =kI

(r ∋= c)(red), 20 ▷f

▷Vrr


a=000d,vc=v111d,V =kI

(blue),

and ▷f

▷ax


a=000d,vc=v111d,V =kI

(black). We experimented with n ↑ [4, 9] and d ↑ [4, 9]. The fig-

ure might indicate that φk that makes the derivative zero of ▷f

▷Vrc


a=000d,vc=v111d,V =kI

(r ∋= c),

▷f

▷Vrr


a=000d,vc=v111d,V =kI

, and ▷f

▷ax


a=000d,vc=v111d,V =kI

would coincide.

dataset does not contain the sequence of losses. Nonetheless, by focusing on the overall trend during
training, we can attain performance that is either superior to or on par with that of FTRL and GPT-4.
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Figure E.3: Regret performance for the randomly generated loss sequences that are generated by
Gaussian with truncation and uniform distribution. No-regret behaviors of single-layer and multi-
layer self-attention models are validated by both of our frameworks (low p-values and φ̂0 < 1).
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Figure E.4: Regret performance for the randomly generated loss sequences that are generated by
linear-trend and sine-trend. No-regret behaviors of single-layer and multi-layer self-attention models
are validated by both of our frameworks (low p-values and φ̂0 < 1).

Repeated games. We then investigate the case of multi-player repeated games. We study
2x2, 3x3x3, 3x3x3x3 games, where each entry of the payoff matrix is sampled randomly from
Unif([0, 10]). The results, as illustrated in Figure E.5, show that the trained single-layer self-
attention model and the trained Transformer with multi-layer self-attention structures with regret-
loss have a similar performance as that of FTRL. However, GPT-4 still outperforms the trained
single-layer self-attention model and the trained Transformer with multi-layer self-attention struc-
tures in terms of regret. Since for repeated games (in which the environment faced by the agent
can be less adversarial than that in the online setting), there might be a better algorithm than FTRL
(see e.g., Daskalakis et al. (2021)), while our self-attention models have a similar structure as FTRL
(Theorem E.2 or Theorem 5.2). Also, in practical training (with the empirical loss in Equation (E.3)),
we possibly did not find the exact global minimum or stationary point of the expected loss in Equa-
tion (5.2). Hence, it is possible that GPT-4 may have lower regret than our trained models with the
regret-loss.

Two scenarios that caused regrettable behaviors of GPT-4. Finally, we investigate the cases that
have caused GPT-4 to have regrettable performance in Section 3.2. The results, which can be found
in Figure 3.4, show that both the trained single-layer self-attention model and the trained Trans-
former with regret-loss can achieve comparable no-regret performance as FTRL, and outperforms
that of GPT-4. This validates that our new unsupervised training loss can address the regrettable
cases, as our theory in Section 5.2 and 5.3 has predicted.

Remark on performance discrepancy between single-agent and multi-agent settings. Why
does GPT-4 exhibit better regret performance compared to single/multi-layer models in the single-
agent setting, yet underperform in the multi-agent setting? What factors contribute to this discrep-
ancy in its effectiveness across different settings?
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Figure E.5: Regret performance for the game with two players, three players, and four players
general-sum games. No-regret behaviors of single-layer and multi-layer self-attention models are
validated by both of our frameworks (low p-values and φ̂0 < 1).

In certain scenarios, LLMs can outperform FTRL/FTPL algorithms and single/multi-layer models.
This phenomenon is primarily observed when the loss sequence exhibits discernible trends, as seen
in the single-agent setting. In Section 3.4, we explored this behavior using canonical counterex-
amples for the follow-the-leader algorithm. Specifically, when the loss sequences display obvious
or predictable patterns, LLMs can effectively infer the next loss vector based on historical data,
enabling near-optimal decisions. This phenomenon can be further formalized through the lens of
in-context learning. Conversely, FTRL/FTPL algorithms, constrained by their update rules, tend
to produce near-uniform policies in such cases, as do single/multi-layer Transformer models. In
Appendix C.7, we provide ablation studies to support these observations, demonstrating that LLMs
leverage trends in the loss sequences by comparing their performance when provided with raw versus
summarized historical data. When the loss sequences are summarized (e.g., through aggregation),
the resulting loss vectors no longer reflect the trend, leading to significantly diminished performance
by the LLMs. These findings have been clarified and emphasized in the updated manuscript.

In contrast, in multi-agent or game settings, the loss sequence trends depend on the behavior of other
agents, rendering them inherently less predictable as all agents continually update their behavior
policies. This increased unpredictability likely accounts for the comparable or inferior performance
of LLMs relative to FTRL/FTPL algorithms or single/multi-agent-trained Transformer models in
such settings.

