
Under review as a conference paper at ICLR 2024

HOW LANGUAGE MODELS LEARN CONTEXT-FREE
GRAMMARS

ABSTRACT

We design experiments to study how generative language models, such as GPT,
learn context-free grammars (CFGs) — complex language systems with tree-like
structures that encapsulate aspects of human logic, natural languages, and pro-
grams. CFGs, comparable in difficulty to pushdown automata, can be ambiguous,
usually requiring dynamic programming for rule verification. We create synthetic
data to show that pre-trained transformers can learn to generate sentences with
near-perfect accuracy and impressive diversity, even for quite challenging CFGs.
Crucially, we uncover the mechanisms behind transformers learning such CFGs.
We find that the hidden states implicitly encode the CFG structure (such as putting
tree node info exactly on the subtree boundary), and that the transformer can form
“boundary to boundary” attentions that mimic dynamic programming. We also
discuss CFG extensions and transformer robustness against grammar errors.

1 INTRODUCTION

Language models (OpenAI, 2023) are neural networks designed to learn the probability distribution
of natural language and generate text. Models like GPT (Radford et al., 2018) can accurately follow
language structures (Shen et al., 2017; Tenney et al., 2019), even in smaller models (Black et al.,
2021). However, the mechanisms and representations these models use to capture language rules
and patterns remain unclear. Despite recent theoretical advances in understanding language mod-
els (Bhattamishra et al., 2020; Jelassi et al., 2022; Li et al., 2023; Liu et al., 2022; Yao et al., 2021),
most are limited to simple settings and fail to account for the complex structure of languages.

In this paper, we explore the mechanisms behind generative language models learning probabilistic
context-free grammars (CFGs) (Lee, 1996). CFGs, capable of generating a diverse set of highly
structured expressions, consist of terminal (T) and nonterminal (NT) symbols, a root symbol, and
production rules. A string belongs to the language generated by a CFG if there is a sequence of rules
that transform the root symbol into the string of T symbols. For instance, the CFG below generates
the language of balanced parentheses:

s → ss | (s) | ∅
where ∅ denotes the empty string. Examples in the language include ∅,(),(()),()(),((())).

Many structures in languages can be viewed as CFGs, including grammars, structures of the codes,
mathematical expressions, music patterns, article formats (for poems, instructions, legal docu-
ments), etc. We use transformer (Vaswani et al., 2017) as the generative language model and study
how it learns the CFGs. Transformers can encode some CFGs, especially those that correspond
to the grammar of natural languages (Arps et al., 2022; Hewitt & Manning, 2019; Manning et al.,
2020; Maudslay & Cotterell, 2021; Shi et al., 2022; Vilares et al., 2020; Wu et al., 2020; Zhao et al.,
2023). However, the mechanism behind how such CFGs can be efficiently learned by transformers
remains unclear. Previous works (Deletang et al., 2023) studied transformer’s learnability on a few
languages in the Chomsky hierarchy (which includes CFGs) but the inner mechanisms regarding
how transformer can or cannot solve those tasks remain unclear.

For a generative language model to learn a long CFG (e.g. hundreds of tokens), it needs to efficiently
learn many non-trivial, long-distance planning. The model cannot just generate tokens that are
“locally consistent.” For example, to generate a string with balanced parentheses, the model must
keep track of the number and type of open and close parentheses globally. Imagine, for complex
CFGs, even verifying that a sequence satisfies a given CFG may require dynamic programming: to
have a memory and a mechanism to access the memory in order to verify the hierarchical structure
of the CFG. Learning CFGs is thus a significant challenge for the transformer model, and it tests the
model’s ability to learn and generate complex and diverse expressions.

1

Under review as a conference paper at ICLR 2024

 18 17 17 17 ...

 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 ...

 12 12 12 12 12 12 12 11 11 11 11 11 11 12 12 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ...

 8 8 8 8 8 9 9 9 9 9 7 7 7 9 9 8 8 9 9 7 7 7 9 9 8 8 8 9 9 9 9 7 7 7 ...

1 2 3 3 1 3 3 1 2 1 2 2 1 1 1 1 2 1 1 3 1 2 1 1 3 3 1 1 1 1 1 2 2 1 ...

1 1 2 2 2 3 3 4 4 4 5 5 5 6 6 7 7 8 8 9 9 9 10 10 11 11 11 12 12 13 13 14 14 14 ...

 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6 6 ...

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 ...

 1 2 2 2 ...

𝑥 =

𝔰6 =
𝔰5 =

𝔭6 =

𝔰4 =
𝔰3 =

𝔭5 =
𝔭4 =
𝔭3 =

𝔟♯ = 6 6 5 6 5 6 4 6 6 5 6 6 3 6 ...

…

(examples of) rules from cfg3f
…
18|->13 15
13|->12 11 12
15|->10 10
10|->8 9 9
10|->9 7 9
11|->9 7
12|->9 8
12|->8 8 9
...
8|->3 1 1
8|->1 2
8|->3 3 1
9|->1 2 1
9|->3 3
9|->1 1
…

NT boundary 𝔟6=𝔟5=𝔟4=𝔟3=1
NT ancestors 𝔰6=9, 𝔰5=10, 𝔰4=15, 𝔰3=18

NT boundary 𝔟6=𝔟5=1
NT ancestors 𝔰6=9, 𝔰5=10

NT boundary 𝔟6=1
NT ancestor 𝔰6=8

NT boundary 𝔟6=𝔟5=𝔟4=1
NT ancestors 𝔰6=8, 𝔰5=12, 𝔰4=13

… …

… … …

C
FG

/D
P

 p
ar

si
n

g
tr

an
sf

o
rm

er

p
ar

si
n

g

learns boundary-based attention to
most adjacent NT boundaries at all levels

learns NT ancestor/boundary info
linearly encoded in the hidden states

Figure 1: An example string x from G = cfg3f. Though formally defined in Section 2, bold symbols in color
represent NT boundaries which marks the ending positions of the parsed CFG subtrees at various
levels ℓ: we denote by bℓ(i) = 1 if position i is at the NT boundary for level ℓ. The NT ancestor
sℓ(i) represents the tree node’s name at level ℓ for a symbol at position i.

Remark. In this paper, we analyze the transformer’s ability to learn highly ambiguous CFGs. Even
if the CFG rules are given, typically one uses dynamic programming (DP) to decide if x ∈ L(G) .

In this study, we pre-train GPT-2 (Radford et al., 2019) on a language modeling task using a large
corpus of strings sampled from a few very non-trivial CFGs that we construct with different levels
of difficulties — see Figure 1 for an example and Figure 9 in the appendix for more. We test the
model’s accuracy and diversity by feeding it prefixes from the CFG and observing if it can generate
accurate completions.

• We show the model can achieve near-perfect CFG generation accuracies.
• We check the model’s output distribution / diversity show it is close to that of the true CFG.

Our paper’s key contribution is an analysis of how transformers recover the structures of the un-
derlying CFG, examining attention patterns and hidden states. Specifically, we:

• Develop a probing method to verify that the model’s hidden states linearly encode NT informa-
tion almost perfectly, a significant finding as pre-training does not expose the CFG structure.

• Introduce methods to visualize and quantify attention patterns, demonstrating that GPT learns
position-based and boundary-based attentions, contributing to understanding the CFG’s regular-
ity, periodicity, and hierarchical structure.

• Suggest that GPT models learn CFGs by implementing a dynamic programming-like algorithm.
We find that boundary-based attention allows a token to attend to its closest NT symbols in the
CFG tree, even when separated by hundreds of tokens. This resembles dynamic programming,
in which the CFG parsing on a sequence 1...i needs to be “concatenated” with another sequence
i+ 1...j in order to form a solution to a larger problem on 1...j. See Figure 1 for an illustration.

We also explore implicit CFGs (Post & Bergsma, 2013), where each T symbol is a bag of tokens,
and data is generated by randomly sampling tokens. This allows capturing additional structure, like
word categories. We demonstrate that the model learns implicit CFGs by encoding the T symbol
information in its token embedding layer. We also investigate model robustness using CFGs, testing
the model’s ability to correct errors and generate valid CFGs from a corrupted prefix.

2 CONTEXT-FREE GRAMMARS

A probabilistic context-free grammar (CFG) is a formal system defining a string distribution using
production rules. It comprises four components: terminal symbols (T), nonterminal symbols (NT),
a root symbol (root ∈ NT), and production rules (R). We represent a CFG as G = (T,NT,R),
with L(G) denoting the string distribution generated by G.

We mostly focus on L-level CFGs where each level ℓ ∈ [L] corresponds to a set of symbols NTℓ

with NTℓ ⊆ NT for ℓ < L, NTL = T, and NT1 = {root}. Symbols at different levels
are disjoint: NTi ∩ NTj = ∅ for i ̸= j. We consider rules of length 2 or 3, denoted as R =
(R1, . . . ,RL−1), where each Rℓ consists of rules in the form:

r = (a 7→ b, c, d) or r = (a 7→ b, c) for a ∈ NTℓ and b, c, d ∈ NTℓ+1

Given a non-terminal symbol a ∈ NT and any rule r = (a 7→ ⋆), we say a ∈ r. For each a ∈ NT,
its associated set of rules is R(a) :=

{
r | r ∈ Rℓ ∧ a ∈ r

}
, its degree is |R(a)|, and the CFG’s size

is (|NT1|, |NT2|, . . . , |NTL|).
Generating from CFG. To generate samples x from L(G), follow these steps:

2

Under review as a conference paper at ICLR 2024

S
NP VP

TO VP
VBD VP

TO VP
VB NP

NP PP
IN NP

PP
IN NP

.
S

NP
NP

DT NN
PP

IN NP
NP PP

IN NP
DT NN

VP
VBZ VP

VBD SBAR
S

PP
IN NP

, NP
CD NNS

VP
TO VP

VBZ VP
VBD NP

DT JJ NN NN

.

(a) real-life English CFG derived from Penn Treebank, short and simple

S

68

49

45

39

30 28

10 4

36

32

15

11 5

17

7 1

27

4 4

44

35

27

11 7

30

40

31

6 7

26

7 6

49

31

23

4 11

22

8 8

33

16

10 2

22

5 11

68

65

58

54

46

39

29

23

7 6

21

5 10

29

16

5 8

21

3 2

37

21

6 6

16

5 8

45

41

32

15 17

7 1

30

1 3

41

26

17 19

11 7

25

22

10 4

20

4 7

52

35

19

11 7

15

40

18

3 6

18

6 7

57

37

31

23

7 6

22

8 8

33

15 20

4 4

41

31

19 15

11 5

29

23

7 6

21

6 6

66

62

55

53

44

40

21

5 10

17

34

30

22

8 8

24

1 3

26

17

7 1

19

11 7

43

36

26

4 3

32

15 17

7 1

37

16

10 2

21

6 6

54

43

30

24 24

5 1

26

17 19

11 7

42

38

27

6 6

26

4 3

41

32

20

4 7

23

7 6

30

7 1

56

51

41

31

6 7

29

23

4 11

21

6 6

38

29

23

7 6

21

6 6

33

15 20

4 7

52

40

11 5

34

30

22

8 8

24

26

4 3

62

55

50

40

31

19 15

2 4

26

10 2

39

29

20

6 11

17

7 1

29

23

4 3

21

5 10

53

42

37

31

19

9 2

15

33

15

2 4

20

4 4

40

31 26

4 11

47

8 8

56

50

47

40

4 11

35

6 7

42

37

31

6 7

33

21

3 2

23

7 6

40

5 11

49

45

41

31

23

4 3

22

5 11

29

23

7 6

21

5 10

41

31

19

9 2

15

2 4

29

21

3 2

16

10 2

44

40

7 6

34

15

2 4

17

S

68

65

53

42

31 29

23

4 11

21

3 2

47

36

32

20

1 10

23

4 3

27

4 4

36

26

10 2

32

16

5 8

19

11 7

54

45

41

32

23

6 2

23

6 2

30

41

32

16

10 2

19

9 3

30

24 24

45

39

29

20

4 7

17

7 1

29

20

6 11

17

36

26

5 8

32

23

6 2

23

4 3

66

60

52

38

32

20

4 4

23

6 2

29

23

7 6

21

5 10

41

31

19

9 2

15

29

23

4 3

21

5 10

51

46

39

4 4

37

31

19

9 3

15

2 4

33

15

2 4

20

4 4

47

40

20

1 10

19

9 3

35

8 7

60

52

29

20

1 10

17

7 1

33

15

2 4

20

4 7

50

47

36

32

16 19

9 2

27

36

19

9 3

21

6 6

42

38

32

16

5 8

19

9 3

29

23

6 2

21

6 6

41

32

23

4 3

23

7 6

30

68

65

60

53

42

31

23

7 6

22

10 4

29

21

5 10

16

5 8

47

31 26

17 19

52

38

32

16 19

11 7

29

21

3 2

16

10 2

41

26

20

4 7

19

11 7

25

19

9 2

21

3 2

61

47

17 19

9 2

46

39

27

17 24

1 3

33

16 22

5 11

37

30

24

1 3

24

9 4

27

3 2

66

61

57

53

31

19

11 7

15

11 5

26

20

1 10

19

9 3

50

47

35

33

24

1 3

21

3 2

27

17 24

1 3

36

32

23

6 2

23

7 6

27

5 10

42

38

32

16 19

29

23

6 2

21

5 10

41

26

20

6 11

19

25

22

8 9

20

4 4

55

53

48

35

31

23

4 11

22

8 8

25

19

9 2

21

5 10

37

30

22

10 4

24

1 3

27

4 4

44

35

27

9 3

30

40

31

6 7

26

4 3

54

43

36

32

20

4 4

23

7 6

27

4 7

37

31

23

6 2

22

5 11

33

16

10 2

22

8 9

42

38

29

20

6 11

17

7 1

33

15

2 4

20

6 11

41

31

23

7 6

22

10 4

29

21

6 6

16

60

56

40

31

19

9 2

15

11 5

26

5 8

39

27

17 24

33

24

1 3

21

6 6

56

40

20

4 7

19

39

(b) a family of max-depth 11 CFGs where rules have length 1 or 2 that GPT can learn, see cfg0 in Appendix H

Figure 2: CFG visual comparisons: left is a medium-length sample, and right is a 80%-percentile-length sample

1. Start with the root symbol NT1.
2. For each layer ℓ < L, keep a sequence of symbols sℓ =

(
sℓ,1, · · · , sℓ,mℓ

)
.

3. For the next layer, randomly sample a rule r ∈ R(sℓ,i) for each sℓ,i with uniform probability.1
Replace sℓ,i with b, c, d if r = (sℓ,i 7→ b, c, d), or with b, c if r = (sℓ,i 7→ b, c). Let the resulting
sequence be sℓ =

(
sℓ+1,1, · · · , sℓ+1,mℓ+1

)
.

4. During generation, when a rule sℓ,i 7→ sℓ+1,j , sℓ+1,j+1 is applied, define the parent parℓ+1(j) =
parℓ+1(j + 1) := i (and similarly if the rule of sℓ,i is of length 3).

5. Define NT ancestor indices p = (p1(i), . . . , pL(i))i∈[mL] and NT ancestor symbols s =
(s1(i), . . . , sL(i))i∈[mL] as shown in Figure 1:

pL(j) := j , pℓ(j) := parℓ+1(pℓ+1(j)) and sℓ(j) := sℓ,pℓ(j)

The final string is x = sL = (sL,1, · · · , sL,mL
) with xi = sL,i and length len(x) = mL. We

use (x, p, s) ∼ L(G) to represent x with its associated NT ancestor indices and symbols, sampled
according to the generation process. We write x ∼ L(G) when p and s are evident from the context.

Definition 2.1. A symbol xi in a sample (x, p, s) ∼ L(G) is the NT boundary / NT end at level
ℓ ∈ [L − 1] if pℓ(i) ̸= pℓ(i + 1) or i = len(x). We denote bℓ(i) := 1xi is the NT boundary at level ℓ as the
NT-end boundary indicator function. The deepest NT-end of i is

b♯(i) = minℓ∈{2,3,...,L−1}{bℓ(i) = 1} or ⊥ if the set is empty .

The cfg3 synthetic CFG family. We focus on seven synthetic CFGs of depth L = 7 detailed
in Section B.1. The hard datasets cfg3b, cfg3i, cfg3h, cfg3g, cfg3f have sizes (1, 3, 3, 3, 3, 3, 3) and
increasing difficulties cfg3b < cfg3i < cfg3h < cfg3g < cfg3f. The easy datasets cfg3e1 and
cfg3e2 have sizes (1, 3, 9, 27, 81, 27, 9) and (1, 3, 9, 27, 27, 9, 4) respectively. The sequences gener-
ated by these CFGs are up to 36 = 729 in length. Typically, the learning difficulty of CFGs inversely
scales with the number of NT/T symbols or CFG rules, assuming other factors remain constant (see
Figure 3 and more in Appendix H). We thus primarily focus on cfg3b, cfg3i, cfg3h, cfg3g, cfg3f.

Why Such CFGs. In this paper, we use CFG as a proxy to study some rich, recursive structure
in languages, which can cover some logics, grammars, formats, expressions, patterns, etc. Those
structures are diverse yet strict (for example, Section 3.1 should be only followed by Section 3.1.1,
Section 4 or Section 3.2, not others). We create a synthetic CFG to approximate such richness and
structure. The CFGs we consider are non-trivial, with likely over 2270 > 1080 strings in cfg3f among
a total of over 3300 > 10140 possible strings of length 300 or more (see the entropy estimation in
Figure 3). The probability of a random string belonging to this language is nearly zero, and a random
completion of a valid prefix is unlikely to satisfy the CFG.

