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PSM: Learning Probabilistic Embeddings for Multi-scale
Zero-shot Soundscape Mapping

Anonymous Authors
ABSTRACT
A soundscape is defined by the acoustic environment a person
perceives at a location. In this work, we propose a framework for
mapping soundscapes across the Earth. Since soundscapes involve
sound distributions that span varying spatial scales, we represent
locations with multi-scale satellite imagery and learn a joint rep-
resentation among this imagery, audio, and text. To capture the
inherent uncertainty in the soundscape of a location, we addition-
ally design the representation space to be probabilistic. We also fuse
ubiquitous metadata (including geolocation, time, and data source)
to enable learning of spatially and temporally dynamic representa-
tions of soundscapes. We demonstrate the utility of our framework
by creating large-scale soundscape maps integrating both audio
and text with temporal control. To facilitate future research on this
task, we also introduce a large-scale dataset, GeoSound, contain-
ing over 300𝑘 geotagged audio samples paired with both low- and
high-resolution satellite imagery. We demonstrate that our method
outperforms the existing state-of-the-art on both GeoSound and
the existing SoundingEarth dataset. Our dataset and code will be
made available at TBD.

CCS CONCEPTS
• Computing methodologies → Multimodal Learning; Self
Supervised Learning; Remote Sensing.

KEYWORDS
Soundscape Mapping, Audio Visual Learning, Probabilistic Repre-
sentation Learning

1 INTRODUCTION
Soundscape mapping involves understanding the relationship be-
tween locations on Earth and the distribution of sounds likely to be
heard at those locations. The soundscape of an area is strongly cor-
related with psychological and physiological health [26]. Therefore,
soundscape maps can be valuable tools for stakeholders in environ-
mental noisemanagement and urban planning [18, 29, 31]. Addition-
ally, various commercial technologies, such as augmented/virtual
reality and navigation systems, can utilize soundscape mapping to
provide an immersive experience.

Traditionally, soundscape mapping has been formulated as learn-
ing a predictive model that maps a fixed set of acoustic indicators
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(such as sound pressure, loudness, etc.) to a fixed set of descrip-
tors (such as pleasant, eventful, etc.) [15, 17, 27]. However, this
abstraction prevents us from fully understanding the underlying
acoustic scene at a location. Moreover, soundscape maps created in
such a manner rely on crowd-sourced data [5, 34], which is often
available only for densely populated and highly visited locations.
Therefore, traditional soundscape mapping techniques can only
generate sparse soundscape maps that lack generalizability beyond
regions with sufficient data. Consequently, these techniques are
not suitable for creating dense global soundscape maps.

To address the limitations of traditional soundscape mapping,
we adopt a formulation where, given a specific location, the task is
to train a machine learning model that directly predicts the sound
distribution likely to be encountered at that location. We represent
each location with a satellite image centered around it. This ap-
proach enables the generalization of soundscape mapping beyond
locations explicitly included in the training data.

We approach the soundscape mapping problem from the perspec-
tive of multimodal representation learning to design a shared em-
bedding space between audio and satellite imagery at the recorded
location of the audio. This learning strategy aims to bring posi-
tive audio-satellite image pairs closer while pushing negative pairs
farther apart in the embedding space. Ultimately, the multimodal
embedding space can be employed to generate soundscape maps
by computing similarity scores between the query and the satellite
image set covering the geographic region of interest.

However, the problem of soundscape mapping is inherently un-
certain. In most cases, multiple types of sounds can come from a
given geographic location. Similarly, a specific type of sound can
also come from multiple geographic locations. As such, paired lo-
cation and audio data are assured to contain sample pairs that are
labeled as negatives but are semantically similar to positives. We
call such sample pairs as pseudo-positives. Any method that learns
completely deterministic representations of sound and satellite im-
agery of the location of the sound ignores the uncertainty involved
in soundscape mapping. To address this, we argue that learning
a probabilistic cross-modal embedding space is more suitable for
this task. Accordingly, we learn a probabilistic multi-modal em-
bedding space [11] between audio, satellite imagery, and textual
description of audio. Moreover, to account for potential false nega-
tive matches during mapping, we identify pseudo-positive matches
during training [11].

The satellite image representing the capture location of the audio
can be obtained at different spatial resolutions, where the ground
area coverage of the satellite image increases as the zoom level
increases. In our work to create large-scale soundscape maps, we
are interested in learning an embedding space that models differ-
ences in the spatial resolution of the satellite imagery. Therefore,
we modify the zero-shot soundscape mapping formulation as multi-
scale zero-shot soundscape mapping so that ground-level sounds

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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may be mapped with satellite imagery at different zoom levels. We
achieve this by learning a shared satellite image encoder across dif-
ferent zoom levels that utilize a recently proposed Ground-Sample
Distance Positional Embedding (GSDPE) [36].

