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1 DATASET CREATION

Figure 1: Distribution of samples in the GeoSound dataset.

Wehave created a new large-scale dataset (GeoSound) suitable for
the task of zero-shot soundscapemapping, effectively increasing the
size of available dataset [6] by more than 6-fold. To achieve this, we
collected geotagged audios along with associated metadata (textual
description, geolocation, time) from four different audio sources:
iNaturalist [3], YFCC100M [8], Radio Aporee [4], and Freesound [2].
For each of the audio samples in our dataset, we downloaded 1500×
1500 high-resolution (0.6m GSD) imagery from Bing and 1280 ×
1280 low-resolution (10m GSD) Sentinel-2 Cloudless imagery from
EOX::Maps [1]. Figure 1 illustrates the geospatial distribution of
data samples in the GeoSound dataset worldwide.

1.1 Audio Sources
iNaturalist: This is an open-source platform for the community
of Naturalists who upload observations for various species with
records containing images, audio, and textual descriptions. We se-
lect observations with the flags: Verifiable, Research Grade,
and Has Sounds to maximize data quality and completeness. This
provides us with over 450k geotagged audios. To create a relatively
balanced dataset with audio from different crowd-sourced plat-
forms, we first only retain the species with at least 100 samples in
our dataset. Then, we conduct round-robin random sampling of the
observations, starting from the species with the lowest count and
iteratively increasing the sample size until we reach our desired
number of samples: 120k from 611 species. Finally, after a quality
control filtering procedure, iNaturalist contributes 114 603 audios.

YFCC100M: YFCC100M is a publicly available, large multimedia
dataset containing over 99 million images and around 0.8 million
videos. This data is collected from the crowd-sourced platform
Flickr. However, among the 0.8 million videos, only around 100k
videos are found to be geotagged. Therefore, in our dataset, we
extract audio from these geotagged videos only, contributing an
additional 96 452 audio samples.

Radio Aporee: In our dataset, we also include the geotagged au-
dios from the SoundingEarth dataset [6], which was built from the

crowd-sourced platform hosted by the project Radio Aporee::Maps.
This dataset contains field recordings of different types of audio
from urban, rural, and natural environments. The SoundingEarth
dataset contributes 49 284 audio samples.

Freesound: This is another commonly used platform for crowd-
sourced audio containing field recordings from diverse acoustic
environments. Freesound contributes a total of 48 680 audio samples.

split iNaturalist yfcc aporee freesound total
train 108 753 92 055 46 893 46 318 294 019
val 1 851 1 565 797 787 5 000
test 3 999 2 832 1 594 1 575 10 000
total 114 603 96 452 49 284 48 680 309 019

Table 1: Distribution of GeoSound Dataset Across Splits and
Audio Sources.

1.2 Data Split Strategy
We split our dataset to mitigate potential data leakage between data
with similar locations in the training and validation/test sets. The
distribution of data across training/validation/test sets and audio
sources is given in Table 1. Our data split strategy on GeoSound
dataset is described as follows:

(1) We divide the world into 1° × 1° non-overlapping cells. This
corresponds to the cell size of about 111km × 111km.

(2) We only select the cells with at least 25 observations. The
cells that do not pass this threshold are saved to be included
in the train split of our dataset.

(3) Based on the number of observations in each cell selected in
step 2, we categorize them into three data density categories:
high, medium, and low based on the 0.33 quantile and 0.66
quantile of the overall sample count from step 2.

(4) For each category obtained in step 3, we randomly select
10% of cells to be held out for validation and test splits.

(5) From the held-out cells obtained in step 4, we randomly
sample 40% into validation split and the rest into test split.

(6) For the validation/test split, 5000/10000 samples are ran-
domly selected, matching the audio-source distribution of
the train split.

2 UNCERTAINTY ESTIMATES
One of the advantages of PSM is that uncertainty estimates are
automatically provided with representations of samples. After a
sample is encoded, the 𝜎 associated with the distribution predicted
by our framework represents its inherent uncertainty for any audio
or satellite imagery. In Figure 2, we present sets of samples with
high uncertainty and low uncertainty for Bing satellite imagery in
our test set.
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Figure 2: Uncertainty estimates are reflected by the | |𝜎 | |1 of selected samples from our Bing satellite imagery test set. These
estimates are obtained from embeddings generated by our best-performing model trained on Bing imagery, without any
additional metadata.

Figure 3: Uncertainty map of the satellite image embeddings for the USA. Uncertainty at each location is approximated as
the | |𝜎 | |1 of the probabilistic embeddings obtained from our best-performing model trained with Bing and Sentinel-2 imagery,
respectively, without any metadata.