Moreover, to probe the inner workings of the transformer, we choose a CFG family with a “canonical
representation” and show a high correlation between this representation and the hidden states in
the learned transformer. Such a controlled experiment allows us to better understand the learning
process. We also construct additional CFG families to study “not-so-canonical” CFG trees, with
results deferred to Appendix H. We do not claim our result captures all CFGs, however, we view
our work as a promising starting point: our CFG is already quite challenging for a transformer to
learn — for example, in Appendix H, we show that a CFG derived from English Penn TreeBank can
be learned well using small models (like GPTs with ∼ 100k parameters), whereas our cfg3 family
requires GPT2 with 100M parameters — yet we can still identify how transformer learns it.

1For simplicity, we consider the uniform case, eliminating rules with extremely low probability. Such rules
complicate the learning of the CFG and the investigation of a transformer’s inner workings. Our results can
easily extend to non-uniform cases, provided the distributions are not heavily unbalanced.

3

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

ge
ne

ra
ti

on
 a

cc
 (

%
) 99.8 99.8 99.8 99.9 99.8 99.9 99.9 99.9 99.9 100.0

99.5 99.5 99.8 99.8 99.4 99.5 99.8 99.8 99.6 99.7

96.8 96.9 99.7 99.6 99.6 99.5 99.0 99.0 98.9 98.8

64.1 63.8 99.1 99.2 98.6 98.4 97.0 96.9 96.7 96.9

57.1 57.3 98.8 98.8 97.6 97.7 93.9 93.8 92.8 92.9

98.1 98.9 98.4 99.0 98.2 98.9 98.3 98.9 98.6 99.0

99.3 99.5 99.6 99.7 99.6 99.7 99.5 99.7 99.4 99.6

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni cfg3bcfg3icfg3hcfg3gcfg3fcfg3ecfg3een
tr

op
y

(b
it

s) 169 169 169 169 169 169
185 184 190 191 185 185
204 203 203 203 204 203
269 268 271 260 268 266
276 276 279 252 268 267
216 216 213 213 216 216
257 255 252 252 257 256

GPT GPT_rel GPT_rot GPT_pos GPT_uni
cfg3b
cfg3icfg3h
cfg3g
cfg3fcfg3e
cfg3e

KL
 d

iv
er

ge
nc

e

0.00008 0.00011 0.00009 0.00009 0.00004
0.00025 0.00014 0.00029 0.00015 0.00021
0.00079 0.00023 0.00024 0.00027 0.00036
0.00452 0.00034 0.00047 0.00058 0.00070
0.00486 0.00043 0.00060 0.00094 0.00113
0.00019 0.00014 0.00016 0.00013 0.00011
0.00032 0.00025 0.00025 0.00011 0.00010

Figure 3: Generation accuracy (left), entropy (middle), KL-divergence (right) across multiple CFG datasets.
Observation: Less ambiguous CFGs (cfg3e1, cfg3e2, as they have fewer NT/T symbols) are easier
to learn. Modern transformer variants using relative positional embedding (GPTrel or GPTpos) are
better for learning complex CFGs. We also present weaker variants GPTpos and GPTuni that base their
attention matrices solely on token positions (serving specific purposes in Section 5.1).

3 TRANSFORMER LEARNS SUCH CFGS

In this section, we evaluate the generative capability of the transformer by testing its accuracy in
completing sequences from prefixes of strings in L(G). We also evaluate the diversity of the gener-
ated outputs and verify if the distribution of these strings aligns with the ground truth L(G).
Models. We denote the vanilla GPT2 small architecture (12-layer, 12-head, 768-dimensions) as
GPT (Radford et al., 2019). Given GPT2’s weak performance due to its absolute positional em-
bedding, we implemented two modern variants. We denote GPT with relative positional attention
(He et al., 2020) as GPTrel, and GPT with rotary positional embedding (Black et al., 2022; Su et al.,
2021) as GPTrot. For specific purposes in later sections, we introduce two weaker variants of GPT.
GPTpos replaces the attention matrix with a matrix based solely on tokens’ relative positions, while
GPTuni uses a constant, uniform average of past tokens from various window lengths as the attention
matrix. Detailed explanations of these variants are in Section B.2.

Completion accuracy. We generate a large corpus {x(i)}i∈[N] from a synthetic CFG G as de-
scribed in Section 2. A model F is pretrained on this corpus, treating each terminal symbol as a
separate token, using an auto-regressive task (Section B.3 for details). For evaluation, F gener-
ates completions for prefixes x:c = (x1, x2, · · · , xc) from strings x freshly generated from L(G).
The generation accuracy is measured as Prx∼L(G)+ randomness of F [(x:c, F (x:c)) ∈ L(G)]. We use
multinomial sampling without beam search for generation.2

Figure 3 (left) shows the generation accuracies for cuts c = 0 and c = 50. The c = 0 result tests the
transformer’s ability to generate a sentence in the CFG, while c = 50 tests its ability to complete a
sentence.3 The results show that the pretrained transformers can generate near-perfect strings that
adhere to the CFG rules for the cfg3 data family.

Generation diversity. Could it be possible that the trained transformer only memorized a small
subset of strings from the CFG? We evaluate its learning capability by measuring the diversity of its
generated strings. High diversity suggests a better understanding of the CFG rules.

Diversity can be estimated through entropy. Given a distribution p over strings and a sampled subset
S =

{
x(i)

}
i∈[M]

from p, for any string x ∈ S, denote by len(x) its length so x = (x1, . . . , xlen(x)),
and denote by xlen(x)+1 = eos. The entropy in bits for p can be estimated by

− 1
|S|

∑
x∈S

∑
i∈[len(x)+1] log2 Prp

[
xi | x1, . . . , xi−1

]
We compare the entropy of the true CFG distribution and the transformer’s output distribution using
M = 20000 samples in Figure 3 (middle).

Diversity can also be estimated using the birthday paradox to lower bound the support size of a
distribution (Arora & Zhang, 2017). Given a distribution p over strings and a sampled subset S ={
x(i)

}
i∈[M]

from p, if every pair of samples in S are distinct, then with good probability the support
of p is of size at least Ω(M2). In Appendix C.1, we conducted an experiment with M = 20000.
We performed a birthday paradox experiment from every symbol a ∈ NTℓ1 to some other level

2The last softmax layer converts the model outputs into a probability distribution over (next) symbols.
We follow this distribution to generate the next symbol, reflecting the unaltered distribution learned by the
transformer. This is the source of the “randomness of F ” and is often referred to as using “temperature τ = 1.”

3Our cfg3 family is large enough to ensure a negligible chance of a freshly sampled prefix of length 50
being seen during pretraining.

4

Under review as a conference paper at ICLR 2024

ℓ2 > ℓ1, comparing that with the ground truth. For instance, we confirmed for the cfg3f dataset,
there are at least Ω(M2) distinct sequences to level 5 generated from a symbol a ∈ NT2 — not
to mention from the root in NT1 to the leaf at level 7. In particular, M2 is already more than the
number of parameters in the model. From both experiments, we conclude that the pre-trained model
does not rely on simply memorizing a small set of patterns to learn the CFGs.

Distribution comparison. To fully learn a CFG, it is crucial to learn the distribution of generating
probabilities. However, comparing distributions of exponential support size can be challenging. A
naive approach is to compare the marginal distributions p(a, i), which represent the probability of
symbol a ∈ NTℓ appearing at position i (i.e., the probability that sℓ(i) = a). We observe a strong
alignment between the generation probabilities and the ground-truth distribution, see Appendix C.2.

Another approach is to compute the KL-divergence between the per-symbol conditional distribu-
tions. Let p∗ be the distribution over strings in the true CFG and p be that from the transformer
model. Let S =

{
x(i)

}
i∈[M]

be samples from the true CFG distribution. Then, the KL-divergence

can be estimated as follows:4

1
|S|

∑
x∈S

1
len(x)+1

∑
i∈[len(x)+1]

∑
t∈T∪{eos} Prp∗ [t | x1, . . . , xi−1] log

Prp∗ [t|x1,...,xi−1]

Prp[t|x1,...,xi−1]

In Figure 3 (right) we compare the KL-divergence between the true CFG distribution and the trans-
former’s output distribution using M = 20000 samples.

4 HOW DO TRANSFORMERS LEARN CFGS?

In this section, we delve into the learned representation of the transformer to understand how it
encodes CFGs. We employ various measurements to probe the representation and gain insights.

Recall classical way to solve CFGs. Given CFG G, the classical way to verify if a sequence
x satisfies L(G) is to use dynamic programming (DP) (Sakai, 1961; Sipser, 2012). One possible
implementation of DP involves using the function DP(i, j, a), which determines whether or not
xi, xi+1 . . . , xj can be generated from symbol a following the CFG rules. From this DP represen-
tation, a DP recurrent formula can be easily derived.5

In the context of this paper, any sequence x ∼ L(G) that satisfies the CFG must satisfy the following
conditions (recall the NT-boundary bℓ and the NT-ancestor sℓ notions from Section 2):

bℓ(i− 1) = 1, bℓ(j) = 1,∀k ∈ [i, j), bℓ(k) = 0 and sℓ(i) = a =⇒ DP(i, j, a) = 1 (4.1)

Note that (4.1) is not an “if and only if” condition because there may be a subproblem DP(i, j, a) = 1
that does not lie on the final CFG parsing tree but is still locally parsable by some valid CFG subtree.
However, (4.1) provides a “backbone” of subproblems, where verifying their DP(i, j, a) = 1 values
certifies that the sentence x is a valid string from L(G). It is worth mentioning that depending on the
implementation of a DP program (e.g., different orders on pruning or binarization), not all (i, j, a)
tuples need to be computed in DP(i, j, a). Only those in the “backbone” are necessary.

Connecting to transformer. In this section, we investigate whether pre-trained transformer F not
only generates grammatically correct sequences, but also implicitly encodes the NT ancestor and
boundary information. If it does, this suggests that the transformer contains sufficient information
to support all the DP(i, j, a) values in the backbone. This is a significant finding, considering that
transformer F is trained solely on the auto-regressive task without any exposure to NT information.
If it does encode the NT information after pretraining, it means that the model can both generate and
certify sentences in the CFG language.

4.1 FINDING 1: TRANSFORMER’S HIDDEN STATES ENCODE NT ANCESTORS AND BOUNDARIES

Let l be the last layer of the transformer (other layers are considered in Appendix D.2). Given
an input string x, the hidden state of the transformer at layer l and position i is denoted as

4A nearly identical formula was also used in DuSell & Chiang (2022).
5For example, one can compute DP(i, j, a) = 1 if and only if there exists i = i1 < i2 < · · · < ik = j + 1

such that DP(ir, ir+1−1, br) = 1 for all r ∈ [k−1] and a → b1, b2, . . . , bk is a rule of the CFG. Implementing
this naively would result in a O(len4) algorithm for CFGs with a maximum rule length of 3. However, it can
be implemented more efficiently with O(len3) time by introducing auxiliary nodes (e.g., via binarization).

5

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

an
ce

st
or

 (
%

)

100 99.7 99.9 85.0 65.7 56.8 61.5 62.7

99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.8 99.6 99.7 99.6 99.3 99.8 99.6 99.7 99.6 99.3 99.8 99.7 99.7 99.7 99.2 99.4 84.6 71.7 64.6 66.4 65.2

99.7 98.3 98.3 99.2 100 99.7 98.1 97.8 99.0 100 99.7 98.4 98.2 99.3 100 99.7 98.5 98.5 99.4 100 99.7 98.6 98.6 99.4 100 99.9 99.8 99.8 99.7 100 67.5 47.2 50.6 66.3 92.8

100 99.2 95.6 94.6 97.3 100 99.3 96.7 97.2 99.0 100 99.3 96.6 97.2 99.0 100 99.3 96.7 96.9 98.8 100 99.4 97.0 97.2 98.9 100 99.5 95.5 85.6 90.5 70.8 56.4 49.4 57.0 73.1

100 97.6 94.3 88.4 85.9 100 97.5 94.8 92.9 93.5 100 97.7 95.2 93.3 94.2 100 97.9 95.6 93.5 93.9 100 98.2 95.8 93.2 93.5 100 99.6 96.3 84.0 77.5 71.3 49.9 44.6 59.1 68.6

100 99.8 45.4 27.6 34.6 47.2 76.3

99.9 100 100 100 100 99.8 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 100 100 99.9 36.0 16.6 23.5 44.6 78.3

Figure 4: After pre-training, hidden states of generative models implicitly encode the NT ancestors informa-
tion. The NTℓ column represents the accuracy of predicting sℓ, the NT ancestors at level ℓ.

It also encodes NT boundaries, see Appendix D.1; and such information is discovered gradually and
hierarchically, across layers and training epochs, see Appendix D.2 and D.3. We compare against a
baseline which is the encoding from a random GPT. We also compare against DeBERTa, illustrating
that BERT-like models are less effective in learning NT information at levels close to the CFG root.

Ei(x) ∈ Rd. We investigate whether a linear function can predict
(
b1(i), . . . , bL(i)

)
i∈[len(x)] and(

s1(i), . . . , sL(i)
)
i∈[len(x)] using only

(
Ei(x)

)
i∈[len(x)]. If possible, it implies that the last-layer

hidden states encode the CFG’s structural information up to a linear transformation.

Our multi-head linear function. Due to the high dimensionality of this linear function (e.g.,
len(x) = 300 and d = 768 yield 300 × 768 dimensions) and variable string lengths, we propose
a multi-head linear function for efficient learning. We consider a set of linear functions fr : Rd →
R|NT|, where r ∈ [H] and H is the number of “heads”. To predict any sℓ(i), we apply:

Gi(x) =
∑

r∈[H],k∈[len(x)] wr,i→k · fr(Ek(x)) ∈ R|NT| (4.2)

where wr,i→k :=
exp(⟨Pi,r,Pk,r⟩)∑

k′∈[len(x)] exp(⟨Pi,r,Pk′,r⟩)
for trainable parameters Pi,r ∈ Rd′

. Gi can be seen as

a “multi-head attention” over linear functions. We train Gi(x) ∈ R|NT| using the cross-entropy loss
to predict

(
sℓ(i)

)
ℓ∈[L]

. Despite having multiple heads,

Gi(x) is still a linear function over
(
Ek(x)

)
k∈[len(x)]

as the linear weights wr,i→k depend only on positions i and k, not on x. Similarly, we train G′
i(x) ∈

RL using the logistic loss to predict the values
(
bℓ(i)

)
ℓ∈[L]

. Details are in Section B.4.

Results. Our experiments (Figure 4) suggest that pre-training allows the generative models to
almost perfectly encode the NT ancestor and NT boundary information in the last transformer layer’s
hidden states, up to a linear transformation.

4.2 FINDING 2: TRANSFORMER’S HIDDEN STATES ENCODE NT ANCESTORS AT NT BOUNDARIES

We previously used the entire hidden state layer,
(
Ei(x)

)
i∈[len(x)], to predict

(
sℓ(i)

)
ℓ∈[L]

for each
position i. This is essential for a generative/decoder model as it’s impossible to extract i’s NT
ancestors by only examining Ei(x) or the hidden states to its left, especially if a token xi is near the
string’s start or a subtree’s starting token in the CFG.

However, if we only consider a neighborhood of position i in the hidden states, say Ei±1(x), what
can we infer from it through linear probing? We can replace wr,i→k in (4.2) with a replace wr,i→k

with zeros for |i− k| > 1 (tridiagonal masking), or with zeros for i ̸= k (diagonal masking).

Results. We observe two key points. First, diagonal or tridiagonal masking is sufficient for predict-
ing NT boundaries, i.e., bℓ(i), with decent accuracy (deferred to Figure 15 in Appendix D.1). More
importantly, at NT boundaries (i.e., bℓ(x) = 1), such masking is adequate for accurately predicting
the NT ancestors sℓ(x) (see Figure 5). Hence, we conclude that the information of position i’s NT
ancestors is locally encoded around position i when i is on the NT boundary.

Related work. Our probing approach is akin to the seminal work by Hewitt & Manning (2019),
which uses linear probing to examine the correlation between BERT’s hidden states and the parse
tree distance metric (similar to NT-distance in our language). Subsequent studies (Arps et al., 2022;
Manning et al., 2020; Maudslay & Cotterell, 2021; Shi et al., 2022; Vilares et al., 2020; Wu et al.,
2020; Zhao et al., 2023) have explored various probing techniques to suggest that BERT-like trans-
formers can approximate CFGs from natural languages.

6

Under review as a conference paper at ICLR 2024

Observation. BERT-like (encoder-
only) transformers, such as De-
BERTa, trained on a masked lan-
guage modeling (MLM) task, do
not store deep NT ancestor infor-
mation at the NT boundaries.