Our modalities of interest, satellite imagery, audio, and text, of-
ten have associated metadata that convey meaningful information
(such as latitude and longitude or the source of an audio sample).
We propose to fuse such metadata: location, time, and source from
which the audio was collected, into our framework. We demon-
strate that such information increases the discriminative power of
our embedding space and allows the creation of soundscape maps
conditioned on dynamic metadata settings during inference.

The most closely related prior work [25] in soundscape mapping
was trained on limited data (∼ 35k samples) from the SoundingEarth
dataset [20]. To advance research in this area, we curated a new
large-scale dataset, GeoSound, by collecting geotagged audios from
four different sources, increasing the dataset size six-fold to over
300k samples. We use GeoSound to train our framework that ad-
vances the state-of-the-art in zero-shot soundscape mapping by
learning a probabilistic, scale-aware, and metadata-aware joint mul-
timodal embedding space. Moreover, we demonstrate the capability
of the proposed framework in the creation of temporally dynamic
soundscape maps.

The main contributions of our work are as follows:

• We introduce a new large-scale dataset containing over 300k
geotagged audios paired with high-resolution (0.6m) and
low-resolution (10m) satellite imagery.

• We learn a metadata-aware, probabilistic embedding space
between satellite imagery, audio, and textual audio descrip-
tion for zero-shot multi-scale soundscape mapping.

• Wedemonstrate the utility of our framework (PSM:Probabilistic
Soundscape Mapping) in creating large-scale soundscape
maps created by querying our learned embedding space
with audio or text.

2 RELATEDWORKS
2.1 Audio Visual Learning
An intricate relationship exists between the audio and visual at-
tributes of a scene. Utilizing this relationship, there have been
numerous works in the field of audio-visual learning. [9, 20, 21, 23,
25, 33, 37, 45, 46]. Owens et al. [33] have demonstrated that encour-
aging the models to predict sound characteristics of a scene allows
them to learn richer representations useful for visual recognition
tasks. Hu et al. [21] proposed to learn from audio and images to
solve the task of aerial scene recognition. Relatively closer to the
formulation of our work, Salem et al. [37] proposed to learn a shared
feature space between satellite imagery, ground-level concepts, and
audio, which allowed them to predict sound cluster distribution
across large geographic regions. Recently, Khanal et al. [25] pro-
posed the learning of a tri-modal embedding space to map satellite
imagery with the most likely audio at a location.

2.2 Deterministic Contrastive Learning
The contrastive learning paradigm [28, 35, 39, 42] has significantly
advanced state-of-the-art multimodal learning capabilities through

rich cross-modal supervision. In the pursuit of advancing con-
trastive learning approaches for audio and text, Elizalde et al. [14]
and Wu et al. [44] have developed a Contrastive Language-Audio
Pretraining (CLAP) framework, showcasing strong zero-shot ca-
pabilities. Wav2CLIP [43] distills information learned from CLIP
to create a joint image-audio embedding space. AudioCLIP [19]
extends contrastive learning to audio, image, and text, exhibiting
impressive performance across various downstream tasks. Recently,
Heidler et al. proposed learning a shared representation space be-
tween audio and corresponding satellite imagery for use in various
downstream tasks in remote sensing. Similarly, Khanal et al. [25]
utilized the SoundingEarth dataset [20] to train a multimodal embed-
ding space using a deterministic contrastive loss [32] for zero-shot
soundscape learning.

2.3 Probabilistic Contrastive Learning
In our formulation of soundscape mapping, the satellite image pro-
vided as location context captures a geographic area containing
many sound sources. As such, deterministic contrastive learning
approaches cannot capture the inherent ambiguity in the map-
ping from satellite image to sound, as any sample can only be
represented by a single point in the embedding space. This limi-
tation can be addressed by representing embeddings probabilisti-
cally [7, 8, 11, 12, 22, 24, 30, 38, 41]. In other words, each sample
in probabilistic embedding space is represented by a probability
distribution whose parameters are learned, usually by a neural net-
work. A work by Chun et al., Probabilistic Cross-Modal Embeddings
(PCME) [12], represents samples as Gaussian distributions in the
embedding space and trains their framework using a contrastive
loss between the sample distributions computed by Monte-Carlo
sampling. Recently, Chun [11] proposed PCME++, which further
improved PCME by introducing a closed-form distance formulation
that removes the need for Monte-Carlo sampling to approximate
distribution differences. In our work, we adopt the PCME++ embed-
ding formulation to learn a probabilistic embedding space between
audio, a textual description of audio, and multiscale satellite im-
agery at the location of audio.