The embedding dimension of our probabilistic embeddings is
large (512); therefore, in these examples, uncertainty estimates are
represented through ∥𝜎 ∥1 for each sample.We observe that samples
with low uncertainty have fewer visible concepts captured in them,
suggesting less ambiguity in the types of potential sounds that
could be heard at the location. Conversely, for samples with high
uncertainty, we usually find denser geographic areas where one

would expect to hear multiple types of sounds, leading to higher
ambiguity in soundscape mapping.

We also present country-scale uncertaintymaps of the USA using
PSM’s satellite embeddings from both Bing and Sentinel-2. These
maps are shown for zoom levels 1 and 5 in Figure 3. From this
figure, we observe that the overall distribution of uncertainty tends
to be lower for zoom level 1 compared to zoom level 5. This result is
expected because imagery at zoom level 5 covers a larger geographic
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area, potentially capturing a greater diversity of soundscapes and
leading to higher uncertainty in our probabilistic embedding space.
Furthermore, a closer examination of the uncertainty values reveals
that uncertainty estimates for Sentinel-2 image embeddings are
relatively higher across more locations in the region compared
to Bing image embeddings. This is expected because for a similar
image size, a Sentinel-2 image with 10m Ground Sampling Distance
(GSD) covers a larger area compared to a Bing image with 0.6m
GSD used in our study.

3 SOUNDSCAPE MAPS
In Figure 4, we present examples of country-scale soundscape
maps over the USA. These maps were generated using our best-
performing model trained on Sentinel-2 imagery without any meta-
data. In this demonstration, we utilize Sentinel-2 imagery covering
the USA at zoom-level 1. In the figure, for the text query “Sound of
animals on a farm”, high activation is observed primarily in non-
urban areas across the USA. Conversely, for the text query “Sound
of machines in a factory”, higher activation is concentrated in urban
areas near cities, with minimal activation in forested and range-
land regions. The use of PSM trained on freely available Sentinel-2
imagery enables the creation of global-scale soundscape maps.

In Figure 5, we showcase multi-scale soundscape mapping across
various geographic regions in the USA. Our objective is to investi-
gate how embeddings and associated similarity scores change with
variations in imagery zoom level and imagery source. We gener-
ate soundscape maps using Sentinel-2 satellite image embeddings
computed from imagery at zoom levels 1 and 5. To illustrate, we
randomly select an audio sample from the cow class in the ESC-50
dataset [7] as an example audio query. For the text queries we select
“Sound of children playing in a park” and “Sound of machines in a
factory”. For each queries, we analyze the corresponding sound-
scape maps generated at different zoom levels. In Figure 5, each
soundscape map is accompanied by a land cover map [5] of the
respective region for reference.

As observed in Figure 5, geographic regions expected to be re-
lated to the query demonstrate high similarity scores. For example,
for the audio query described by the audio class cow, we can see
that urban regions around cities like Memphis and Toledo have low
similarity scores, while rural areas (with greater potential to con-
tain farm animals) exhibit high similarity scores. Similarly, for the
text query related to the sound of children playing in a park, as
expected, we observe high similarity scores around cities where
one would expect to find city parks.

We also observe that for the same query and geographic region,
the distribution of similarity scores varies between the two zoom
levels. In Figure 5, at zoom level 1, the generated maps appear to
be more spatially fine-grained compared to maps generated using
satellite imagery at zoom level 5, which appear coarser. Although
the number of geolocations and their corresponding satellite im-
agery is the same for maps at both zoom levels, the coverage area
for an image at a higher zoom level is larger. This results in a slower
change of high-level visual appearance between the points in the
region, leading to closer similarity scores between local points
and ultimately producing soundscape maps with lower resolution.
This suggests that if we prioritize soundscape maps that retain the

Figure 4: Two soundscape maps of the continental United
States, generated from Sentinel-2 image embeddings, accom-
panied by a land cover map for reference [5].

semantics of audio concepts at the expense of fine-grained local-
ization capability, we can use satellite imagery at a higher zoom
level, which requires fewer images to cover a region of interest.
Conversely, for tasks requiring spatially fine-grained soundscape
maps, satellite imagery at a lower zoom level may be preferred.
This trade-off is fundamental to the multi-scale mapping capability
of our framework Probabilistic Soundscape Mapping (PSM).
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Figure 5: Soundscape maps over smaller geographic areas, computed using similarity scores between respective queries and
embeddings from Sentinel-2 satellite imagery at two zoom levels.
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