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

di
ag

on
al

 m
as

ki
ng

) 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 98.9 85.7 85.7 91.3 75.6 66.8 68.0 83.4

97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 97.2 98.4 100 100 100 99.6 99.6 98.0 89.0 86.2 76.9 67.2 65.4 67.2 81.3

99.8 99.6 99.3 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.4 100 100 99.8 99.7 99.3 99.9 100 99.9 99.7 97.8 87.8 98.5 71.8 50.5 53.7 70.2 89.7

100 100 99.6 99.0 99.4 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.8 100 100 99.6 99.4 99.8 100 100 99.6 99.4 99.8 100 99.1 84.3 74.6 81.8 70.7 59.9 54.2 62.6 79.3

100 99.1 99.1 98.2 96.2 100 99.2 99.2 98.9 98.4 100 99.2 99.3 98.9 98.1 100 99.2 99.2 98.7 97.9 100 99.2 99.2 98.7 97.6 100 99.1 78.2 69.3 80.0 75.4 58.8 54.4 66.4 77.6

100 99.9 100 100 100 89.2 86.1 36.5 26.1 38.2 58.5 82.0

99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 99.6 99.9 100 100 100 100 100 99.6 90.6 89.4 38.6 23.4 30.4 52.3 82.7

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

tr
id

ia
go

na
l m

as
ki

ng
)

100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.6 99.8 100 100 100 99.7 99.8 100 100 100 99.0 84.7 84.3 95.0 78.9 68.8 69.2 83.5

99.1 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.2 99.2 100 100 100 99.6 99.7 99.4 92.0 85.4 83.3 71.2 69.8 72.2 84.5

99.8 99.6 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.7 99.5 100 100 99.8 99.0 97.3 90.8 98.1 79.6 52.7 55.2 70.3 91.6

100 100 99.6 99.1 99.5 100 100 99.7 99.5 99.9 100 100 99.7 99.5 99.9 100 100 99.7 99.4 99.8 100 100 99.7 99.4 99.8 100 99.4 90.2 75.3 83.1 76.2 61.2 54.7 62.9 81.5

100 99.2 99.1 98.4 97.6 100 99.3 99.3 99.0 99.3 100 99.3 99.3 99.0 99.1 100 99.2 99.2 98.9 98.9 100 99.2 99.2 98.8 98.8 100 98.7 84.9 69.2 79.9 79.3 60.5 54.7 67.4 83.1

100 94.3 88.7 40.3 30.4 41.3 62.4 89.5

99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 100 100 99.9 94.5 89.8 40.5 24.6 32.4 56.1 85.0

Figure 5: Generative pre-trained transformer encodes NT ancestors almost exactly at NT boundaries. The NTℓ

column represents the linear-probing accuracy of predicting sℓ(i) at locations i with bℓ(i) = 1.

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

(a) Bl,h,j→i for i + δ at NT-end in CFG level
ℓ. Rows represent ℓ = 2, 3, 4, 5 and columns
represent δ = −2,−1, 0, 1, 2.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b) Bl,h,j→i for i+ δ1, j + δ2 at NT-
ends in CFG level ℓ = 4. Rows / columns
represent δ1, δ2 = −1, 0,+1.

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(c) Bend→end
l,h,ℓ′→ℓ,r

for NT-ends between
CFG levels ℓ′ → ℓ. Rows represent r and
columns ℓ′ → ℓ. “×” means empty entries.

Figure 6: Attention has a strong bias towards “ NT-end at level ℓ′ to the most adjacent NT-end at ℓ ”, for even
different ℓ, ℓ′. For definitions see Section 5.2, and more experiments see Appendix E.2, E.3 and E.4.

Our approach differs in that we use synthetic data to demonstrate that linear probing can almost per-
fectly recover NT ancestors and boundaries, even for complex CFGs that generate strings exceeding
hundreds of tokens. We focus on pre-training generative language models. For a non-generative,
BERT-like model pre-trained via language-modeling (MLM), such as the contemporary variant De-
BERTa (He et al., 2020), learning deep NT information (i.e., close to the CFG root) is less effective,
as shown in Figure 4. This is expected, as the MLM task may only require the transformer to learn
NT rules for, say, 20 neighboring tokens. Crucially, BERT-like models do not store deep NT infor-
mation at the NT boundaries (see Figure 5).

Our results, along with Section 5, provide evidence that generative language models like GPT-2 em-
ploy a dynamic-programming-like approach to generate CFGs, while encoder-based models, typi-
cally trained via MLM, struggle to learn more complex/deeper CFGs.

5 HOW DO TRANSFORMERS LEARN NTS?

We now delve into the attention patterns. We demonstrate that these patterns mirror the CFG’s
syntactic structure and rules, with the transformer employing different attention heads to learn NTs
at different CFG levels.

5.1 POSITION-BASED ATTENTION

We first note that the transformer’s attention weights are primarily influenced by the tokens’ relative
distance. This holds true even when trained on the CFG data with absolute positional embedding.
This implies that the transformer learns the CFG’s regularity and periodicity through positional
information, which it then uses for generation. (We defer the figures to Appendix E.1 as this finding
may not surprise some readers.)

Motivated by this, we explore whether position-based attention alone can learn CFGs. In Figure 3,
we find that GPTpos (or even GPTuni) performs well, surpassing the vanilla GPT, but not reaching the
full potential of GPTrel. This supports the superior practical performance of relative-position based
transformer variants (such as GPTrel,GPTrot, DeBERTa) over their base models (GPT or BERT). On
this other hand, this also indicates that position attention along is not enough for transformers
to learn CFGs.

7

Under review as a conference paper at ICLR 2024

5.2 BOUNDARY-BASED ATTENTION

Next, we remove the position-bias from the attention matrix to examine the remaining part. We
find that the transformer also learns a strong boundary-based attention pattern, where tokens on
the NT-end boundaries typically attend to the “most adjacent” NT-end boundaries, similar to
standard dynamic programming for parsing CFGs (see Figure 1). This attention pattern enables the
transformer to effectively learn the hierarchical and recursive structure of the CFG, and generate
output tokens based on the NT symbols and rules.

Formally, let Al,h,j→i(x) for j ≥ i denote the attention weight for positions j → i at layer l and
head h of the transformer, on input sequence x. Given a sample pool {x(n)}n∈[N] ∈ L(G), we
compute for each layer l, head h,6

Al,h,p = AverageJAl,h,j→i(x
(n)) | n ∈ N, 1 ≤ i ≤ j ≤ len(x(n)) s.t. j − i = pK ,

which represents the average attention between any token pairs of distance p over the sample pool.
To remove position-bias, we focus on Bl,h,j→i(x) := Al,h,j→i(x)−Al,h,j−i in this subsection. Our
observation can be broken down into three steps.

• Firstly, Bl,h,j→i(x) exhibits a strong bias towards tokens i at NT ends. As shown in Figure 6(a),
we present the average value of Bl,h,j→i(x) over data x and pairs i, j where i+ δ is the deepest
NT-end at level ℓ (symbolically, b♯(i + δ) = ℓ). The attention weights are highest when δ = 0
and decrease rapidly for surrounding tokens.

• Secondly, Bl,h,j→i(x) also favors pairs i, j both at NT ends at some level ℓ. In Figure 6(b), we
show the average value of Bl,h,j→i(x) over data x and pairs i, j where bℓ(i+δ1) = bℓ(j+δ2) =
1 for δ1, δ2 ∈ {−1, 0, 1}.

• Thirdly, Bl,h,j→i(x) favors “adjacent” NT-end token pairs i, j. We define “adjacency” as fol-
lows: We introduce Bend→end

l,h,ℓ′→ℓ,r to represent the average value of Bl,h,j→i(x) over samples x

and token pairs i, j that are at the deepest NT-ends on levels ℓ, ℓ′ respectively (symbolically,
b♯(i) = ℓ ∧ b♯(j) = ℓ′), and are at a distance r based on the ancestor indices at level ℓ (symbol-
ically, pℓ(j) − pℓ(i) = r). In Figure 6(c), we observe that Bend→end

l,h,ℓ′→ℓ,r decreases as r increases,
and is highest when r = 0 (or r = 1 for pairs ℓ′ → ℓ without an r = 0 entry).7

In conclusion, tokens corresponding to NT-ends at level ℓ′ statistically have higher attention weights
to their most adjacent NT-ends at every level ℓ, even after removing position-bias.8

Connection to DP. Recall that dynamic programming (DP) comprises two components: storage
and recurrent formula. While it’s impractical to identify a specific DP implementation that the trans-
former follows since there are countless many ways to implement a DP, we can highlight common
elements in DP implementations and their correlation with the transformer. In Section 4, we demon-
strated that the generative transformer can encode the DP’s storage “backbone”, encompassing all
necessary DP(i, j, a) on the correct CFG parsing tree of a given string.

For the recurrent formula, consider a CFG rule a 7→ b, c, d in the correct CFG parsing tree. If
non-terminal (NT) b spans positions 21-30, c spans 31-40, and d spans 41-50, the DP must establish
“memory links” between positions 30-40 and 40-50. This can be achieved by storing the [bc] infor-
mation at position 40 and merging it with [d] at position 50, or by storing [cd] at position 50 and
merging it with [b] at position 30. Regardless of the method, a common feature is the memory link
from 30 to 40 and from 40 to 50. Hence, we have been examining such NT-end to NT-end attention
links among adjacent NTs in this section.

The transformer is not only a parsing algorithm but also a generative one. Suppose a 7→ b, c and
c 7→ d, e, f are on the correct parsing tree. When generating symbol e, the model, not having
finished reading def , must access the precomputed knowledge from the uncle node b. This is why
we also visualized those attentions from an NT-end to its most adjacent NT-end at a different level.

6Throughout this paper, we use J·K to denote multi-sets that allow multiplicity, such as J1, 2, 2, 3K. This
allows us to conveniently talk about its set average.

7For any token pair j → i with ℓ = b♯(i) ≥ b♯(j) = ℓ′ — meaning i is at an NT-end closer to the root than
j — it satisfies pℓ(j)− pℓ(i) ≥ 1 so their distance r is strictly positive.

8Without removing position-bias, such a statement might be meaningless as the position-bias may favor
“adjacent” anything, including NT-end pairs.

8

Under review as a conference paper at ICLR 2024

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

000 001 010 011 100 101 110 111

000

001

010
011
100
101
110111co

rr
el

at
io

ns
 o

f w
or

d
em

be
dd

in
gs

no
n-

un
ifo

rm
 O

T
di

st
ri

bu
ti

on

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Language models learn implicit CFGs by using word embeddings to encode terminal symbol.

In implicit CFGs, the terminal symbols t ∈ T are associated with bags of tokens OTt from which
observable tokens are sampled. We present word embedding correlations pre-trained on an implicit
CFG with |T| = 3 and vocabulary size 300. Details are in Section A.1.

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

b

100 99.8 100 100 100 100 100 100 100 100 100 100
98.7 100 100 100 100 100 100 100 100 100 99.2 99.9 100 100 100 99.9 100 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100
0.0 14.3 24.7 39.8 44.4 55.7 64.5 73.5 82.6 91.8 0.0 14.1 22.8 35.3 44.9 58.2 65.4 75.5 83.6 92.5 0.0 14.7 26.9 38.5 49.8 56.8 65.5 75.2 81.5 91.8 99.8
78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9 82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8 60.4 58.3 56.5 58.1 60.4 59.1 60.6 57.5 58.9 56.9 30.0
77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9 81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4 59.5 57.7 55.9 57.6 59.2 58.8 59.7 57.2 57.8 57.1 30.3
0.0 0.5 0.5 0.6 0.5 0.3 0.6 0.4 0.5 0.7 0.0 0.4 0.5 0.8 0.2 0.3 0.5 0.6 0.7 0.6 0.0 0.1 0.4 0.4 0.4 0.5 0.9 0.5 0.3 0.3 29.6
100 99.4 100 100 100 100 100 100 100 100 100 100
99.2 100 100 100 100 100 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 98.4 100 100 100 100 100 100 100 100 100 100
0.0 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 0.0 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 0.0 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3 99.9

--------------------pre-training method--------------------

Figure 8: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean or
corrupted prefixes with cuts c = 0 or c = 50, using generation temperatures τ = 0.1, 0.2, 1.0.

Observation. In Rows 4/5, by comparing against the last column, we see it is beneficial to include
low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality data could
be little (γ = 0.1 fraction) or large (every training sentence may have grammar mistake). The
transformer also learns a “mode switch” between the “correct mode” or not; details in Section A.2.

In sum, while defining a good backbone for the DP recurrent formula may be challenging, we have
demonstrated several attention patterns in this section that largely mimic dynamic programming
regardless of the DP implementations.

6 CONCLUSION

Extensions. We defer implicit CFGs and robust CFGs to Appendix A, but briefly showcase the
main discoveries in Figure 7 and 8.

Other related works. Numerous studies aim to uncover the inner workings of pretrained trans-
formers. Some have observed attention heads that pair closing brackets with open ones, as noted
in a concurrent study Zhang et al. (2023). Some have investigated induction heads applying logic
operations to the input Olsson et al. (2022). Wang et al. (2022) explored many different types of
attention heads, including “copy head” and “name mover head”. While our paper differs from these
studies due to the distinct tasks we examine, we highlight that CFG is a deep, recursive task. Nev-
ertheless, we still manage to reveal that the inner layers execute attentions in a complex, recursive,
dynamic-programming-like manner, not immediately evident at the input level.

On the other hand, some studies can precisely determine each neuron’s function after training, typi-
cally on a simpler task using simpler architecture. For instance, Nanda et al. (2023) examined 1- or
2-layer transformers with a context length of 3 for the arithmetic addition. Our analysis focuses on
the inner workings of GPT2-small, which has 12 layers and a context length exceeding 300. While
we cannot precisely determine each neuron’s function, we have identified the roles of some heads
and some hidden states, which correlate with dynamic programming.

Conclusion. In this paper, we studied how a transformer learns the CFGs structures in pretrain-
ing. CFGs in a language can include grammar, format, expressions, patterns, etc. We consider a
synthetic, yet quite challenging family of CFGs to show how the inner workings of trained lan-
guage models on these CFGs are highly correlated with the internal states of dynamic programming
algorithms to parse those CFGs.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. In COLT, 2023. Full version available at http://arxiv.org/abs/2001.04413.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019. Full version available at http://arxiv.org/abs/1811.
03962.

Sanjeev Arora and Yi Zhang. Do gans actually learn the distribution? an empirical study. arXiv
preprint arXiv:1706.08224, 2017.

David Arps, Younes Samih, Laura Kallmeyer, and Hassan Sajjad. Probing for constituency structure
in neural language models. arXiv preprint arXiv:2204.06201, 2022.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.
org/10.5281/zenodo.5297715.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Proceedings of the ACL Work-
shop on Challenges & Perspectives in Creating Large Language Models, 2022. URL https:
//arxiv.org/abs/2204.06745.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In ICLR, 2023.

Brian DuSell and David Chiang. Learning hierarchical structures with differentiable nondetermin-
istic stacks. In ICLR, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention. arXiv preprint arXiv:2006.03654, 2020.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pp. 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pp. 8571–
8580, 2018.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Lillian Lee. Learning of context-free languages: A survey of the literature. Techn. Rep. TR-12-96,
Harvard University, 1996.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards a
mechanistic understanding. arXiv preprint arXiv:2303.04245, 2023.

Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

Christopher D Manning, Kevin Clark, John Hewitt, Urvashi Khandelwal, and Omer Levy. Emergent
linguistic structure in artificial neural networks trained by self-supervision. Proceedings of the
National Academy of Sciences, 117(48):30046–30054, 2020.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL
https://aclanthology.org/J93-2004.

10

http://arxiv.org/abs/2001.04413
http://arxiv.org/abs/1811.03962
http://arxiv.org/abs/1811.03962
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://aclanthology.org/N19-1419
https://aclanthology.org/J93-2004

Under review as a conference paper at ICLR 2024

Rowan Hall Maudslay and Ryan Cotterell. Do syntactic probes probe syntax? experiments with
jabberwocky probing. arXiv preprint arXiv:2106.02559, 2021.

Neel Nanda, Lawrence Chan, Tom Liberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. arXiv preprint arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Gpt-4 technical report, 2023.
Matt Post and Shane Bergsma. Explicit and implicit syntactic features for text classification. In

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 866–872, 2013.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Itiroo Sakai. Syntax in universal translation. In Proceedings of the International Conference on
Machine Translation and Applied Language Analysis, 1961.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron Courville. Neural language modeling by
jointly learning syntax and lexicon. arXiv preprint arXiv:1711.02013, 2017.

Hui Shi, Sicun Gao, Yuandong Tian, Xinyun Chen, and Jishen Zhao. Learning bounded context-
free-grammar via lstm and the transformer: Difference and the explanations. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36, pp. 8267–8276, 2022.

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2012.
Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer

with rotary position embedding, 2021.
Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,

Benjamin Van Durme, Samuel R Bowman, Dipanjan Das, et al. What do you learn from con-
text? probing for sentence structure in contextualized word representations. arXiv preprint
arXiv:1905.06316, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

David Vilares, Michalina Strzyz, Anders Søgaard, and Carlos Gómez-Rodrı́guez. Parsing as pre-
training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 9114–
9121, 2020.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for
analyzing and interpreting bert. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4166–4176, 2020.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention net-
works can process bounded hierarchical languages. arXiv preprint arXiv:2105.11115, 2021.

Shizhuo Dylan Zhang, Curt Tigges, Stella Biderman, Maxim Raginsky, and Talia Ringer. Can
transformers learn to solve problems recursively? arXiv preprint arXiv:2305.14699, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

11

Under review as a conference paper at ICLR 2024

APPENDIX
A EXTENSIONS OF CFGS

A.1 IMPLICIT CFG

In an implicit CFG, terminal symbols represent bags of tokens with shared properties. For exam-
ple, a terminal symbol like noun corresponds to a distribution over a bag of nouns, while verb
corresponds to a distribution over a bag of verbs. These distributions can be non-uniform and over-
lapping, allowing tokens to be shared between different terminal symbols. During pre-training, the
model learns to associate tokens with their respective syntactic or semantic categories, without prior
knowledge of their specific roles in the CFG.

Formally, we consider a set of observable tokens OT, and each terminal symbol t ∈ T in
G is associated with a subset OTt ⊆ OT and a probability distribution Dt over OTt. The
sets (OTt)t can be overlapping. To generate a string from this implicit CFG, after generating
x = (x1, x2, . . . , xm) ∼ L(G), for each terminal symbol xi, we independently sample one element
yi ∼ Dxi . After that, we observe the new string y = (y1, y2, · · · , ym), and let this new distribution
be called y ∼ LO(G)
We pre-train language models using samples from the distribution y ∼ LO(G). During testing, we
evaluate the success probability of the model generating a string that belongs to LO(G), given an
input prefix y:c. Or, in symbols,

Pry∼LO(G)+randomness of F
[
(y:c, F (y:c)) ∈ LO(G)

]
,

where F (y:c) represents the model’s generated completion given prefix y:c. (We again use dy-
namic programming to determine whether the output string is in LO(G).) Our experiments show
that language models can learn implicit CFGs also very well. By visualizing the weights of the
word embedding layer, we observe that the embeddings of tokens from the same subset OTt are
grouped together (see Figure 7), indicating that transformer learns implicit CFGs by using its token
embedding layer to encode the hidden terminal symbol information. Details are in Appendix F.