3 METHOD
This section describes the novel dataset we curated and our pro-
posed framework, PSM.

3.1 Dataset Creation
Prior work in zero-shot soundscape mapping [25] has utilized the
SoundingEarth dataset [20], which contains approximately 50k geo-
tagged audios paired with corresponding satellite imagery. To fa-
cilitate research on training large-scale models with a rich repre-
sentation space for soundscape mapping, we have expanded the
size of the dataset 6-fold by creating a dataset containing 309 019
geo-tagged audios from four different sources: iNaturalist [3], yfcc-
video [40], aporee [4], and freesound [1], each contributing 114 603,
96 452, 49 284, and 48 680 samples respectively. We pair these geo-
tagged audios with their corresponding Sentinel-2-cloudless imagery
with 10m GSD and 0.6m GSD Bing imagery.

In the prior work, GeoCLAP [25], samples were randomly split
between train/validation/test sets for training and evaluating their
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Figure 1: Our proposed framework, Probabilistic Soundscape Mapping (PSM), combines image, audio, and text encoders to
learn a probabilistic joint representation space. Metadata, including geolocation (l), month (m), hour (h), audio-source (a), and
caption-source (t), is encoded separately and fused with image embeddings using a transformer-based metadata fusion module.
For each encoder, 𝜇 and 𝜎 heads yield probabilistic embeddings, which are used to compute probabilistic contrastive loss.

models. We observed that such a data split strategy leads to the
issue of data leakage where evaluation data samples come from
the same set of locations present in the training set, preventing
the evaluation of the generalizability of a model to truly unseen
locations. To address this, we divide the world into 1° × 1° non-
overlapping cells where each cell containing some samples is ran-
domly assigned to either train/validation/test set. Our dataset con-
tains 294 019/5000/10 000 samples in the train/validation/test sets.
We also employ our split strategy on the SoundingEarth dataset with
a cell size of 10𝑘𝑚 × 10𝑘𝑚. This strategy resulted in 41 469/3242/5801
samples in train/validation/test sets. Details of our dataset and split
strategy are in the supplemental material.

3.2 Approach
This section describes our framework (PSM) for learning ametadata-
aware, probabilistic, and tri-modal embedding space for multi-scale
zero-shot soundscape mapping.

Figure 1 presents an overview of the PSM framework, which
comprises an image encoder, metadata fusion module, text encoder,
and audio encoder. The scale-aware image encoder converts mul-
tiscale satellite imagery into a 𝑑-dimensional representation. The
transformer-based metadata fusion module integrates metadata
(including location, month, time, audio source, and text source)
with the image representation, generating a metadata-aware prob-
abilistic image representation. Other modality-specific encoders
produce probabilistic embeddings for text and audio. PSM aims
to map tuples of satellite imagery, audio, and text into a shared
probabilistic representation space.

Given a geotagged audio 𝑋𝑎
𝑘
, textual description of the audio 𝑋 𝑡

𝑘
,

and a satellite image at a given location viewed at a zoom level 𝑙
(an integer between 1 and some maximum zoom level 𝐿) 𝑋 𝑖

𝑘,𝑙
,

(𝑋𝑎
𝑘
,𝑋 𝑡

𝑘
,𝑋 𝑖

𝑘,𝑙
) is the 𝑘-th audio-text-image triplet. PSM is trained

over the aggregation of all available triplets.

We use modality-specific transformer-based encoders followed
by their respective linear projection layers to obtain representations
(ℎ𝑎
𝑘
,ℎ𝑡
𝑘
,ℎ𝑖
𝑘,𝑙
) with same dimension 𝑑 .

ℎ𝑎
𝑘
= 𝑔𝑎𝑢𝑑𝑖𝑜 (𝑓𝑎𝑢𝑑𝑖𝑜 (𝑋𝑎

𝑘
)) (1)

ℎ𝑡
𝑘
= 𝑔𝑡𝑒𝑥𝑡 (𝑓𝑡𝑒𝑥𝑡 (𝑋 𝑡

𝑘
)) (2)

ℎ𝑖
𝑘
= 𝑔𝑖𝑚𝑎𝑔𝑒 (𝑓𝑖𝑚𝑎𝑔𝑒 (𝑋 𝑖

𝑘
, 𝑙𝑘 )) (3)

where (𝑓𝑎𝑢𝑑𝑖𝑜 , 𝑔𝑎𝑢𝑑𝑖𝑜 ), (𝑓𝑡𝑒𝑥𝑡 , 𝑔𝑡𝑒𝑥𝑡 ), (𝑓𝑖𝑚𝑎𝑔𝑒 , 𝑔𝑖𝑚𝑎𝑔𝑒 ) are (encoder,
projection-module) pairs producing 𝑑 dimensional embeddings: ℎ𝑎