E.11.1 TRAINING DETAILS OF SECTION 5.4

We provide the training details of Section 5.4. For the multi-layer Transformer training, we used 4
layers, 1 head Transformer. For both single-layer and multi-layer, we employed the Adam optimizer,
setting the learning rate to 0.001. During training, we conducted 2,000 epochs with a batch size 512.
Moreover, when we trained for the loss sequences with the predictable trend, we used 4 layers, 1
head Transformer. For both single-layer and multi-layer, we employed the Adam optimizer, setting
the learning rate to 0.001. During training, we conducted 9,000 epochs with a batch size of 512.

E.12 ABLATION STUDY ON TRAINING EQUATION (5.2)

In this section, we provide an ablation study that changes N and k in Equation (5.2). To be specific,
we will set N = 1, 2, 4, f(x, k) = max(x, 0)k, h(x) = max(x, 0)2, and k = 1, 2. For the multi-
layer Transformer training, we used 4 layers and 1 head Transformer. For both single-layer and
multi-layer, we employed the Adam optimizer, setting the learning rate to 0.001. During training,
we conducted 2,000 epochs with a batch size of 512. We experimented on the randomly generated
loss sequences. Especially, we used the uniform loss sequence (ϑt ∞ Unif([0, 10]2)), with the results
in Figure E.6 and Figure E.7; and the Gaussian loss sequence (ϑt ∞ N (5 ·1112, I)), with the results in
Figure E.8 and Figure E.9.
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Figure E.6: Ablation study for the uniform loss sequence trained with single-layer self-attention
layer and Softmax projection.
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Figure E.7: Ablation study for the uniform loss sequence trained with multi-layer self-attention layer
and Softmax projection.
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Figure E.8: Ablation study for the Gaussian loss sequence trained with single-layer self-attention
layer and Softmax projection.
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Figure E.9: Ablation study for the Gaussian loss sequence trained with single-layer self-attention
layer and Softmax projection.
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F LIMITATIONS AND CONCLUDING REMARKS

In this paper, we studied the online decision-making and strategic behaviors of LLMs quantitatively,
through the metric of regret. We first examined and validated the no-regret behavior of several repre-
sentative pre-trained LLMs in benchmark settings of online learning and games. As a consequence,
(coarse correlated) equilibrium can oftentimes emerge as the long-term outcome of multiple LLMs
playing repeated games. We then provide some theoretical insights into the no-regret behavior, by
connecting pre-trained LLMs to the follow-the-perturbed-leader algorithm in online learning, under
certain assumptions. We also identified (simple) cases where pre-trained LLMs fail to be no-regret,
and thus proposed a new unsupervised training loss, regret-loss, to provably promote the no-regret
behavior of Transformers without the labels of (optimal) actions. We established both experimental
and theoretical evidence for the effectiveness of our regret-loss.

As a first attempt toward rigorously understanding the online and strategic decision-making be-
haviors of LLMs through the metric of regret, We provide the following limitations and list some
potential directions for future research:

• There are more than one definitions of (dynamic-)regret in the online learning literature,
and we mainly focused on the so-called external-regret in the literature. There are some
other regret metrics we have studied, e.g., swap-regret (Blum & Mansour, 2007), which
may lead to stronger equilibrium notions in playing repeated games, or policy regret (Arora
et al., 2012a), which accounts for adaptive adversaries.

• Our new regret-loss has exhibited promises in our experiments for training modest-scale
Transformers. One limitation is that we have not trained other larger-scale models, such as
Foundation Models, for decision-making, which is an important ongoing effort.

• Our Theorem 4.1 towards explaining why LLMs achieved sublinear regret is highly hy-
pothetical. Given that LLMs are such complex, random, and black-box systems, there are
definitely behaviors that our Theorem 4.1 cannot fully capture, and there do exist other pos-
sible explanations. For example, an alternative in-context-learning-based explanation may
be used to account for the improved performance of LLMs on specific loss sequences with
trends. Specifically, LLMs may interpret past loss sequences as demonstrations to identify
the latent trends, make accurate predictions on the next loss, and make optimal decisions.
However, this explanation may not generalize to the loss sequences without obvious trends,
complementing our explanations based on the connection to no-regret learning algorithms,
which apply to general loss sequences (see Appendix C.7 for more discussions). Hence, it
would be interesting to propose and validate other hypotheses for the observed behaviors
of LLMs.

• No-regret behavior can sometimes lead to better outcomes in terms of social efficiency
(Blum et al., 2008; Roughgarden, 2015; Nekipelov et al., 2015). It would thus be interest-
ing to further validate the efficiency of no-regret LLM agents in these scenarios, as well
as identify new prompts and training losses for LLMs to promote the efficiency of the
outcomes.

• To evaluate the performance quantitatively, we focused on online learning and games
with numeric valued payoffs. It would be interesting to connect our no-regret-based and
game-theoretic framework with existing multi-LLM frameworks, e.g., debate, collabora-
tive problem-solving, and human/social behavior simulation, with potentially new notions
of regret (defined in different spaces) as performance metrics.
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