A.2 ROBUSTNESS ON CORRUPTED CFG

One may also wish to pre-train a transformer to be robust against errors and inconsistencies in
the input. For example, if the input data is a prefix with some tokens being corrupted or missing,
then one may hope the transformer to correct the errors and still complete the sentence following
the correct CFG rules. Robustness is an important property, as it reflects the generalization and
adaptation ability of the transformer to deal with real-world training data, which may not always
follow the CFG perfectly (such as having grammar errors).

To test robustness, for each input prefix x:c of length c that belongs to the CFG, we randomly select a
set of positions i ∈ [c] in this prefix — each with probability ρ — and flip them i.i.d. with a random
symbol in T. Call the resulting prefix x̃:c. Next, we feed the corrupted prefix x̃:c to the transformer F
and compute its generation accuracy in the uncorrupted CFG: Prx∼L(G), F [(x:c, F (x̃:c)) ∈ L(G)].
We not only consider clean pre-training, but also some versions of robust pre-training. That is, we
randomly select γ ∈ [0, 1] fraction of the training data and perturb them before feeding into the
pre-training process. We compare three types of data perturbations.9

• (T-level random perturbation). Each xi w.p. 0.15 we replace it with a random symbol in T.
• (NT-level random perturbation). Let ℓ = L − 1 and recall sℓ =

(
sℓ,1, sℓ,2, . . . , sℓ,mL−1

)
is the

sequence of symbols at NT-level ℓ. For each sℓ,i, w.p. 0.10 we perturb it to a random symbol in
NTℓ; and then generate x = sL according to this perturbed sequence.

• (NT-level deterministic perturbation). Let ℓ = L − 1 and fix a permutation π over symbols in
NTℓ. For each sℓ,i, w.p. 0.05 we perturb it to its next symbol in NTL−1 according to π; and
then generate x = sL according to this perturbed sequence.

9One can easily extend our experiments by considering other types of data corruption (for evaluation), and
other types of data perturbations (for training). We refrain from doing so because it is beyond the scope of this
paper.

12

Under review as a conference paper at ICLR 2024

We focus on ρ = 0.15 with a wide range of perturbation rate τ = 0.0, 0.1, . . . , 0.9, 1.0. We present
our findings in Figure 8. Noticeable observations include:

• Rows 4/5 of Figure 8 suggest that GPT models are not so robust (e.g., ∼ 30% accuracy) when
training over clean data x ∼ L(G). If we train from perturbed data — both when γ = 1.0 so
all data are perturbed, and when γ = 0.1 so we have a tiny fraction of perturbed data — GPT
can achieve ∼ 79%, 82% and 60% robust accuracies respectively using the three types of data
perturbations (Rows 4/5 of Figure 8). This suggest that it is actually beneficial in practice to
include corrupted or low-quality data during pre-training.

• Comparing Rows 3/6/9 of Figure 8 for temperature τ = 1, we see that pre-training teaches the
language model to actually include a mode switch. When given a correct prefix it is in the correct
mode and completes the sentence with a correct string in the CFG (Row 9); when given corrupted
prefixes, it always completes sentences with grammar mistakes (Row 6); when given no prefix it
generates corrupted strings with probability close to γ (Row 3).

• Comparing Rows 4/5 to Row 6 in Figure 8 we see that high robust accuracy is achieved when
generating using low temperatures τ .10 This should not be surprising given that the language
model learned a “mode switch.” Using low temperature encourages the model to, for each next
token, pick a more probable solution. This allows it to achieve good robust accuracy even when
the model is trained totally on corrupted data (γ = 1.0).
Please note this is consistent with practice: when feeding a pre-trained large language model
(such as LLaMA-30B) with prompts of grammar mistakes, it tends to produce texts also with
(even new!) grammar mistakes when using a large temperature.

Our experiments seem to suggest that, additional instruct fine-tuning may be necessary, if one wants
the model to always be in the “correct mode.” This is beyond the scope of this paper.

B EXPERIMENT SETUPS

B.1 DATASET DETAILS

We construct seven synthetic CFGs of depth L = 7 with varying levels of learning difficulty. It can
be inferred that the greater the number of T/NT symbols, the more challenging it is to learn the CFG.
For this reason, to push the capabilities of language models to their limits, we primarily focus on
cfg3b, cfg3i, cfg3h, cfg3g, cfg3f, which are of sizes (1, 3, 3, 3, 3, 3, 3) and present increasing levels
of difficulty. Detailed information about these CFGs is provided in Figure 9:

• In cfg3b, we construct the CFG such that the degree |R(a)| = 2 for every NT a. We also ensure
that in any generation rule, consecutive pairs of T/NT symbols are distinct.
The 25%, 50%, 75%, and 95% percentile string lengths are 251, 278, 308, 342 respectively.

• In cfg3i, we set |R(a)| = 2 for every NT a. We remove the requirement for distinctness to make
the data more challenging than cfg3b.
The 25%, 50%, 75%, and 95% percentile string lengths are 276, 307, 340, 386 respectively.

• In cfg3h, we set |R(a)| ∈ {2, 3} for every NT a to make the data more challenging than cfg3i.
The 25%, 50%, 75%, and 95% percentile string lengths are 202, 238, 270, 300 respectively.

• In cfg3g, we set |R(a)| = 3 for every NT a to make the data more challenging than cfg3h.
The 25%, 50%, 75%, and 95% percentile string lengths are 212, 258, 294, 341 respectively.

• In cfg3f, we set |R(a)| ∈ {3, 4} for every NT a to make the data more challenging than cfg3g.
The 25%, 50%, 75%, and 95% percentile string lengths are 191, 247, 302, 364 respectively.

Remark B.1. From the examples in Figure 9, it becomes evident that for grammars G of depth 7,
proving that a string x belongs to L(G) is highly non-trivial, even for a human being, and even when
the CFG rules are known. The standard method of demonstrating x ∈ L(G) is through dynamic
programming. We further discuss what we mean by a CFG’s “difficulty” in Appendix H, and provide
additional experiments beyond the cfg3 data family.
Remark B.2. cfg3f is a dataset that sits right on the boundary of difficulty at which GPT2-small is
capable of learning (refer to subsequent subsections for training parameters). While it is certainly

10Recall, when temperature τ = 0 the generation is greedy and deterministic; when τ = 1 it reflects the
unaltered distribution learned by the transformer; when τ > 0 s small it encourages the transformer to output
“more probable” tokens.

13

Under review as a conference paper at ICLR 2024

22|->20 21
22|->20 19 21
22|->21 19 19
22|->20 20
 19|->18 16 18
 19|->17 18
 19|->18 18
 20|->16 16
 20|->16 17
 20|->17 16 18
 21|->18 17
 21|->17 16
 21|->16 17 18
 21|->16 18
 16|->15 15
 16|->13 15 13
 16|->14 13
 16|->14 14
 17|->15 14 13
 17|->14 15
 17|->15 14
 18|->14 15 13
 18|->15 13 13
 18|->13 15
 13|->11 12
 13|->12 11 12
 13|->10 12 11
 14|->10 12
 14|->12 10 12
 14|->12 11
 14|->10 12 12
 15|->10 11 11
 15|->11 11 10
 15|->10 10
 15|->12 12 11
 10|->8 9 9
 10|->9 7 9
 10|->7 9 9
 11|->8 8
 11|->9 7
 11|->9 7 7
 12|->7 9 7
 12|->9 8
 12|->8 8 9
 7|->2 2 1
 7|->3 2 2
 7|->3 1 2
 7|->3 2
 8|->3 1 1
 8|->1 2
 8|->3 3 1
 9|->1 2 1
 9|->3 3
 9|->1 1

22|->21 20
22|->20 19
 19|->16 17 18
 19|->17 18 16
 20|->17 16 18
 20|->16 17
 21|->18 16
 21|->16 18 17
 16|->15 13
 16|->13 15 14
 17|->14 13 15
 17|->15 13 14
 18|->15 14 13
 18|->14 13
 13|->11 12
 13|->12 11
 14|->11 10 12
 14|->10 11 12
 15|->12 11 10
 15|->11 12 10
 10|->7 9 8
 10|->9 8 7
 11|->8 7 9
 11|->7 8 9
 12|->8 9 7
 12|->9 7 8
 7|->3 1
 7|->1 2 3
 8|->3 2
 8|->3 1 2
 9|->3 2 1
 9|->2 1

22|->19 19 20
22|->21 20 19
 19|->18 16 18
 19|->16 16
 20|->17 16 17
 20|->18 18
 21|->16 16 18
 21|->18 17
 16|->13 13
 16|->14 14
 17|->15 15
 17|->15 14
 18|->14 15 13
 18|->14 15
 13|->12 11
 13|->10 12 11
 14|->10 10 10
 14|->10 10
 15|->11 11 10
 15|->11 10 12
 10|->8 7 7
 10|->9 9
 11|->7 7 7
 11|->7 7 8
 12|->7 9 9
 12|->8 7
 7|->3 1 2
 7|->2 3 1
 8|->1 1
 8|->2 2
 9|->1 1 3
 9|->1 2

22|->20 20 21
22|->19 21
 19|->16 17
 19|->18 17
 20|->18 16
 20|->17 16
 21|->17 17 18
 21|->17 18 17
 16|->14 13
 16|->15 13
 17|->13 14
 17|->15 13 15
 18|->15 13 13
 18|->15 14 14
 18|->14 15 15
 13|->12 11
 13|->11 10
 14|->10 12 12
 14|->10 10
 14|->12 12 10
 15|->10 12
 15|->11 11 10
 10|->8 7 9
 10|->9 7
 10|->8 8
 11|->8 7 7
 11|->7 7
 11|->7 9 9
 12|->7 9
 12|->8 7
 12|->9 8
 7|->2 3 2
 7|->1 2 3
 7|->1 3 1
 8|->1 2
 8|->3 3 1
 8|->1 3
 9|->2 1 3
 9|->1 3 3

22|->19 20
22|->20 20 19
22|->20 19 21
 19|->17 17 16
 19|->18 17 16
 19|->18 16 17
 20|->16 17
 20|->18 18
 20|->16 17 17
 21|->16 16
 21|->16 16 18
 21|->18 16
 16|->14 13 13
 16|->13 14
 16|->13 13
 17|->14 13 14
 17|->14 15 13
 17|->15 14
 18|->15 13
 18|->15 15
 18|->14 13 15
 13|->10 12
 13|->11 11 11
 13|->11 11
 14|->11 12
 14|->10 11 10
 14|->10 10
 15|->10 11
 15|->12 10 10
 15|->12 11
 10|->8 8 8
 10|->7 7 7
 10|->7 7
 11|->8 8 9
 11|->9 7
 11|->8 9 7
 12|->7 9
 12|->7 8
 12|->9 9 9
 7|->2 3 1
 7|->1 1
 7|->2 2
 8|->1 3 2
 8|->1 3
 8|->3 3 1
 9|->2 3 3
 9|->2 3
 9|->2 1

cfg3b cfg3i

cfg3h

cfg3g

cfg3f

332213123312113123211322312312111213211322311311

322333123121112131133112132121333331232212131232

221111213322131131131131111113231233133133311331

333332231211311121221111211233312331121113313333

331123333131111333312113211312121133333212111121

213223223322133221113221132323313111213223223221

211133331121322221332211212133121331332212213221

211213331232233312

231221122132232312311233223313313313313312122221

123322331331132132233222123113233113233123231132

331123112311111222312312233121111123122112332321

231221111231331132212223321232133133133133113132

311122211322322113311323312313223323133133113231

222332123132132211313231123331132331112223311232

21123123111132

131231331311332131323223212232123121313121321313

113313333113123232131323213113131232121231332132

322321333311231331231332321312131133131231231311

312133311312321331232131313312131231311212312312

232213131131331133313312322132131312133312131212

1231311232131331313133123232213

113113121222312312113113121222312231112313121212

222312311131212113113123123123123123122313121212

312312312231312231112312311131211231231112312312

231231211231312112313121212231231231231231111212

312231231231312111131131131222312231223123123123

123122313121111231312312113122313121111312231231

221131231212122312313123123121112113

312312132132123323213132112332321233213123213132

313211232131221123312321232121123312313221213212

331312321213212332321123323121313213123221123323

132121313122112332312123213213231312123213232131

123213123132321321313221313232313212112331231322

112321312321313123132213121321233122132131231321

313123132213213132

a sample from cfg3b:

a sample from cfg3i:

a sample from cfg3h:

a sample from cfg3g:

a sample from cfg3f:

Figure 9: The context-free grammars cfg3b, cfg3i, cfg3h, cfg3g, cfg3f that we primarily use in this paper,
together with a sample string from each of them.

Observation. Although those CFGs are only of depth 7, they are capable of generating sufficiently
long and hard instances; after all, even when the CFG rules are given, the typical way to decide if a
string x belongs to the CFG language x ∈ L(G) may require dynamic programming.

possible to consider deeper and more complex CFGs, this would necessitate training a larger network
for a longer period. We choose not to do this as our findings are sufficiently convincing at the level
of cfg3f.

Simultaneously, to illustrate that transformers can learn CFGs with larger |NT| or |T|, we construct
datasets cfg3e1 and cfg3e2 respectively of sizes (1, 3, 9, 27, 81, 27, 9) and (1, 3, 9, 27, 27, 9, 4). They
are too lengthy to describe so only included in the supplementary materials.

B.2 MODEL ARCHITECTURE DETAILS

We define GPT as the standard GPT2-small architecture (Radford et al., 2019), which consists of 12
layers, 12 attention heads per layer, and 768 (=12 × 64) hidden dimensions. We pre-train GPT on
the aforementioned datasets, starting from random initialization. For a baseline comparison, we also
implement DeBERTa (He et al., 2020), resizing it to match the dimensions of GPT2 — thus also
comprising 12 layers, 12 attention heads, and 768 dimensions.

Architecture size. We have experimented with models of varying sizes and observed that their
learning capabilities scale with the complexity of the CFGs. To ensure a fair comparison and en-
hance reproducibility, we primarily focus on models with 12 layers, 12 attention heads, and 768
dimensions. The transformers constructed in this manner consist of 86M parameters.

Modern GPTs with relative attention. Recent research (Black et al., 2022; He et al., 2020;
Su et al., 2021) has demonstrated that transformers can significantly improve performance by using
attention mechanisms based on the relative position differences of tokens, as opposed to the absolute
positions used in the original GPT2 (Radford et al., 2019) or BERT (Kenton & Toutanova, 2019).
There are two main approaches to achieve this. The first is to use a “relative positional embedding
layer” on |j − i| when calculating the attention from j to i (or a bucket embedding to save space).
This approach is the most effective but tends to train slower. The second approach is to apply a
rotary positional embedding (RoPE) transformation (Su et al., 2021) on the hidden states; this is

14

Under review as a conference paper at ICLR 2024

known to be slightly less effective than the relative approach, but it can be trained much faster.

We have implemented both approaches. We adopted the RoPE implementation from the GPT-NeoX-
20B project (along with the default parameters), but downsized it to fit the GPT2 small model. We
refer to this architecture as GPTrot. Since we could not find a standard implementation of GPT using
relative attention, we re-implemented GPT2 using the relative attention framework from DeBERTa
(He et al., 2020). (Recall, DeBERTa is a variant of BERT that effectively utilizes relative positional
embeddings.) We refer to this architecture as GPTrel.

Weaker GPTs utilizing only position-based attention. For the purpose of analysis, we also
consider two significantly weaker variants of GPT, where the attention matrix exclusively depends
on the token positions, and not on the input sequences or hidden embeddings. In other words, the
attention pattern remains constant for all input sequences.

We implement GPTpos, a variant of GPTrel that restricts the attention matrix to be computed solely
using the (trainable) relative positional embedding. This can be perceived as a GPT variant that
maximizes the use of position-based attention. We also implement GPTuni, a 12-layer, 8-head, 1024-
dimension transformer, where the attention matrix is fixed; for each h ∈ [8], the h-th head consis-
tently uses a fixed, uniform attention over the previous 2h − 1 tokens. This can be perceived as a
GPT variant that employs the simplest form of position-based attention.
Remark B.3. It should not be surprising that GPTpos or GPTuni perform much worse than other GPT
models on real-life wikibook pre-training. However, once again, we use them only for analysis
purpose in this paper, as we wish to demonstrate what is the maximum power of GPT when only
using position-based attention to learn CFGs, and what is the marginal effect when one goes beyond
position-based attention.

Features from random transformer. Finally we also consider a randomly-initialized GPTrel, and
use those random features for the purpose of predicting NT ancestors and NT ends. This serves as a
baseline, and can be viewed as the power of the so-called (finite-width) neural tangent kernel (Allen-
Zhu et al., 2019; Jacot et al., 2018). We call this GPTrand.

B.3 PRE-TRAINING DETAILS

For each sample x ∼ L(G) we append it to the left with a BOS token and to the right with an
EOS token. Then, following the tradition of language modeling (LM) pre-training, we concatenate
consecutive samples and randomly cut the data to form sequences of a fixed window length 512.

As a baseline comparison, we also applied DeBERTa on a masked language modeling (MLM) task
for our datasets. We use standard MLM parameters: 15% masked probability, in which 80% chance
of using a masked token, 10% chance using the original token, and 10% chance using a random
token.