𝑘
,

ℎ𝑡
𝑘
, and ℎ𝑖

𝑘
, for audio, text, and satellite image with zoom-level 𝑙𝑘

respectively.
We use GSDPE [36] to encode the position and scale of each

patch of satellite imagery at zoom-level (𝑙) to learn scale-aware
representations of multiscale satellite imagery,

𝑣𝑙,𝑥 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑔 ∗ 𝑙
𝐺

) 𝑝𝑜𝑠

10000
2𝑖
𝑑

(4)

𝑣𝑙,𝑦 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (𝑔 ∗ 𝑙
𝐺

) 𝑝𝑜𝑠

10000
2𝑖
𝑑

(5)

where 𝑝𝑜𝑠 is the position of the image patch along the given axis
(𝑥 or 𝑦), 𝑖 is the feature dimension index, 𝑙 is the zoom-level of the
image, 𝑔 is the GSD of the image, and 𝐺 is the reference GSD.

As discussed before, we are interested in learning metadata-
aware representation space. Therefore, we fuse four different com-
ponents ofmetadata (geolocation, month, hour, audio-source, caption-
source) with the satellite image embedding (ℎ𝑖

𝑘
) and obtain ametadata-

conditioned image embedding (ℎ𝑖′
𝑘
).

ℎ𝑖
′

𝑘
= 𝑔𝑚𝑒𝑡𝑎 (ℎ𝑖𝑘 ,𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) (6)

where 𝑔𝑚𝑒𝑡𝑎 is the metadata fusion module of our framework, ℎ𝑖′
𝑘

is the embedding corresponding to the learnable special token (*)
fed into 𝑔𝑚𝑒𝑡𝑎 .
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To learn a probabilistic embedding space, we define the em-
bedding of a given modality (𝑟 ) as a normally distributed random
variable, 𝑍𝑟 ∼ 𝑁 (𝜇𝑟 , 𝜎𝑟 ). We employ a closed-form probabilistic
contrastive loss [11] between all three pairs of embeddings. For any
two modalities 𝑝 and 𝑞, the closed-form sampled distance (CSD) as
defined in PCME++ [11] is:

𝑑 (𝑍𝑝 , 𝑍𝑞) = ∥𝜇𝑝 − 𝜇𝑞 ∥22 + ∥𝜎2𝑝 + 𝜎2𝑞 ∥1 (7)
In our implementation, we pass our modality-specific represen-
tations, ℎ𝑎

𝑘
, ℎ𝑡

𝑘
, and ℎ𝑖

′

𝑘
, through heads for 𝜇 and log(𝜎2) of the

Gaussian distribution representing our samples.
Based on the distance function defined in Equation 7, we can

then define the probabilistic matching objective function as follows:
L𝑚 = −𝑤𝑝𝑞 log(sigmoid(−𝑎.𝑑 (𝑍𝑝 , 𝑍𝑞) + 𝑏))−

(1 −𝑤𝑝𝑞) log(sigmoid(𝑎.𝑑 (𝑍𝑝 , 𝑍𝑞) − 𝑏)) (8)

where 𝑤𝑝𝑞 ∈ {0, 1} is the matching indicator between 𝑝 and 𝑞. 𝑎
and 𝑏 are learnable scalar parameters. L𝑚 (L𝑚𝑎𝑡𝑐ℎ) is computed
for all sample pairs in the mini-batch.

Soundscapemapping is inherently a one-to-manymatching prob-
lem. Given a satellite image at a location, there may be multiple
sounds that are likely to be heard there. Therefore, if we were to
simply assign 𝑤𝑝𝑞 as 0 or 1 for our dataset’s negative and pos-
itive matches, we would lose the opportunity to learn from the
potentially numerous false negatives. Therefore, we adopt a sim-
ilar strategy of learning from pseudo-positives, as formulated by
Chun [11]. In this approach, for a positive match (𝑝 ,𝑞), we consider
𝑞′ as a pseudo-positive match with 𝑞 if 𝑑 (𝑍𝑝 , 𝑍𝑞′ ) ≤ 𝑑 (𝑍𝑝 , 𝑍𝑞).
Finally, the objective function for a pair of modalities (𝑝, 𝑞) becomes
as follows:

L𝑝,𝑞 = L𝑚 + 𝛼L𝑝𝑠𝑒𝑢𝑑𝑜−𝑚 + 𝛽L𝑉 𝐼𝐵 (9)
where 𝛼 and 𝛽 control for the contribution of pseudo-match loss
and Variational Information Bottleneck (VIB) loss [6], respectively.
We use L𝑉 𝐼𝐵 as a regularizer to reduce overfitting, preventing the
collapse of 𝜎 to 0.

To learn a tri-modal embedding space for zero-shot soundscape
mapping, using Equation 9, we separately compute loss for all three
pairs of modalities: audio-text (𝑎, 𝑡 ), audio-image (𝑎, 𝑖), and image-
text(𝑖, 𝑡 ). Finally, the overall objective function to train PSM is as
follows:

L = L𝑎,𝑡 + L𝑎,𝑖 + L𝑖,𝑡 (10)

4 EXPERIMENTAL DETAILS
Audio/Text Processing: We use pre-trained models for the audio
and text modalities and their respective input processing pipelines
hosted on HuggingFace. Specifically, for audio, we extract the au-
dio spectrogram using the ClapProcessor wrapper for the pre-
trained CLAP [44] model clap-htsat-fused with default parame-
ters: feature_size=64, sampling_rate=48000, hop_length=480,
fft_window_size=1024. CLAP uses a feature fusion strategy [44]
to pre-process variable length sounds by extracting a spectrogram
of randomly selected 3 𝑑-second audio slices and the spectrogram
of the whole audio down-sampled to 10s. We choose 𝑑 =10s in our
experiments. Apart from the text present in the metadata, we also
obtain a textual description of audio from a recent SOTA audio cap-
tioning model, Qwen-sound [10], and use the captioning model’s

output only if it passes CLAP-score [44] based quality check. For
the textual descriptions of audio in our data, we adopt the similar
text processing as performed by CLAP [44] and tokenize our text
using RobertaTokenizer with max_length=128.

Satellite image processing: Our framework is trained with
satellite images at different zoom levels 𝑙 ∈ {1, 3, 5}. To obtain this
data, we first downloaded a large tile of images with size (𝐿ℎ)×(𝐿𝑤).
We obtained high-resolution 0.6m GSD imagery with a tile size of
1500 × 1500 from Bing and low-resolution 10m GSD imagery with
a tile size of 1280 × 1280 from Sentinel-2-cloudless. To get an image
at zoom-level 𝑙 , we center crop from the original tile with a crop
size of (𝑙ℎ) × (𝑙𝑤) and then resize it to an ℎ × 𝑤 image, where
(ℎ,𝑤) is (256, 256) for Sentinel-2 imagery and (300, 300) for Bing
imagery. This way, we can simulate the effect of change in coverage
area as the zoom-level changes while effectively keeping constant
input image size for training. During training, we randomly sam-
ple 𝑙 from a set {1, 3, 5} for each image instance. Then, for the
zoom-transformed image, we perform RandomResizedCrop with
parameters: {input_size=224, scale=(0.2, 1.0)} followed by
a RandomHorizontalFlip while only extracting a 224 × 224 center
crop of the image at the desired zoom-level 𝑙 for evaluation.

Metadata Fusion: To fuse metadata into our framework, we first
separately project the metadata components into 512-dimensional
space using linear layers and concatenate them with the satellite
image embedding from the image encoder and a learnable special
token. Finally, the set of tokens is fed into a lightweight transformer-
based module containing only 3 layers. The output of this module
is further passed through heads for 𝜇 and log(𝜎2) of the Gaussian
distribution representing metadata-conditioned image embeddings.
To avoid overfitting to the metadata, we independently drop each
metadata component at the rate of 0.5 during training.

Training:We initialize encoders from released weights of pre-
trainedmodels, SatMAE [13] for satellite imagery and CLAP [44] for
audio and text. We chose 𝑑 , the dimensionality of our embeddings,
to be 512. For regularization, we set the weight decay to 0.2. Our
training 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 was 128. We use Adam as our optimizer, with the
initial learning rate set to 5𝑒 − 5. To schedule the learning rate, we
use cosine annealing with warm-up iterations of 5𝑘 for experiments
with GeoSound and 2𝑘 for experiments with SoundingEarth.

Baseline: We use GeoCLAP [25], a SOTA zero-shot soundscape
mapping model, as a baseline for evaluation. GeoCLAP is con-
trastively trained using the infoNCE [32] loss between three modal-
ity pairs: image-audio, audio-text, and image-text.

Metrics:Weevaluate on two datasets:GeoSound, and SoundingEarth.
We use Recall@10% and the Median Rank of the ground truth as
our evaluation metrics. Recall@10% is defined as the proportion
of queries that include the ground-truth match in the top 10% of
the returned ranked retrieval list. We denote image-to-audio as I2A
and audio-to-image as A2I throughout the paper. Median Rank is
defined as the median overall positions in which the ground-truth
match appears in the ranked retrieval list. To assess the effective-
ness of text embeddings in cross-modal retrieval between satellite
images and audio, we also evaluate an experimental setting where,
during inference, we add the corresponding text embedding to the
query embedding during retrieval from the respective gallery.
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method loss text metadata zoom level I2A R@10% I2A median rank A2I R@10% A2I median rank
GeoCLAP infoNCE ✗ ✗ 1 0.399 1500 0.403 1464
GeoCLAP infoNCE ✓ ✗ 1 0.577 712 0.468 1141
ours infoNCE ✓ ✓ 1 0.709 462 0.871 241
ours PCME++ ✗ ✗ 1 0.423 1401 0.428 1344
ours PCME++ ✗ ✓ 1 0.828 261 0.829 248
ours PCME++ ✓ ✓ 1 0.901 113 0.943 100