We use standard initializations from the huggingface library. For GPT pre-training, we use AdamW
with β = (0.9, 0.98), weight decay 0.1, learning rate 0.0003, and batch size 96. We pre-train the
model for 100k iterations, with a linear learning rate decay.11 For DeBERTa, we use learning rate
0.0001 which is better and 2000 steps of learning rate linear warmup.

Throughout the experiments, for both pre-training and testing, we only use fresh samples from the
CFG datasets (thus using 4.9 billion tokens = 96 × 512 × 100k). We have also tested pre-training
with a finite training set of 100m tokens; and the conclusions of this paper stay similar. To make
this paper clean, we choose to stick to the infinite-data regime in this version of the paper, because
it enables us to make negative statements (for instance about the vanilla GPT or DeBERTa, or about
the learnability of NT ancestors / NT boundaries) without worrying about the sample size. Please
note, given that our CFG language is very large (e.g., length 300 tree of length-2/3 rules and degree
4 would have at least 4300/3 possibility), there is almost no chance that training/testing hit the same
sentence.

As for the reproducibility of our result, we did not run each pre-train experiment more than once (or
plot any confidence interval). This is because, rather than repeating our experiments identically, we
find it more interesting to use the resources to run it against different datasets and against different

11We have slightly tuned the parameters to make pre-training go best. We noticed for training GPTs over our
CFG data, a warmup learning rate schedule is not needed.

15

Under review as a conference paper at ICLR 2024

parameters. We pick the best model using the perplexity score from each pre-training task. When
evaluating the generation accuracy in Figure 3, we have generated more than 20000 samples for
each case, and present the diversity pattern accordingly in Figure 10.

B.4 PREDICT NT ANCESTOR AND NT BOUNDARY

Recall from Section 4.1 that we have proposed to use a multi-head linear function to probe whether
or not the hidden states of a transformer, implicitly encodes the NT ancestor and NT boundary
information for each token position. Since this linear function can be of dimension 512 × 768 —
when having a context length 512 and hidden dimension 768 — recall in (4.2), we have proposed
to use a multi-head attention to construct such linear function for efficient learning purpose. This
significantly reduces sample complexity and makes it much easier to find the linear function.

In our implementation, we choose H = 16 heads and hidden dimension d′ = 1024 when construct-
ing this position-based attention in (4.2). We have also tried other parameters but the NT ances-
tor/boundary prediction accuracies are not very sensitive to such architecture change. We again use
AdamW with β = (0.9, 0.98) but this time with learning rate 0.003, weight decay 0.001, batch size
60 and train for 30k iterations.

Once again we use fresh new samples when training such linear functions. When evaluating the
accuracies on predicting the NT ancester / boundary information, we also use fresh new samples.
Recall our CFG language is sufficiently large so there is negligible chance that the model has seen
such a string during training.

C MORE EXPERIMENTS ON GENERATION

C.1 GENERATION DIVERSITY VIA BIRTHDAY PARADOX

Since “diversity” is influenced by the length of the input prefix, the length of the output, and the
CFG rules, we want to carefully define what we measure.

Given a sample pool x(1), ..., x(M) ∈ L(G), for every symbol a ∈ NTℓ1 and some later level
ℓ2 ≥ ℓ1 that is closer to the leaves, we wish to define a multi-set Sa→ℓ2 that describes all possible
generations from a ∈ NTℓ1 to NTℓ2 in this sample pool. Formally,

Definition C.1. For x ∈ L(G) and ℓ ∈ [L], we use sℓ(i..j) to denote the sequence of NT ancestor
symbols at level ℓ ∈ [L] from position i to j with distinct ancestor indices:12

sℓ(i..j) = (sℓ(k))k∈{i,i+1,...,j} s.t. pℓ(k) ̸=pℓ(k+1)

Definition C.2. For symbol a ∈ NTℓ1 and some layer ℓ2 ∈ {ℓ1, ℓ1 + 1, . . . , L}, define multi-set13

Sa→ℓ2(x) =

s
sℓ2(i..j)

∣∣∣∀i, j, i ≤ j such that pℓ1(i− 1) ̸= pℓ1(i) = pℓ1(j) ̸= pℓ1(j + 1) ∧ a = sℓ1(i)

{

and we define the multi-set union Sa→ℓ2 =
⋃

i∈[M] Sa→ℓ2

(
x(i)

)
, which is the multiset of all sen-

tential forms that can be derived from NT symbol a to depth ℓ2.

(Above, when x ∼ L(G) is generated from the ground-truth CFG, then the ancestor indices and
symbols p, s are defined in Section 2. If x ∈ L(G) is an output from the transformer F , then we let
p, s be computed using dynamic programming, breaking ties lexicographically.)

We use Struth
a→ℓ2

to denote the ground truth Sa→ℓ2 when x(1), . . . , x(M) are i.i.d. sampled from the
real distribution L(G), and denote by

SF
a→ℓ2

=
⋃

i∈[M ′] and x
(i)
:c ,F (x

(i)
:c)∈L(G) Sa→ℓ2

(
x
(i)
:c , F (x

(i)
:c)

)
that from the transformer F . For a fair comparison, for each F and p, we pick an M ′ ≥ M such that
M =

∣∣{i ∈ [M ′] | x(i)
:p , F (x

(i)
:p) ∈ L(G)

}∣∣ so that F is capable of generating exactly M sentences

12With the understanding that pℓ(0) = pℓ(len(x) + 1) = ∞.
13Throughout this paper, we use J·K to denote multi-sets that allow multiplicity, such as J1, 2, 2, 3K. This

allows us to conveniently talk about its collision count, number of distinct elements, and set average.

16

Under review as a conference paper at ICLR 2024

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
f 0

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

Figure 10: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (c = 0
or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7. Colors
represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the collision

counts (if not present, meaning there are more than 5 collisions). More experiments in Figure 11,
12, and 13

Observation. We use M = 20000 samples. The diversity pattern from the pre-trained transformer
matches that of the ground-truth. For instance, there is a symbol a ∈ NT2 capable of generating
Ω(M2) distinct sequences to level ℓ2 = 5 satisfying the CFG (not to say to the T-level ℓ2 = 7);
this is already more than the number of parameters in the model. Therefore, we conclude that the
pre-trained model does not rely on simply memorizing a small set of patterns to learn the CFGs.

that nearly-perfectly satisfy the CFG rules.

Intuitively, for x’s generated by the transformer model, the larger the number of distinct sequences
in SF

a→ℓ2
is, the more diverse the set of NTs at level ℓ2 (or Ts if ℓ2 = L) the model can generate

starting from NT a. Moreover, in the event that SF
a→ℓ2

has only distinct sequences (so collision
count = 0), then we know that the generation from a → ℓ2, with good probability, should include at
least Ω(M2) possibilities using a birthday paradox argument. For such reason, it can be beneficial
if we compare the number of distinct sequences and the collision counts between SF

a→ℓ2
and Struth

a→ℓ2
.

Note we consider all ℓ2 ≥ ℓ1 instead of only ℓ2 = L, because we want to better capture model’s
diversity at all CFG levels.14 We present our findings in Figure 10 with M = 20000 samples for the
cfg3f dataset.

In Figure 11 we present that for cfg3b, cfg3i, cfg3h, cfg3g, in Figure 12 for cfg3e1, and in Figure 13
for cfg3e2. We note that not only for hard, ambiguous datasets, also for those less ambiguous
(cfg3e1, cfg3e2) datasets, language models are capable of generating very diverse outputs.

14A model might generate a same NT symbol sequence sL−1, and then generate different Ts randomly from
each NT. In this way, the model still generates strings x’s with large diversity, but SF

a→L−1(x) is small. If
SF
a→ℓ2

is large for every ℓ2 and a, then the generation from the model is truely diverse at any level of the CFG.

17

Under review as a conference paper at ICLR 2024

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
b 0

0 0
0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(a) cfg3b dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
i 0

0 0

0 0
4 5 0 4 3 2

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(b) cfg3i dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
h 0

0 0
1 0 0 3 0 0 2 0 0 0 0 0 2 0 0 1 0 0 1 0 0 2 0 0 2 0 0 1 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0
0 1 2 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

(c) cfg3h dataset

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
g 0

0 0
0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 1
3 0 0 0 0 0 2 0 2 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1

100

101

102

103

104

(d) cfg3g dataset

Figure 11: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions).

18

Under review as a conference paper at ICLR 2024

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
e1

1 0 0 1 0 0 3 0 0 2 0 0 1 0 0 4 0 0 3 0 0 1 0 0 0 0 0 2 0 0 5 0 0

1 0 0 1 0 0 3 0 0 0 0 0 1 0 0 4 0 0 2 0 0 0 0 0 0 0 0 2 0 0 5 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
4 0 0 0 1 0 3 0 5 0 2 0 1 0 1 0 2 0 2 0 1 0

0 0

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 1 3 0

0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0

0 2 1 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
2 4 0 3 2 1 2 1 2 1 2

0 0 0 0 0 0 0 0 0 0 0
1 3 4 4 2 1 2 3 1 1 1

0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

Figure 12: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3e1
dataset.

19

Under review as a conference paper at ICLR 2024

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

di
ve

rs
it

y
pa

tt
er

n
fo

r
cf

g3
e2

1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0

0 0
1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0

1 0 1 0 2 0 4 0 1 0 2 0 1 0 4 0 2 0 5 0 1 0
1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

0 0

4 0 0 0 0 0 4 0 0 0 5 0 0 0

1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 2 0 0 0

4 1 5 2 3 3 1 2 4

3 4
5 3 5 5 5 5
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

5

0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0 1

4 4 5
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

100

101

102

103

104

Figure 13: Comparing the generation diversity Struth
a→ℓ2

and SF
a→ℓ2

across different learned GPT models (and for
c = 0 or c = 50). Rows correspond to NT symbols a and columns correspond to ℓ2 = 2, 3, . . . , 7.
Colors represent the number of distinct elements in Struth

a→ℓ2
, and the white numbers represent the

collision counts (if not present, meaning there are more than 5 collisions). This is for the cfg3e2
dataset.

20

Under review as a conference paper at ICLR 2024

C.2 MARGINAL DISTRIBUTION COMPARISON

In order to effectively learn a CFG, it is also important to match the distribution of generating
probabilities. While measuring this can be challenging, we have conducted at least a simple test on
the marginal distributions p(a, i), which represent the probability of symbol a ∈ NTℓ appearing at
position i (i.e., the probability that sℓ(i) = a). We observe a strong alignment between the generated
probabilities and the ground-truth distribution. See Figure 14.

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) cfg3b dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(b) cfg3b dataset; marginal distribution - ground truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) cfg3i dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(d) cfg3i dataset; marginal distribution - ground truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.2

0.4

0.6

0.8

1.0

(e) cfg3h dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(f) cfg3h dataset; marginal distribution - ground truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(g) cfg3g dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(h) cfg3g dataset; marginal distribution - ground truth

truth GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(i) cfg3f dataset; marginal distribution

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50

0

50

100

150

200

250

ab
so

lu
te

 p
os

it
io

n

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(j) cfg3f dataset; marginal distribution - ground truth

Figure 14: Marginal distribution p(a, i) difference between a trained model and the ground-truth, for an NT/T
symbol a (column) at position i (row). Figures on the left compare the marginal distribution of the
ground-truth against those generated from 5 models × 2 cut positions (c = 0/c = 50). Figures
on the right showcase the marginal distribution difference between them and the ground-truth. It is
noticeable from the figures that GPT did not learn cfg3g and cfg3f well. This is consistent with the
generation accuracies in Figure 3.

21

Under review as a conference paper at ICLR 2024

D MORE EXPERIMENTS ON NT ANCESTOR AND NT BOUNDARY
PREDICTIONS

D.1 NT ANCESTOR AND NT BOUNDARY PREDICTIONS

Earlier, as confirmed in Figure 4, we established that the hidden states (of the final transformer layer)
have implicitly encoded the NT ancestor symbols sℓ(i) for each CFG level ℓ and token position
i using a linear transformation. In Figure 15(a), we also demonstrated that the same conclusion
applies to the NT-end boundary information bℓ(i). More importantly, for bℓ(i), we showed that this
information is stored locally, very close to position i (such as at i± 1). Detailed information can be
found in Figure 15.

Furthermore, as recalled in Figure 5, we confirmed that at any NT boundary where bℓ(i) = 1, the
transformer has also locally encoded clear information about the NT ancestor symbol sℓ(i), either
exactly at i or at i±1. To be precise, this is a conditional statement — given that it is an NT boundary,
NT ancestors can be predicted. Therefore, in principle, one must also verify that the prediction task
for the NT boundary is successful to begin with. Such missing experiments are, in fact, included in
Figure 15(b) and Figure 15(c).

22

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)

100 96.5 88.0 95.5 98.5 99.6

99.7 99.8 99.0 99.5 99.9 99.7 99.8 99.1 99.5 99.9 99.7 99.8 99.1 99.5 99.9 99.8 99.8 99.1 99.6 99.9 99.8 99.8 99.1 99.6 99.9 87.5 88.6 94.9 97.9 99.3

99.7 99.3 99.5 99.8 99.9 99.7 99.4 99.5 99.8 99.9 99.7 99.4 99.5 99.8 99.9 99.7 99.4 99.6 99.9 100 99.7 99.4 99.6 99.9 100 88.1 86.8 94.0 97.9 99.4

99.8 98.0 98.2 99.2 99.7 99.8 98.3 98.5 99.4 99.8 99.8 98.2 98.5 99.4 99.8 99.7 98.3 98.6 99.4 99.8 99.8 98.3 98.6 99.4 99.8 92.1 85.6 93.6 97.7 99.3

100 98.3 98.8 99.3 99.7 100 98.8 99.0 99.5 99.8 100 98.8 99.1 99.5 99.8 100 98.9 99.2 99.6 99.8 100 98.8 99.1 99.5 99.8 91.7 85.6 94.8 98.1 99.4

100 71.7 84.2 94.0 97.8 99.3

99.5 99.9 100 100 100 99.6 100 100 100 100 99.6 100 100 100 100 99.7 100 100 100 100 99.7 100 100 100 100 73.1 84.6 94.2 98.0 99.3

(a) Predicting NT boundaries: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents the accuracy of predicting
bℓ using the multi-head linear probing function described in (4.2).

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)
 (

di
ag

on
al

 m
as

ki
ng

) 95.7 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 95.7 100 99.6 99.5 99.9 95.8 100 99.6 99.5 99.9 96.5 88.0 95.5 98.5 99.6

96.5 96.9 97.7 98.5 99.4 96.6 97.1 97.8 98.5 99.4 96.6 97.0 97.8 98.5 99.4 96.5 97.0 97.7 98.5 99.4 96.6 97.1 97.8 98.5 99.4 87.5 88.6 94.9 97.9 99.3

91.3 95.0 97.8 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 91.5 95.2 97.9 99.1 99.6 88.1 86.8 94.0 97.9 99.4

86.7 92.6 95.0 98.0 99.1 86.9 92.8 95.2 98.1 99.2 86.9 92.8 95.3 98.1 99.2 86.9 92.8 95.2 98.1 99.2 86.9 92.8 95.2 98.1 99.2 92.1 85.6 93.6 97.7 99.3

89.1 92.7 96.5 98.2 99.2 89.4 93.2 96.7 98.4 99.3 89.4 93.2 96.7 98.4 99.3 89.3 93.2 96.6 98.3 99.2 89.3 93.2 96.6 98.3 99.2 91.7 85.6 94.8 98.1 99.4

98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 98.2 99.6 99.9 99.9 99.8 71.7 84.2 94.0 97.8 99.3

96.0 99.0 99.9 100 100 96.1 99.0 99.9 100 100 96.0 99.0 99.9 100 100 96.0 99.0 99.9 100 100 96.1 99.0 99.9 100 100 73.1 84.6 94.2 98.0 99.3

(b) Predicting NT boundaries with diagonal masking: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents the
accuracy of predicting bℓ using (4.2) but setting wr,i→k = 0 for i ̸= k.

GPT GPT_rel GPT_rot GPT_pos GPT_uni baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg3b
cfg3i
cfg3h
cfg3g
cfg3fcfg3e1

cfg3e2

pr
ed

ic
t

N
T-

en
d

bo
un

da
ry

 (
%

)
 (

tr
id

ia
go

na
l m

as
ki

ng
) 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 99.9 100 99.6 99.6 99.9 96.5 88.0 95.5 98.5 99.6

97.7 98.2 98.3 98.9 99.6 97.8 98.2 98.4 98.9 99.6 97.7 98.2 98.4 98.9 99.6 97.8 98.2 98.4 98.9 99.6 97.8 98.2 98.4 98.9 99.6 87.5 88.6 94.9 97.9 99.3

98.0 97.2 98.7 99.4 99.8 98.1 97.3 98.8 99.4 99.8 98.1 97.3 98.8 99.4 99.8 98.1 97.4 98.7 99.4 99.8 98.1 97.4 98.7 99.4 99.8 88.1 86.8 94.0 97.9 99.4

96.7 96.3 96.5 98.7 99.5 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.8 98.8 99.6 96.7 96.5 96.7 98.8 99.6 92.1 85.6 93.6 97.7 99.3

98.3 95.4 97.4 98.7 99.6 98.4 95.7 97.6 98.9 99.6 98.4 95.7 97.6 98.9 99.6 98.4 95.7 97.6 98.8 99.6 98.4 95.7 97.6 98.8 99.6 91.7 85.6 94.8 98.1 99.4

99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 71.7 84.2 94.0 97.8 99.3

98.7 99.7 100 100 100 98.8 99.7 100 100 100 98.8 99.7 100 100 100 98.8 99.7 100 100 100 98.9 99.7 100 100 100 73.1 84.6 94.2 98.0 99.3

(c) Predicting NT boundaries with tridiagonal masking: the column NTℓ for ℓ = 2, 3, 4, 5, 6 represents
the accuracy of predicting bℓ using (4.2) but setting wr,i→k = 0 for |i− k| > 1.