GeoCLAP infoNCE ✗ ✗ 3 0.408 1441 0.420 1389
GeoCLAP infoNCE ✓ ✗ 3 0.577 707 0.483 1056
ours infoNCE ✓ ✓ 3 0.708 462 0.875 235
ours PCME++ ✗ ✗ 3 0.440 1302 0.443 1266
ours PCME++ ✗ ✓ 3 0.827 266 0.832 250
ours PCME++ ✓ ✓ 3 0.900 114 0.945 102

GeoCLAP infoNCE ✗ ✗ 5 0.409 1428 0.421 1373
GeoCLAP infoNCE ✓ ✗ 5 0.581 698 0.489 1036
ours infoNCE ✓ ✓ 5 0.709 461 0.875 238
ours PCME++ ✗ ✗ 5 0.440 1302 0.448 1279
ours PCME++ ✗ ✓ 5 0.821 281 0.826 261
ours PCME++ ✓ ✓ 5 0.896 115 0.941 107

Table 1: Experimental results for models trained on the GeoSound dataset with satellite imagery from Bing.

method loss text metadata zoom level I2A R@10% I2A median rank A2I R@10% A2I median rank
GeoCLAP infoNCE ✗ ✗ 1 0.459 1179 0.465 1141
GeoCLAP infoNCE ✓ ✗ 1 0.546 827 0.553 804
ours infoNCE ✓ ✓ 1 0.722 497 0.86 247
ours PCME++ ✗ ✗ 1 0.474 1101 0.485 1061
ours PCME++ ✗ ✓ 1 0.802 294 0.804 283
ours PCME++ ✓ ✓ 1 0.872 142 0.940 104

GeoCLAP infoNCE ✗ ✗ 3 0.454 1200 0.456 1197
GeoCLAP infoNCE ✓ ✗ 3 0.542 840 0.555 790
ours infoNCE ✓ ✓ 3 0.722 491 0.856 248
ours PCME++ ✗ ✗ 3 0.479 1086 0.487 1042
ours PCME++ ✗ ✓ 3 0.795 306 0.800 290
ours PCME++ ✓ ✓ 3 0.870 150 0.940 104

GeoCLAP infoNCE ✗ ✗ 5 0.458 1194 0.457 1184
GeoCLAP infoNCE ✓ ✗ 5 0.542 835 0.554 791
ours infoNCE ✓ ✓ 5 0.719 497 0.852 252
ours PCME++ ✗ ✗ 5 0.459 1172 0.465 1138
ours PCME++ ✗ ✓ 5 0.794 316 0.794 299
ours PCME++ ✓ ✓ 5 0.868 156 0.935 109

Table 2: Experimental results for models trained on the GeoSound dataset with satellite imagery from Sentinel-2.

5 RESULTS
In this section, we discuss the experimental results of our frame-
work, PSM, over separate training with Sentinel-2 and Bing imagery
of GeoSound dataset as well as on SoundingEarth dataset. We eval-
uate our models for cross-modal retrieval performance between

satellite imagery and audio. We also display soundscape maps cre-
ated by querying our framework with audio or text.
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method loss text metadata I2A R@10% I2A median rank A2I R@10% A2I median rank
GeoCLAP infoNCE ✗ ✗ 0.454 667 0.449 694
GeoCLAP infoNCE ✓ ✗ 0.523 533 0.470 641
ours infoNCE ✓ ✓ 0.519 548 0.491 596
ours PCME++ ✗ ✗ 0.514 547 0.518 543
ours PCME++ ✗ ✓ 0.563 454 0.569 447
ours PCME++ ✓ ✓ 0.690 264 0.608 371

Table 3: Experimental results for models trained on the SoundingEarth dataset with satellite imagery from GoogleEarth.

imagery latlong month time audio source text source I2A R@10% I2A median rank A2I R@10% A2I median rank
Sentinel-2 ✓ ✗ ✗ ✗ ✗ 0.512 946 0.516 923
Sentinel-2 ✗ ✓ ✗ ✗ ✗ 0.501 988 0.511 941
Sentinel-2 ✗ ✗ ✓ ✗ ✗ 0.548 825 0.574 717
Sentinel-2 ✗ ✗ ✗ ✓ ✗ 0.749 407 0.757 389
Sentinel-2 ✗ ✗ ✗ ✗ ✓ 0.483 1080 0.492 1022
Bing ✓ ✗ ✗ ✗ ✗ 0.539 822 0.557 764
Bing ✗ ✓ ✗ ✗ ✗ 0.464 1153 0.485 1068
Bing ✗ ✗ ✓ ✗ ✗ 0.516 937 0.547 823
Bing ✗ ✗ ✗ ✓ ✗ 0.722 469 0.733 447
Bing ✗ ✗ ✗ ✗ ✓ 0.448 1250 0.466 1140
Table 4: Metadata Ablation to evaluate the impact of individual metadata components on the best model’s performance.