Figure 15: After pre-training, the NT-end boundary information — i.e., bℓ(i) for position i and NT level ℓ —
is largely stored locally near the hidden state at position i ± 1, up to a linear transformation. This
can be compared with the prediction accuracy of the NT ancestor sℓ(i) in Figure 4.

Observation. This implies, the transformer actually knows, with a very good accuracy, that “posi-
tion i is already the end of NT on level ℓ”, by just reading all the texts until this position (possibly
peeking one more to its right).
Remark 1. It may be mathematically necessary to peek more than 1 tokens to decide if a position i
is at an NT boundary, due to CFG’s ambiguity. But, in most cases, that can be decided quite early.
Remark 2. Predicting NT boundary is a very biased binary classification task. For levels ℓ that are
close to the CFG root, most symbols are not at NT boundary for that level ℓ (see Figure 1). For such
reason, in the heatmap color of the figures above, we have normalized the columns with respect to
NT2..NT6 differently, to reflect this bias.

23

Under review as a conference paper at ICLR 2024

D.2 NT PREDICTIONS ACROSS TRANSFORMER’S LAYERS

As one may image, the NT ancestor and boundary information for smaller CFG levels ℓ (i.e., closer
to CFG root) are only learned at those deeper transformer layers l. In Figure 16, we present this
finding by calculating the linear encoding accuracies with respect to all the 12 transformer layers in
GPT and GPTrel. We confirm that generative models discover such information hierarchically.

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

lay0
lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12pr

ed
ic

t
N

T
an

ce
st

or
 (

%
)

ac
ro

ss
 la

ye
rs 69.8 49.2 44.6 59.1 68.0 69.7 49.3 44.6 59.1 68.0 69.7 49.2 44.5 59.1 68.7 84.4 71.4 64.1 66.5 65.2 84.4 71.4 64.1 66.5 65.3 84.3 71.3 64.0 66.3 65.9

98.9 72.3 48.7 59.5 68.0 94.2 64.2 46.6 59.3 68.0 71.6 49.9 44.6 59.2 68.6 97.3 87.7 79.5 73.0 69.4 96.9 85.3 76.1 71.3 68.5 84.8 71.8 64.6 66.6 65.5
99.0 73.6 49.2 59.6 68.1 99.8 78.6 51.2 59.7 68.0 71.8 50.0 44.6 59.1 68.6 97.5 88.7 81.1 74.0 70.1 97.8 90.6 83.0 74.9 71.3 84.8 71.8 64.7 66.7 65.3
99.1 75.3 50.2 59.6 68.1 100 87.2 58.6 60.3 68.2 71.8 50.0 44.6 59.1 68.6 97.7 90.5 83.8 76.4 74.3 98.5 95.5 91.9 81.9 80.7 84.8 71.9 64.7 66.3 65.5
99.4 78.2 52.1 59.7 68.1 100 93.6 71.2 61.9 68.8 71.7 49.9 44.6 59.1 68.6 98.1 92.4 86.9 79.7 77.1 99.1 98.3 97.0 92.0 92.7 84.7 71.8 64.6 66.5 65.2
99.9 82.7 54.8 59.9 68.3 100 96.3 81.6 65.0 69.7 71.6 49.9 44.6 59.1 68.6 98.3 93.9 89.2 82.1 79.4 99.3 99.0 98.5 95.6 96.0 84.7 71.8 64.7 66.4 65.2
100 87.6 60.7 60.5 68.4 100 97.4 89.6 72.7 72.2 71.6 49.9 44.6 59.1 68.6 98.6 95.5 91.9 85.8 82.8 99.5 99.4 99.3 97.7 97.8 84.7 71.7 64.6 66.6 65.3
100 92.2 69.2 61.5 68.8 100 97.7 93.0 82.3 76.3 71.5 49.9 44.6 59.1 68.6 98.8 97.1 95.2 90.8 89.5 99.5 99.6 99.5 98.7 98.9 84.7 71.7 64.6 66.2 65.3
100 95.3 78.7 63.6 69.5 100 97.7 94.2 88.0 83.2 71.4 49.9 44.6 59.1 68.6 99.2 98.5 97.7 94.6 94.8 99.6 99.6 99.6 99.1 99.6 84.6 71.7 64.7 66.1 65.2
100 97.1 87.3 68.3 71.2 100 97.7 94.8 91.6 90.3 71.5 49.9 44.6 59.1 68.6 99.4 99.3 99.1 97.4 97.8 99.6 99.7 99.6 99.2 99.8 84.5 71.7 64.6 66.4 65.6
100 97.7 92.4 78.3 75.1 100 97.7 95.0 92.8 93.3 71.4 49.9 44.5 59.1 68.6 99.6 99.6 99.5 98.9 99.3 99.6 99.7 99.6 99.3 99.8 84.6 71.7 64.7 66.3 65.2
100 97.8 94.1 86.7 82.3 100 97.7 94.9 92.9 93.7 71.3 49.8 44.5 59.1 68.6 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.8 84.7 71.7 64.6 66.5 65.3
100 97.6 94.3 88.4 85.9 100 97.5 94.8 92.9 93.5 71.3 49.9 44.6 59.1 68.6 99.6 99.7 99.6 99.2 99.7 99.6 99.7 99.6 99.2 99.7 84.6 71.7 64.6 66.4 65.2

(a) Predict NT ancestors, comparing against the GPTrand baseline

GPT on cfg3f GPT_rel on cfg3f GPT_rand on cfg3f GPT on cfg3i GPT_rel on cfg3i GPT_rand on cfg3i

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

lay0
lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12pr

ed
ic

t
N

T-
en

d
bo

un
da

ry
 a

cr
os

s
la

ye
rs 90.8 85.4 94.8 98.1 99.4 90.8 85.4 94.8 98.1 99.4 90.7 85.4 94.8 98.1 99.4 86.9 88.4 94.9 97.9 99.3 86.9 88.4 94.9 97.9 99.3 86.9 88.5 94.8 97.8 99.3

100 92.9 95.0 98.1 99.4 99.2 88.9 94.8 98.1 99.4 91.7 85.6 94.8 98.1 99.4 97.6 97.3 96.0 98.1 99.3 97.3 96.2 95.6 98.1 99.3 87.6 88.7 94.9 97.8 99.3
100 93.4 95.0 98.1 99.4 100 95.1 95.2 98.1 99.4 91.8 85.6 94.8 98.1 99.4 98.0 97.7 96.2 98.2 99.4 98.7 98.2 96.7 98.3 99.4 87.7 88.7 94.9 97.9 99.3
100 94.0 95.1 98.1 99.4 100 97.1 95.7 98.1 99.4 91.8 85.6 94.8 98.1 99.4 98.4 98.1 96.6 98.3 99.4 99.1 98.9 97.7 98.5 99.4 87.7 88.6 94.9 97.9 99.3
100 95.0 95.2 98.1 99.4 100 98.3 96.9 98.2 99.4 91.9 85.6 94.8 98.1 99.4 98.8 98.5 97.2 98.4 99.4 99.4 99.4 98.4 98.8 99.5 87.7 88.7 94.9 97.8 99.3
100 96.1 95.5 98.1 99.4 100 98.8 98.2 98.4 99.4 91.8 85.6 94.8 98.1 99.4 98.9 98.7 97.6 98.5 99.4 99.5 99.6 98.7 99.1 99.7 87.7 88.6 94.9 97.9 99.3
100 97.1 95.9 98.1 99.4 100 98.9 98.8 98.8 99.5 91.8 85.6 94.8 98.1 99.4 99.1 98.9 97.9 98.6 99.5 99.6 99.7 98.9 99.3 99.8 87.7 88.6 94.9 97.9 99.3
100 97.7 96.6 98.2 99.4 100 98.9 99.0 99.2 99.7 91.8 85.6 94.8 98.1 99.4 99.3 99.1 98.2 98.8 99.5 99.7 99.8 99.0 99.4 99.8 87.7 88.6 94.9 97.9 99.3
100 98.2 97.6 98.3 99.4 100 98.9 99.0 99.4 99.8 91.8 85.6 94.8 98.1 99.4 99.4 99.4 98.5 99.0 99.6 99.7 99.8 99.0 99.5 99.9 87.6 88.6 94.9 97.9 99.3
100 98.4 98.4 98.6 99.5 100 98.9 99.1 99.5 99.8 91.8 85.6 94.8 98.1 99.4 99.5 99.6 98.8 99.2 99.8 99.7 99.8 99.1 99.6 99.9 87.6 88.6 94.9 97.9 99.3
100 98.5 98.7 98.9 99.6 100 98.9 99.1 99.5 99.8 91.8 85.6 94.8 98.1 99.4 99.6 99.7 99.0 99.4 99.9 99.8 99.8 99.1 99.6 99.9 87.7 88.7 94.9 97.8 99.3
100 98.5 98.9 99.3 99.7 100 98.9 99.1 99.5 99.8 91.7 85.5 94.8 98.1 99.4 99.7 99.8 99.1 99.5 99.9 99.7 99.8 99.1 99.6 99.9 87.6 88.6 94.9 97.9 99.3
100 98.3 98.8 99.3 99.7 100 98.8 99.0 99.5 99.8 91.7 85.6 94.8 98.1 99.4 99.7 99.8 99.0 99.5 99.9 99.7 99.8 99.1 99.5 99.9 87.5 88.6 94.9 97.9 99.3

(b) Predict NT boundaries, comparing against the GPTrand baseline

Figure 16: Generative models discover NT ancestors and NT boundaries hierarchically.

24

Under review as a conference paper at ICLR 2024

D.3 NT PREDICTIONS ACROSS TRAINING EPOCHS

Moreover, one may conjecture that the NT ancestor and NT boundary information is learned grad-
ually as the number of training steps increase. We have confirmed this in Figure 17. We emphasize
that this does not imply layer-wise training is applicable in learning deep CFGs. It is crucial to
train all the layers together, as the training process of deeper transformer layers may help back-
ward correct the features learned in the lower layers, through a process called “backward feature
correction” (Allen-Zhu & Li, 2023).

predict NT (GPT) predict NTend (GPT) predict NT (GPT_rel) predict NTend (GPT_rel)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200

pr
ed

ic
t

N
T

an
ce

st
or

/b
ou

nd
ar

y
(%

)
ac

ro
ss

 t
ra

in
in

g
ep

oc
hs

99.5 84.2 57.2 59.9 68.7 100 96.4 95.6 98.1 99.4 100 96.2 86.8 68.8 70.9 100 98.5 98.5 98.7 99.5
100 93.2 71.6 62.0 69.1 100 98.0 97.2 98.2 99.4 100 96.8 91.7 79.7 75.5 100 98.6 98.8 99.1 99.6
100 95.2 79.7 64.5 69.9 100 98.2 97.9 98.4 99.4 100 97.0 92.7 85.3 80.0 100 98.6 98.8 99.3 99.7
100 96.1 83.4 66.1 70.3 100 98.4 98.3 98.5 99.4 100 97.1 93.2 87.5 83.4 100 98.7 98.9 99.4 99.7
100 96.5 86.0 68.7 71.1 100 98.4 98.4 98.6 99.5 100 97.2 93.6 88.9 86.0 100 98.7 98.9 99.4 99.8
100 96.8 87.5 70.5 71.7 100 98.4 98.5 98.7 99.5 100 97.2 93.7 89.7 87.8 100 98.7 98.9 99.4 99.8
100 97.0 88.5 71.9 72.6 100 98.4 98.5 98.8 99.5 100 97.4 94.1 90.6 89.3 100 98.7 98.9 99.4 99.8
100 97.1 89.4 73.3 73.1 100 98.5 98.6 98.8 99.5 100 97.3 94.0 90.8 90.1 100 98.7 98.9 99.4 99.8
100 97.1 90.1 74.7 73.9 100 98.4 98.6 98.9 99.5 100 97.4 94.0 91.1 91.0 100 98.7 98.9 99.4 99.8
100 97.2 90.6 76.3 74.4 100 98.5 98.6 98.9 99.6 100 97.4 94.1 91.3 91.4 100 98.7 98.9 99.4 99.8
100 97.3 91.0 77.6 75.0 100 98.4 98.7 99.0 99.6 100 97.4 94.2 91.5 91.7 100 98.7 99.0 99.5 99.8
100 97.2 91.4 78.8 76.0 100 98.4 98.7 99.0 99.6 100 97.3 94.3 91.6 91.8 100 98.8 99.0 99.5 99.8
100 97.3 91.8 79.8 76.9 100 98.4 98.7 99.0 99.6 100 97.4 94.3 91.7 92.0 100 98.7 99.0 99.5 99.8
100 97.4 92.1 80.5 77.2 100 98.4 98.7 99.0 99.6 100 97.5 94.4 91.7 92.3 100 98.8 99.0 99.5 99.8
100 97.4 92.4 81.2 77.9 100 98.4 98.7 99.1 99.6 100 97.4 94.3 91.8 92.5 100 98.8 99.0 99.5 99.8
100 97.5 92.7 82.2 78.5 100 98.4 98.7 99.1 99.6 100 97.5 94.4 91.9 92.5 100 98.8 99.0 99.5 99.8
100 97.3 92.7 82.6 79.1 100 98.3 98.7 99.1 99.6 100 97.5 94.5 92.1 92.5 100 98.8 99.0 99.5 99.8
100 97.5 92.9 83.3 79.3 100 98.4 98.7 99.1 99.7 100 97.5 94.5 92.1 92.5 100 98.8 99.0 99.5 99.8
100 97.5 93.0 83.9 80.3 100 98.4 98.7 99.1 99.7 100 97.4 94.4 92.2 93.0 100 98.7 99.0 99.5 99.8
100 97.5 93.3 84.4 80.5 100 98.4 98.7 99.2 99.7 100 97.5 94.5 92.3 93.0 100 98.8 99.0 99.5 99.8
100 97.5 93.3 84.7 80.8 100 98.4 98.8 99.2 99.7 100 97.5 94.5 92.3 93.0 100 98.8 99.0 99.5 99.8
100 97.5 93.3 85.0 81.6 100 98.3 98.7 99.2 99.7 100 97.5 94.5 92.2 92.9 100 98.7 99.0 99.5 99.8
100 97.5 93.4 85.3 81.5 100 98.4 98.8 99.2 99.7 100 97.4 94.4 92.2 92.8 100 98.8 99.0 99.5 99.8
100 97.6 93.5 85.6 82.4 100 98.4 98.8 99.2 99.7 100 97.5 94.5 92.2 92.9 100 98.8 99.0 99.5 99.8
100 97.6 93.8 86.2 82.8 100 98.4 98.8 99.2 99.7 100 97.6 94.8 92.6 93.3 100 98.8 99.0 99.5 99.8
100 97.5 93.7 86.4 83.1 100 98.4 98.7 99.2 99.7 100 97.4 94.6 92.6 93.1 100 98.7 99.0 99.5 99.8
100 97.6 93.8 86.7 83.3 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.4 93.1 100 98.7 99.0 99.5 99.8
100 97.5 93.6 86.5 83.6 100 98.3 98.8 99.2 99.7 100 97.5 94.6 92.6 93.3 100 98.7 99.0 99.5 99.8
100 97.6 93.8 86.7 83.5 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.9 93.4 100 98.7 99.0 99.5 99.8
100 97.6 93.8 87.0 83.8 100 98.4 98.8 99.2 99.7 100 97.5 94.7 92.7 93.4 100 98.8 99.0 99.5 99.8
100 97.6 93.9 87.1 84.7 100 98.4 98.8 99.2 99.7 100 97.5 94.6 92.5 93.0 100 98.8 99.0 99.5 99.8
100 97.6 94.0 87.1 84.5 100 98.4 98.8 99.3 99.7 100 97.6 94.7 92.5 93.0 100 98.8 99.0 99.5 99.8
100 97.6 94.0 87.8 85.0 100 98.4 98.8 99.3 99.7 100 97.5 94.6 92.7 93.3 100 98.8 99.0 99.5 99.8
100 97.5 94.1 87.8 85.3 100 98.4 98.8 99.3 99.7 100 97.4 94.7 92.8 93.5 100 98.7 99.0 99.5 99.8
100 97.6 94.1 87.9 85.4 100 98.4 98.8 99.3 99.7 100 97.5 94.7 92.6 93.2 100 98.8 99.0 99.5 99.8
100 97.6 94.1 87.9 85.3 100 98.4 98.8 99.3 99.7 100 97.6 94.7 92.5 93.2 100 98.8 99.0 99.5 99.8
100 97.6 94.2 88.1 85.5 100 98.3 98.8 99.3 99.7 100 97.5 94.7 92.7 93.4 100 98.8 99.0 99.5 99.8
100 97.6 94.3 88.2 85.6 100 98.4 98.8 99.3 99.7 100 97.5 94.8 92.8 93.6 100 98.8 99.0 99.5 99.8
100 97.6 94.2 88.3 86.0 100 98.4 98.8 99.3 99.7 100 97.5 94.8 92.8 93.5 100 98.8 99.0 99.5 99.8
100 97.7 94.2 88.2 85.7 100 98.4 98.8 99.3 99.7 100 97.5 94.7 92.7 93.3 100 98.8 99.0 99.5 99.8

Figure 17: Generative models discover NT ancestors and NT boundaries gradually across training epochs (here
1 epoch equals 500 training steps). CFG levels closer to the leaves are learned faster, and their accu-
racies continue to increase as deeper levels are being learned, following a principle called “backward
feature correction” in deep hierarchical learning (Allen-Zhu & Li, 2023).

25

Under review as a conference paper at ICLR 2024

E MORE EXPERIMENTS ON ATTENTION PATTERNS

E.1 POSITION-BASED ATTENTION PATTERN

Recall from Section 5.1 that we asserted the transformer’s attention weights are primarily influenced
by the relative distance of the tokens. This remains true even when trained on the CFG data with
absolute positional embedding. We omitted the details in the main body due to space constraints,
but we will provide them now.

Formally, let Al,h,j→i(x) for j ≥ i represent the attention weight for positions j → i at layer l
and head h of the transformer, on input sequence x. For each layer l, head h, and distance p ≥ 0,
we compute the average of the partial sum

∑
1≤i′≤i Al,h,j→i′(x) over all data x and pairs i, j with

j − i = p. We observe a strong correlation between the attention pattern and the relative distance
p = j − i. The attention pattern is also multi-scale, with some attention heads focusing on shorter
distances and others on longer ones. We plot this cumulative sum for different l, h, p in Figure 18 in
both GPT/GPTrel for various datasets.

26

Under review as a conference paper at ICLR 2024

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

b
da

ta

0.2

0.4

0.6

0.8

(a) GPT on cfg3b

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
b

da
ta

0.2

0.4

0.6

0.8

(b) GPTrel on cfg3b

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

i d
at

a

0.2

0.4

0.6

0.8

(c) GPT on cfg3i

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
i d

at
a

0.2

0.4

0.6

0.8

(d) GPTrel on cfg3i

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

h
da

ta

0.2

0.4

0.6

0.8

(e) GPT on cfg3h

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
h

da
ta

0.2

0.4

0.6

0.8

(f) GPTrel on cfg3h

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

g
da

ta

0.2

0.4

0.6

0.8

(g) GPT on cfg3g

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
g

da
ta

0.2

0.4

0.6

0.8

(h) GPTrel on cfg3g

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
 o

ve
r

cf
g3

f d
at

a

0.2

0.4

0.6

0.8

(i) GPT on cfg3f

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290
distance p = |j-i|

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12po

si
ti

on
-b

as
ed

 a
tt

en
ti

on
 p

at
te

rn
fo

r
G

PT
re

l o
ve

r
cf

g3
f d

at
a

0.2

0.4

0.6

0.8

(j) GPTrel on cfg3f

Figure 18: Position-based attention pattern. The 12 rows in each layer represent 12 heads. Observations. The
attention pattern is multi-scale: different heads or layers have different dependencies on p.

27

Under review as a conference paper at ICLR 2024

E.2 FROM ANYWHERE TO NT-ENDS

Recall from Figure 6(a), we showed that after removing the position-bias Bl,h,j→i(x) :=

Al,h,j→i(x) − Al,h,j−i, the attention weights have a very strong bias towards tokens i that are
at NT ends. In Figure 19 we complement this experiment with more datasets.

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(a) cfg3b dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.000

0.005

0.010

0.015

0.020

0.025

(b) cfg3i dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

(c) cfg3h dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(d) cfg3g dataset

head1 head2 head3 head4 head5 head6 head7 head8 head9 head10 head11 head12

-2-10 1 2 -2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2-2-10 1 2

lay1

lay2

lay3

lay4

lay5

lay6

lay7

lay8

lay9
lay10
lay11
lay12

NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2
NT5
NT4
NT3
NT2

an
y

(N
Te

nd
±

2)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

(e) cfg3f dataset

Figure 19: Attention weights Bl,h,j→i(x) averaged over data x and pairs i, j such that i + δ is at the NT-end
in level ℓ of the CFG. In each cell, the four rows correspond to levels ℓ = 2, 3, 4, 5, and the five
columns represent δ = −2,−1, 0,+1,+2.

Observation. Attention is largest when δ = 0 and drops rapidly to the surrounding tokens of i.

28

Under review as a conference paper at ICLR 2024

E.3 FROM NT-ENDS TO NT-ENDS

As mentioned in Section 5.2 and Figure 6(b), not only do tokens generally attend more to NT-ends,
but among those attentions, NT-ends are also more likely to attend to NT-ends. We include this full
experiment in Figure 20 for every different level ℓ = 2, 3, 4, 5, between any two pairs j → i that are
both at NT-ends for level ℓ, for the cfg3 datasets.

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(a) cfg3b at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(b) cfg3b at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(c) cfg3b at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

b
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

(d) cfg3b at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

(e) cfg3i at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(f) cfg3i at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(g) cfg3i at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

(h) cfg3i at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(i) cfg3h at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.02

0.04

0.06

0.08

0.10

(j) cfg3h at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(k) cfg3h at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(l) cfg3h at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

(m) cfg3g at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(n) cfg3g at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.000

0.005

0.010

0.015

0.020

0.025

(o) cfg3g at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

(p) cfg3g at level ℓ = 5

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

2
±

1)
(N

Te
nd

2
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

(q) cfg3f at level ℓ = 2

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

3
±

1)
(N

Te
nd

3
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.02

0.04

0.06

0.08

0.10

(r) cfg3f at level ℓ = 3

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

4
±

1)
(N

Te
nd

4
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.00

0.01

0.02

0.03

0.04

(s) cfg3f at level ℓ = 4

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12

-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1-1 0+1

lay1
lay2
lay3
lay4
lay5
lay6
lay7
lay8
lay9

lay10
lay11
lay12

-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1
-1
0
+1(N

Te
nd

5
±

1)
(N

Te
nd

5
±

1)
 a

tt
en

ti
on

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

0.000

0.005

0.010

0.015

0.020

(t) cfg3f at level ℓ = 5

Figure 20: Attention pattern Bl,h,j→i(x) averaged over data x and pairs i, j such that i + δ1 and j + δ2
are at the NT-end boundaries in level ℓ of the CFG. In each block, the three rows correspond to
δ1 = −1, 0,+1 and the three columns correspond to δ2 = −1, 0,+1.

Observation. Different transformer layer/head may be in charge of attending NT-ends at different
levels ℓ. Also, it is noticeable that the attention value drops rapidly from δ1 = ±1 to δ1 = 0, but
less so from δ2 = ±1 to δ2 = 0. This should not be surprising, as it may still be ambiguous to
decide if position j is at NT-end until one reads few more tokens (see discussions under Figure 15).

29

Under review as a conference paper at ICLR 2024

E.4 FROM NT-ENDS TO ADJACENT NT-ENDS

In Figure 6(c) we have showcased that Bl,h,j→i(x) has a strong bias towards token pairs i, j that
are “adjacent” NT-ends. We have defined what “adjacency” means in Section 5.2 and introduced a
notion Bend→end

l,h,ℓ′→ℓ,r, to capture Bl,h,j→i(x) averaged over samples x and all token pairs i, j such that,
they are at deepest NT-ends on levels ℓ, ℓ′ respectively (in symbols, b♯(i) = ℓ ∧ b♯(j) = ℓ′), and of
distance r based on the ancestor indices at level ℓ (in symbols, pℓ(j)− pℓ(i) = r).

Previously, we have only presented by Figure 6(c) for a single dataset, and averaged over all the
transformer layers. In the full experiment Figure 21 we show that for more datasets, and Figure 22
we show that for individual layers.

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

i d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x x x x x

(a) cfg3i

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

h
da

ta

x x x x x x x x x x

x x x
x x x x
x x x x

x x x x x
x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

x x x x x x x x x
x x x x x x x x x

x x x x x x x x x x x
x x x x x x x x x x x x

(b) cfg3h

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

g
da

ta

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(c) cfg3g

5 54 53 52 55 44 43 42 45 34 33 32 35 24 23 22 2
r=0

r=4

r=8

r=12

r=16

N
Te

nd
′

N
Te

nd
 a

tt
en

ti
on

 p
at

te
rn

fo
r

G
PT

re
l o

ve
r

cf
g3

f d
at

a

x x x x x x x x x x

x x x
x x x x
x x x x
x x x x
x x x x
x x x x

x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

(d) cfg3f

Figure 21: Attention pattern Bend→end
l,h,ℓ′→ℓ,r(x) averaged over layers l, heads h and data x. The columns represent

ℓ′ → ℓ and the rows represent r. “×” means empty entries.

Remark. We present this boundary bias by looking at how close NT boundaries at level ℓ′ attend
to any other NT boundary at level ℓ. For some distances r, this “distance” that we have defined
may be non-existing. For instance, when ℓ ≥ ℓ′ one must have r > 0. Nevertheless, we see that the
attention value, even after removing the position bias, still have a large correlation with respect to
the smallest possible distance r, between every pairs of NT levels ℓ, ℓ′. This is a strong evidence
that CFGs are implementing some variant of dynamic programming.

30

Under review as a conference paper at ICLR 2024

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(a) cfg3i

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(b) cfg3h

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(c) cfg3g

lay1 lay2 lay3 lay4 lay5 lay6 lay7 lay8 lay9 lay10 lay11 lay12
r=0
r=4
r=8

r=12
r=16

(d) cfg3f

Figure 22: Attention pattern Bend→end
l,h,ℓ′→ℓ,r(x) for each individual transformer layer l ∈ [12], averaged over heads

h and data x. The rows and columns are in the same format as Figure 21.

Observation. Different transformer layers are responsible for learning “NT-end to most adjacent
NT-end” at different CFG levels.

F MORE EXPERIMENTS ON IMPLICT CFGS

We study implicit CFGs where each terminal symbol t ∈ T is is associated a bag of observable
tokens OTt. For this task, we study eight different variants of implicit CFGs, all converted from the
exact same cfg3i dataset (see Section B.1). Recall cfg3i has three terminal symbols |T| = 3:

• we consider a vocabulary size |OT| = 90 or |OT| = 300;

• we let {OTt}t∈T be either disjoint or overlapping; and

• we let the distribution over OTt be either uniform or non-uniform.

We present the generation accuracies of learning such implicit CFGs with respect to different model
architectures in Figure 23, where in each cell we evaluate accuracy using 2000 generation samples.
We also present the correlation matrix of the word embedding layer in Figure 7 for the GPTrel model
(the correlation will be similar if we use other models).

disjoint |vocab|=90 disjoint |vocab|=300 overlap |vocab|=90 overlap |vocab|=300

cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50 cut0 cut50
 uniform non-uniorm uniform non-uniorm uniform non-uniorm uniform non-uniorm

GPT
GPT_rel
GPT_rot

GPT_pos
GPT_uni

98.7 99.4 99.0 99.2 100.0 100.0 100.0 98.1 72.7 70.4 75.2 75.4 100.0 100.0 100.0 100.0
99.3 99.7 99.0 98.9 100.0 100.0 98.9 99.1 97.8 97.9 92.9 91.9 100.0 100.0 100.0 100.0
99.2 99.5 99.0 98.4 100.0 100.0 98.6 99.0 96.4 95.9 84.9 87.8 100.0 100.0 100.0 100.0
99.2 99.4 98.4 99.2 100.0 100.0 96.6 96.4 90.1 91.3 82.6 83.6 100.0 100.0 100.0 99.7
99.7 99.6 98.4 99.0 100.0 100.0 89.5 92.9 80.5 77.2 64.4 65.4 100.0 100.0 99.9 100.0

Figure 23: Generation accuracies on eight implicit CFG variants from pre-trained language models.

31

Under review as a conference paper at ICLR 2024

G MORE EXPERIMENTS ON ROBUSTNESS

Recall that in Figure 8, we have compared clean training vs training over three types of perturbed
data, for their generation accuracies given both clean prefixes and corrupted prefixes. We now
include more experiments with respect to more datasets in Figure 24. For each entry of the figure,
we have generated 2000 samples to evaluate the generation accuracy.

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

b

100 99.8 100 100 100 100 100 100 100 100 100 100
98.7 100 100 100 100 100 100 100 100 100 99.2 99.9 100 100 100 99.9 100 100 100 100 98.5 100 100 100 100 100 100 100 100 100 100
0.0 14.3 24.7 39.8 44.4 55.7 64.5 73.5 82.6 91.8 0.0 14.1 22.8 35.3 44.9 58.2 65.4 75.5 83.6 92.5 0.0 14.7 26.9 38.5 49.8 56.8 65.5 75.2 81.5 91.8 99.8
78.3 78.9 80.6 78.0 79.1 78.6 79.5 78.6 76.4 77.9 82.6 80.4 80.6 80.4 81.7 82.6 81.4 81.7 80.8 80.8 60.4 58.3 56.5 58.1 60.4 59.1 60.6 57.5 58.9 56.9 30.0
77.4 78.7 80.0 76.6 77.8 78.2 78.3 77.3 74.9 77.9 81.1 81.1 80.5 79.6 81.2 82.0 81.4 80.7 80.0 80.4 59.5 57.7 55.9 57.6 59.2 58.8 59.7 57.2 57.8 57.1 30.3
0.0 0.5 0.5 0.6 0.5 0.3 0.6 0.4 0.5 0.7 0.0 0.4 0.5 0.8 0.2 0.3 0.5 0.6 0.7 0.6 0.0 0.1 0.4 0.4 0.4 0.5 0.9 0.5 0.3 0.3 29.6
100 99.4 100 100 100 100 100 100 100 100 100 100
99.2 100 100 100 100 100 100 100 100 100 99.6 100 100 100 100 100 100 100 100 100 98.4 100 100 100 100 100 100 100 100 100 100
0.0 91.5 95.7 97.1 98.1 98.7 99.2 99.0 99.5 99.4 0.0 92.8 96.2 97.6 98.2 99.1 99.3 99.4 99.5 99.7 0.0 83.4 90.6 94.0 96.2 97.2 98.1 98.7 99.2 99.3 99.9

--------------------pre-training method--------------------

(a) cfg3b dataset

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

i

99.0 99.9 99.8 99.7 100.0 99.7 99.6 99.3 99.1 99.4 98.0 98.8 99.4 99.5 99.4 99.6 99.3 98.9 99.3 99.7 99.6 98.4 99.4 99.8 99.4 98.3 99.6 97.9 99.6 98.5 97.7
95.0 99.6 99.4 98.7 99.2 98.8 99.2 98.9 98.7 99.4 96.5 98.1 99.2 99.2 99.2 98.7 98.7 98.2 98.8 99.4 98.9 97.8 99.2 99.3 98.8 98.6 98.9 98.2 98.4 98.2 98.0
0.0 13.6 25.9 36.2 44.0 57.9 64.0 73.3 84.4 92.6 0.0 14.7 25.1 33.8 46.4 53.5 63.0 73.5 84.6 92.0 0.0 17.2 25.6 37.3 43.8 54.5 66.8 75.1 84.3 91.3 99.8
71.9 75.1 73.2 72.9 73.2 73.1 74.3 72.5 71.7 70.9 78.6 75.2 77.0 76.6 77.6 78.6 78.7 78.2 78.4 78.8 48.2 46.8 48.4 46.9 46.4 47.6 48.2 46.4 48.2 48.0 36.8
71.3 73.3 72.0 72.3 71.0 71.9 73.8 72.5 72.2 70.2 76.5 75.9 75.6 75.4 76.7 76.4 78.2 76.2 78.2 75.1 49.0 46.1 48.3 46.9 46.1 46.7 49.6 47.0 48.4 47.9 37.0
0.0 0.4 0.6 0.7 0.3 0.5 0.9 0.6 0.4 0.7 0.0 0.5 0.5 0.5 0.3 0.6 0.4 0.5 0.4 0.4 0.0 0.3 0.3 0.4 0.4 0.6 0.6 0.4 0.3 0.5 37.1
99.1 100.0 99.9 99.9 99.8 99.6 99.8 99.2 99.3 99.4 98.8 99.2 99.5 99.4 99.1 99.8 99.3 99.3 99.6 99.7 99.7 99.2 99.1 99.9 99.2 99.4 99.7 98.4 99.3 98.8 98.6
96.0 99.7 99.9 99.4 99.6 99.7 99.5 99.3 99.1 99.2 97.7 99.0 99.6 99.7 99.5 99.8 99.4 98.7 99.4 99.7 99.2 98.8 99.4 99.8 99.5 99.7 99.7 99.2 99.4 99.1 98.6
0.0 90.1 94.4 96.6 97.6 98.9 98.8 98.7 99.7 99.4 0.0 93.3 95.8 96.7 97.9 99.0 99.2 99.2 99.2 99.1 0.0 85.1 90.3 94.5 96.2 97.2 97.3 98.6 99.0 99.3 99.9

--------------------pre-training method--------------------

(b) cfg3i dataset

NT-level 0.1 random perturbation T-level 0.15 random perturbation NT-level 0.05 deterministic permutation

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 clean
------------pre-training data perturbation ratio OR clean data------------

cut0 =0.1
cut0 =0.2

cut0 =1
corrupted cut50 =0.1
corrupted cut50 =0.2

corrupted cut50 =1
cut50 =0.1
cut50 =0.2

cut50 =1

ge
ne

ra
ti

on
 a

cc
 (

%
)

fo
r

cf
g3

h

61.5 89.0 98.0 98.1 97.5 94.9 96.9 98.0 98.4 98.1 95.2 97.1 99.2 99.1 99.6 99.2 98.2 99.5 99.0 98.2 88.9 98.6 98.6 99.1 99.0 99.3 99.2 98.6 98.5 98.7 97.2
44.9 93.1 98.3 98.7 98.8 97.9 98.7 99.4 98.9 99.1 83.4 97.3 98.5 98.9 99.2 99.1 99.1 99.4 98.7 99.1 72.1 98.6 98.7 99.1 99.1 99.6 99.2 99.3 98.9 99.0 99.0
0.0 14.9 22.0 34.3 46.4 55.5 66.0 71.3 83.8 91.5 0.0 11.7 24.2 34.3 43.0 56.2 66.9 76.8 83.6 91.3 0.0 15.2 26.6 40.7 41.5 54.7 63.2 74.3 84.2 90.9 99.6
29.6 35.5 43.1 41.5 43.3 39.5 45.9 41.7 43.4 41.0 50.4 49.4 49.8 51.2 51.6 51.5 50.2 50.3 52.3 47.0 35.4 37.2 36.3 35.5 35.3 33.9 36.6 36.6 37.0 33.8 18.4
20.2 29.3 34.1 32.0 32.5 33.4 37.0 35.1 35.5 34.2 44.3 43.4 44.5 46.6 43.3 48.1 46.6 47.2 48.8 41.6 27.3 29.9 29.5 30.1 28.5 27.2 30.7 30.4 30.1 29.2 17.1
0.0 1.1 0.3 0.6 0.4 0.7 1.0 0.5 0.8 0.6 0.0 0.7 0.2 0.8 0.3 0.7 0.0 1.4 0.1 0.6 0.0 0.5 1.3 1.0 0.8 0.4 0.9 0.8 0.4 0.7 12.0
61.9 92.3 98.9 98.5 98.7 96.1 98.0 99.2 99.0 98.8 92.9 98.6 99.3 99.7 99.3 99.3 99.0 99.4 99.3 98.6 87.6 98.8 99.4 99.4 99.8 99.2 98.9 99.5 98.9 99.4 98.3
48.3 94.3 99.4 99.5 99.5 98.9 98.9 99.6 99.7 99.2 83.5 98.9 99.2 99.7 99.8 99.4 99.5 99.8 99.5 99.6 78.9 98.8 99.3 99.4 99.6 99.6 99.5 99.7 99.6 99.3 99.2
0.0 84.2 92.1 95.9 97.0 97.4 98.4 99.1 98.8 99.2 0.0 89.8 95.6 95.7 97.4 98.6 99.3 99.4 99.1 99.4 0.0 72.1 84.2 90.6 94.6 97.0 97.4 98.6 98.4 98.9 99.9

--------------------pre-training method--------------------

(c) cfg3h dataset

Figure 24: Generation accuracies for models pre-trained cleanly VS pre-trained over perturbed data, on clean
or corrupted prefixes with cuts c = 0 or c = 50, using generation temperatures τ = 0.1, 0.2, 1.0.