5.1 Cross-Modal Retrieval with Bing
Table 1 presents our retrieval evaluation of PSM trained on the
GeoSound dataset using Bing satellite imagery. Our approach out-
performs the state-of-the-art baseline [25] for cross-modal retrieval
between satellite imagery and audio, and vice versa. SatMAE [13]
with GSDPE is utilized to encode the zoom level of the satellite im-
agery for both the baseline and ourmodels. This enables our satellite
image encoder to remain invariant to zoom-level changes, achiev-
ing consistent performance across all zoom levels. We observe that
learning a probabilistic embedding space using PCME++ loss alone
enhances the baseline performance from 0.399 to 0.423, 0.408 to
0.440, and 0.409 to 0.440 for zoom levels 1, 3, and 5, respectively. In
addition to the objective function, we also experimented with the
inclusion of metadata during training and inference. As anticipated,
the model’s performance, when trained and evaluated with both
text and metadata, is notably improved, enhancing image-to-audio
retrieval @ 10% from the baseline score of 0.577 to 0.901, 0.577 to
0.900, and 0.581 to 0.896 for zoom levels 1, 3, and 5, respectively. A
similar trend is observed for audio-to-image retrieval.

5.2 Cross-Modal Retrieval with Sentinel-2
Table 2 presents the evaluation results of PSM trained on the
GeoSound dataset using Sentinel-2 satellite imagery. Similar to ex-
periments with Bing imagery, we observe consistent performance
across various zoom levels, indicating the robustness of our frame-
work in extracting valuable information irrespective of the cover-
age area of input satellite imagery. By employing PCME++ loss in
training our framework, we note an enhancement in the baseline
performance from 0.459 to 0.474 for zoom level 1. Overall, PSM

trained with Sentinel-2 imagery and metadata, and evaluated using
both metadata and text during inference, significantly improved
the baseline score from 0.546 to 0.872, 0.542 to 0.870, and 0.542 to
0.868 for zoom levels 1, 3, and 5, respectively. A similar trend is
observed for audio-to-image retrieval. The high performance of
PSM on Sentinel-2 imagery at zoom level 5 enables the efficient
creation of large-scale soundscape maps utilizing freely available
Sentinel-2 imagery.

5.3 Cross-Modal Retrieval on SoundingEarth
Table 3 presents the evaluation results of PSM trained on the
SoundingEarth dataset [20] with its original 0.2m GSD GoogleEarth
imagery. For the SoundingEarth dataset, our models are exclusively
trained and evaluated on zoom level 1. Similar to the performance
observed on the GeoSound dataset, we witness gain in performance
with our approach of learning a metadata-aware probabilistic em-
bedding space. Specifically, by training with the PCME++ objective
instead of the infoNCE loss, we note an improvement in the score
from 0.454 to 0.514. This performance further elevates to 0.563 when
metadata is incorporated and reaches 0.690 when both metadata
and text are utilized during inference. We observe similar trends
for audio-to-image retrieval as well.

5.4 Effect of Metadata
Our experimental results reveal a significant enhancement in the
model’s performance when metadata is integrated into both train-
ing and inference. For comparison, as illustrated in Table 1, PSM
trained with Bing imagery without any metadata achieved an I2A
R@10% of 0.423, whereas with all metadata included, it reached
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Figure 2: Soundscape Map of the USA for a textual query Sound of insects, compared with a reference map [2] indicating the
risk of pest-related hazard.

Figure 3: Two soundscape maps of the continental United
States, generated using different query types, with a land
cover map [16] for reference.

0.828. A similar trend is seen for experiments with Sentinel-2 im-
agery. PSM is designed such that individual metadata components
are independently masked out with a rate of 0.5. Therefore, during
inference, we can evaluate PSM by dropping any combination of

metadata components. In Table 4, we present the ablation of differ-
ent metadata components to evaluate the impact of individual meta-
data components in PSM’s learning framework. We conduct this
ablation on our best-performing models trained on the GeoSound
dataset with both satellite imagery types: Sentinel-2 and Bing. All
ablation experiments are conducted on imagery with zoom level 1.
The results reported in Table 4 do not involve the use of text during
cross-modal retrieval.

As observed in the ablation results, for the best-performing
model trained with Sentinel-2 imagery, the performance due to
the addition of text source slightly increases from 0.474 to 0.483.
However, this performance increases to 0.501, 0.512, 0.548, and
0.749 when the model is evaluated with the independent addition of
other metadata components: month, latlong, time, and audio source,
respectively. Similarly, for a model trained with Bing imagery, the
performance due to the addition of text source slightly increases
from 0.423 to 0.448. However, this performance increases to 0.464,
0.516, 0.539, and 0.722 when the model is evaluated with the in-
dependent addition of other metadata components: month, time,
latlong, and audio source, respectively. These results highlight two
major findings. First, all of the metadata components contribute
to the overall improvement of PSM’s performance. Second, among
all of the metadata components, audio-source had the most sig-
nificant impact. This suggests that the inherent biases present in
different audio data hosting platforms were explicitly encoded into
the learning framework. This facilitates not only the improvement
of cross-modal retrieval performance but also enables the creation
of soundscape maps conditioned on the type of audio expected to
be found in a specific audio data hosting platform.

5.5 Generating Country-level Soundscape Maps
We demonstrate PSM’s capability to generate large-scale sound-
scape maps using audio and text queries. We acquired 0.6 m GSD
1500 × 1500 image tiles encompassing the entire USA from Bing.
Employing our top-performing model’s image encoder, we pre-
computed embeddings for each image at zoom-level 1. During in-
ference, these pre-computed embeddings are combined with desired
metadata embeddings using the model’s metadata fusion module to
get metadata-conditioned probabilistic embeddings for the entire
region. We leverage modality-specific encoders of the model to
get probabilistic embeddings for audio or text queries. Finally, to
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Figure 4: Temporally dynamic soundscape maps created by querying our model for different geographic areas.

compute the similarity score of all image embeddings for the region
with the probabilistic embeddings for the query, we utilize Equa-
tion 7 as detailed in our paper. Subsequently, these similarity scores
are used to produce large-scale soundscape maps, as illustrated in
Figures 2, and 3.

6 DISCUSSION
Figure 2 depicts a soundscape map generated for the textual query
“Sound of insects”, accompanied by the following metadata: {audio
source: iNaturalist, month: May, time: 8 pm}. Notably,
this soundscape map exhibits a strong correlation with an avail-
able reference map [2], which shows potential pest hazards across
the continental United States. Figure 3 showcases two soundscape
maps: one for an audio query of car horn with the metadata {audio
source: yfcc, month: May, time: 10 am}, and another for
a textual query “Sound of chirping birds.” with metadata: {audio
source: iNaturalist, month: May, time: 10 am}. Both maps
can be compared with a land cover map [16]. As expected, for the
car horn query, higher activation is observed in most major US
cities, while for chirping birds, increased activation is observed
around both urban areas and forests.

We also note that the soundscape of any geographic region
evolves predictably over the course of a day. Therefore, the hour of
the day is one of the important metadata components fused into our
framework. In addition to contributing to increased performance,
temporal understanding fused into our embedding space allows
us to create temporally dynamic soundscape maps across any geo-
graphic region, as demonstrated in Figure 4. The similarity scores
used for these soundscape maps were normalized consistently for
a region across time. We display state-level temporally dynamic

soundscape maps for an audio query: Rooster crowing with meta-
data: {audio source: aporee, month: May, time: 6 am} vs.
{audio source: aporee, month: May, time: 6 pm}. We observe
that for both states, higher activation for the rooster crowing audio
query is seen on the soundscape map at 6 am. We also showcase
city-level temporally dynamic soundscape maps for a text query
“Sound of a sheep in an animal farm.” We can observe that for areas
around both cities, Kansas City and Des Moines, there is very low
activation. In addition, higher activation is observed at 2 pm than at
2 am, which is expected. These demonstrations highlight the ability
of our model to create semantically meaningful and temporally
consistent soundscape maps.

7 CONCLUSION
Our work introduces a framework for learning probabilistic tri-
modal embeddings for the task of multi-scale zero-shot soundscape
mapping. To advance research in this direction, we have developed
a new large-scale dataset that pairs geotagged audio with high
and low-resolution satellite imagery. By utilizing a probabilistic tri-
modal embedding space, our method surpasses the state-of-the-art
while also providing uncertainty estimates for each sample. Further-
more, we have designed our framework to be metadata-aware, re-
sulting in a significant improvement in cross-modal retrieval perfor-
mance. Additionally, it enables the creation of dynamic soundscape
maps conditioned on different types of metadata. The combination
of enhanced mapping performance, uncertainty estimation, and
a comprehensive understanding of spatial and temporal dynam-
ics positions our framework as an effective solution for zero-shot
multi-scale soundscape mapping.
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