Observation 1. In Rows 4/5, by comparing against the last column, we see it is beneficial to
include low-quality data (e.g. grammar mistakes) during pre-training. The amount of low-quality
data could be little (γ = 0.1 fraction) or large (every training sentence may have grammar mistake).
Observation 2. In Rows 3/6/9 of Figure 8 we see pre-training teaches the model a mode switch.
When given a correct prefix it is in the correct mode and completes with correct strings (Row 9);
given corrupted prefixes it always completes sentences with grammar mistakes (Row 6); given no
prefix it generates corrupted strings with probability γ (Row 3).
Observation 3. Comparing Rows 4/5 to Row 6 in Figure 8 we see that high robust accuracy is
achieved only when generating using low temperatures τ . Using low temperature encourages the
model to, for each next token, pick a more probable solution. This allows it to achieve good robust
accuracy even when the model is trained totally on corrupted data (γ = 1.0).

32

Under review as a conference paper at ICLR 2024

S
NP VP

TO VP
VBD VP

TO VP
VB NP

NP PP
IN NP

PP
IN NP

.
S

NP
NP

DT NN
PP

IN NP
NP PP

IN NP
DT NN

VP
VBZ VP

VBD SBAR
S

PP
IN NP

, NP
CD NNS

VP
TO VP

VBZ VP
VBD NP

DT JJ NN NN

.

(a) the real-life CFG derived from Penn Treebank, short and simple

S

20

16

15

12

7

3 2

9

1 1

7

3 2 2

12

7

3 2 2

9

1 2 1

7

2 2 1

11

8

1 2

8

1 2

15

10

7

2 2 1

9

3 3

9

3 3

10

9

3 3

7

3 1 2

9

1 2 1

17

15

10

9

3 3

7

3 2

9

1 1

10

8

1 2

9

1 1

9

1 2 1

14

10

9

1 1

7

3 2 2

9

1 2 1

12

9

3 3

8

1 2

12

8

3 3 1

8

3 1 1

9

3 3

21

18

15

10

9

3 3

7

2 2 1

9

1 1

10

8

3 3 1

9

1 1

9

1 2 1

13

10

9

3 3

7

2 2 1

9

1 2 1

12

9

1 1

8

3 1 1

11

9

1 1

7

2 2 1

7

2 2 1

13

10

9

1 2 1

7

2 2 1

9

1 2 1

12

7

3 2

9

3 3

7

3 2 2

11

9

1 2 1

7

3 2

7

3 2 2

17

15

10

9

3 3

7

3 1 2

9

1 1

11

8

3 1 1

8

3 1 1

11

9

1 2 1

7

3 2

14

12

7

2 2 1

9

3 3

7

2 2 1

10

9

3 3

7

3 2 2

9

3 3

12

8

3 3 1

8

3 1 1

9

3 3

13

11

9

1 2 1

7

2 2 1

7

3 1 2

12

7

3 2 2

9

1 1

7

3 1 2

S

20

17

14

10

7

3 1 2

9

3 3

9

3 3

12

9

1 2 1

8

1 2

15

11

9

1 2 1

7

3 2

7

3 2

11

8

1 2

8

3 1 1

10

8

3 1 1

9

3 3

9

1 1

16

14

12

7

3 1 2

9

3 3

7

3 1 2

10

7

3 2

9

1 2 1

9

3 3

12

8

3 3 1

8

3 1 1

9

3 3

14

12

8

3 1 1

8

3 1 1

9

3 3

11

9

1 2 1

7

3 2 2

18

15

10

8

3 3 1

9

3 3

9

1 2 1

10

7

3 1 2

9

1 2 1

9

1 1

13

11

9

1 1

7

3 2 2

12

7

3 2 2

9

1 2 1

7

2 2 1

13

12

9

3 3

8

3 3 1

11

9

1 2 1

7

2 2 1

12

7

3 2

9

3 3

7

2 2 1

21

18

15

12

7

3 2 2

9

3 3

7

2 2 1

12

8

3 3 1

8

1 2

9

3 3

11

9

3 3

7

3 2

13

12

8

3 3 1

8

3 3 1

9

3 3

11

9

1 1

7

3 2 2

12

8

3 3 1

8

3 1 1

9

1 2 1

13

10

7

2 2 1

9

1 2 1

9

3 3

12

9

3 3

8

3 3 1

11

9

1 1

7

2 2 1

7

3 2

17

15

10

7

3 1 2

9

3 3

9

3 3

11

8

1 2

8

3 1 1

11

9

3 3

7

3 2 2

7

3 1 2

14

10

8

3 3 1

9

3 3

9

1 2 1

12

8

3 1 1

8

1 2

9

1 1

12

7

3 2

9

1 2 1

7

3 1 2

(b) the cfg3 family we used in the main body of this paper has rule lengths 2 or 3 (cfg3f in this figure)

S

21

18

14

9

4 2 4

8

4 3 4

8

3 2 2

15

13

10 8

4 3 4

11

8

4 3 4

9

2 3 4

10

1 4 2

17

12

10 8

1 2

10

4 1

11

8

1 2

9

4 2 4

10

13

10

4 2

8

4 3 4

19

16

13

8

3 2 2

8

4 3 4

8

3 2 2

11

4 2 4

13

8

3 2 2

8

4 3 4

8

3 2 2

15

11

8

4 3 4

9

3 4 4

11

8

3 2 2

9

2 3 4

13

8

1 2

8

4 3 4

8

4 3 4

14

12

9

3 4 4

9

2 3 4

13

10

4 2

8

1 2

21

19

15

11

3 4 4

13

8

4 3 4

8

3 2 2

8

1 2

11

8

4 3 4

9

2 3 4

10

4 1

15

11

8

4 3 4

9

2 3 4

11

8

3 2 2

9

2 3 4

13

8

4 3 4

8

1 2

8

1 2

17

13

8

1 2

8

1 2

8

1 2

12

10

1 4 2

9

4 2 4

18

14

12

9

3 4 4

8

1 2

8

3 2 2

13

9

4 2 4

10 10

13

8

1 2

8

1 2

8

4 3 4

15

13

8

3 2 2

8

1 2

8

3 2 2

11

4 2 4

S

21

18

15

11

8

1 2

9

2 3 4

11

8

3 2 2

9

4 2 4

10

13

8

3 2 2

8

4 3 4

8

1 2

14

12

10

4 1

9

3 4 4

13

9

3 4 4

10 10

4 2

16

13

8

1 2

8

4 3 4

8

1 2

11

8

1 2

9

4 2 4

10

1 4 2

13

10

4 2

8

3 2 2

17

13

8

1 2

8

4 3 4

8

1 2

12

10

1 4 2

9

3 4 4

19

15

13

8

1 2

8

4 3 4

8

1 2

11

8

1 2

9

3 4 4

14

12

9

2 3 4

8

4 3 4

8

4 3 4

13

10

4 2

8

4 3 4

13

9

2 3 4

10

4 1

10

15

11

4 2 4

13

10

4 1

8

1 2

11

8

3 2 2

9

2 3 4

10

4 1

21

19

15

13

9

4 2 4

10 10

11

2 3 4

14

10

1 4 2

8

3 2 2

10

4 2

15

11

8

1 2

9

2 3 4

10

4 2

13

10

4 2

8

3 2 2

11

8

1 2

9

4 2 4

17

14

12

10

4 1

9

3 4 4

13

10

1 4 2

8

4 3 4

16

12

9

2 3 4

9

2 3 4

11

8

3 2 2

9

2 3 4

13

9

4 2 4

10

4 1

10

4 1

14

12

10

4 1

8

1 2

10

13

10

4 1

8

4 3 4

13

10 8

3 2 2

18

14

9

2 3 4

9

2 3 4

14

12

9

4 2 4

9

3 4 4

13

8

3 2 2

8

4 3 4

8

4 3 4

13

10 8

4 3 4

(c) the cfg8 family has rule lengths 1, 2, or 3 (cfg8e in this figure)

S

26

21

17

12 13

10

3 3 4

8 10

2 4 3

14

8 9

3 2 4

8

16

23

18

15

11

2 4

10

3 3 4

15

10

2 4 3

10

3 3 4

11

1 2 1

18

13

8 11

3 3

15

10

3 3 4

10

3 3 4

11

1 1

16

25

23

18

12 14

9

3 2

8 9

3 2 4

12

18

12 14

9

3 2 4

8 9

3 2 4

12

21

17

12 13

8 11

1 2 1

14

8 10

2 3 1

11

3 3

16

26

20 21

19

14

8 10

3 3 4

11

2 4

15

11

3 3

10

2 4 3

11

1 2 1

13

8 11

1 2 1

16 17

12 13

8 11

3 3

14

9

4 4

8 9

3 2 4

S

26

20 21

17

14

8 9

3 2

8

13

10

1 1 3

8 10

3 3 4

15

11

1 1

10

1 1 3

16

25

23

18

14

9

4 4

8 9

4 4

12 12

18

14

9

4 4

8 9

3 2 4

12 12

21

18

15

11

2 4

10

1 1 3

15

10

1 1 3

10

3 3 4

11

2 4

16 17

12 12 14

9

3 2

8 9

3 2

26

23

18

14

8 10

3 3 4

11

2 4

12 12

18

12 14

9

3 2 4

8 9

2 2 3

12

16

22

16 17

14

9

2 2 3

8 9

3 2 4

13

9

2 2 3

10

2 4 3

11

1 1

15

9

3 2 4

9

4 4

8

19

14

8 9

3 2

8

15

10

2 3 1

10

1 1 3

11

3 3

13

8 11

1 2 1

23

18

13

9

4 4

10

3 3 4

11

1 2 1

15

10

2 4 3

10

2 4 3

11

2 4

18

13

10

3 3 4

8 10

1 1 3

15

9

4 4

9

3 2

8

16

(d) the cfg9 family has rule lengths 1, 2, or 3 (cfg9e in this figure)

S

68

49

45

39

30 28

10 4

36

32

15

11 5

17

7 1

27

4 4

44

35

27

11 7

30

40

31

6 7

26

7 6

49

31

23

4 11

22

8 8

33

16

10 2

22

5 11

68

65

58

54

46

39

29

23

7 6

21

5 10

29

16

5 8

21

3 2

37

21

6 6

16

5 8

45

41

32

15 17

7 1

30

1 3

41

26

17 19

11 7

25

22

10 4

20

4 7

52

35

19

11 7

15

40

18

3 6

18

6 7

57

37

31

23

7 6

22

8 8

33

15 20

4 4

41

31

19 15

11 5

29

23

7 6

21

6 6

66

62

55

53

44

40

21

5 10

17

34

30

22

8 8

24

1 3

26

17

7 1

19

11 7

43

36

26

4 3

32

15 17

7 1

37

16

10 2

21

6 6

54

43

30

24 24

5 1

26

17 19

11 7

42

38

27

6 6

26

4 3

41

32

20

4 7

23

7 6

30

7 1

56

51

41

31

6 7

29

23

4 11

21

6 6

38

29

23

7 6

21

6 6

33

15 20

4 7

52

40

11 5

34

30

22

8 8

24

26

4 3

62

55

50

40

31

19 15

2 4

26

10 2

39

29

20

6 11

17

7 1

29

23

4 3

21

5 10

53

42

37

31

19

9 2

15

33

15

2 4

20

4 4

40

31 26

4 11

47

8 8

56

50

47

40

4 11

35

6 7

42

37

31

6 7

33

21

3 2

23

7 6

40

5 11

49

45

41

31

23

4 3

22

5 11

29

23

7 6

21

5 10

41

31

19

9 2

15

2 4

29

21

3 2

16

10 2

44

40

7 6

34

15

2 4

17

S

68

65

53

42

31 29

23

4 11

21

3 2

47

36

32

20

1 10

23

4 3

27

4 4

36

26

10 2

32

16

5 8

19

11 7

54

45

41

32

23

6 2

23

6 2

30

41

32

16

10 2

19

9 3

30

24 24

45

39

29

20

4 7

17

7 1

29

20

6 11

17

36

26

5 8

32

23

6 2

23

4 3

66

60

52

38

32

20

4 4

23

6 2

29

23

7 6

21

5 10

41

31

19

9 2

15

29

23

4 3

21

5 10

51

46

39

4 4

37

31

19

9 3

15

2 4

33

15

2 4

20

4 4

47

40

20

1 10

19

9 3

35

8 7

60

52

29

20

1 10

17

7 1

33

15

2 4

20

4 7

50

47

36

32

16 19

9 2

27

36

19

9 3

21

6 6

42

38

32

16

5 8

19

9 3

29

23

6 2

21

6 6

41

32

23

4 3

23

7 6

30

68

65

60

53

42

31

23

7 6

22

10 4

29

21

5 10

16

5 8

47

31 26

17 19

52

38

32

16 19

11 7

29

21

3 2

16

10 2

41

26

20

4 7

19

11 7

25

19

9 2

21

3 2

61

47

17 19

9 2

46

39

27

17 24

1 3

33

16 22

5 11

37

30

24

1 3

24

9 4

27

3 2

66

61

57

53

31

19

11 7

15

11 5

26

20

1 10

19

9 3

50

47

35

33

24

1 3

21

3 2

27

17 24

1 3

36

32

23

6 2

23

7 6

27

5 10

42

38

32

16 19

29

23

6 2

21

5 10

41

26

20

6 11

19

25

22

8 9

20

4 4

55

53

48

35

31

23

4 11

22

8 8

25

19

9 2

21

5 10

37

30

22

10 4

24

1 3

27

4 4

44

35

27

9 3

30

40

31

6 7

26

4 3

54

43

36

32

20

4 4

23

7 6

27

4 7

37

31

23

6 2

22

5 11

33

16

10 2

22

8 9

42

38

29

20

6 11

17

7 1

33

15

2 4

20

6 11

41

31

23

7 6

22

10 4

29

21

6 6

16

60

56

40

31

19

9 2

15

11 5

26

5 8

39

27

17 24

33

24

1 3

21

6 6

56

40

20

4 7

19

39

(e) the cfg0 family has max-depth 11 and rule lengths 1 or 2 (cfg0e in this figure)

Figure 25: CFG comparisons: left is a medium-length sample and right is a 80%-percentile-length sample

H BEYOND THE CFG3 DATA FAMILY

The primary focus of this paper is on the cfg3 data family, introduced in Section B.1. This paper
does not delve into how GPTs parse English or other natural languages. In fact, our CFGs are more
“difficult” than, for instance, the English CFGs derived from the Penn TreeBank (PTB) (Marcus
et al., 1993). By “difficult”, we refer to the ease with which a human can parse them. For example,
in the PTB CFG, if one encounters RB JJ or JJ PP consecutively, their parent must be ADJP. In
contrast, given a string

3322131233121131232113223123121112132113223113113223331231211121311331121321213333312322121312322211112133221311311311
3111111323123313313331133133333223121131112122111121123331233112111331333333112333313111133331211321131212113333321211
1121213223223322133221113221132323313111213223223221211133331121322221332211212133121331332212213221211213331232233312

that is in cfg3f, even with all the CFG rules provided, one would likely need a large piece of scratch
paper to perform dynamic programming by hand to determine the CFG tree used to generate it.

Generally, the difficulty of CFGs scales with the average length of the strings. For instance, the
average length of a CFG in our cfg3 family is over 200, whereas in the English Penn Treebank
(PTB), it is only 28. However, the difficulty of CFGs may inversely scale with the number of Non-
Terminal/Terminal (NT/T) symbols. Having an excess of NT/T symbols can simplify the parsing of
the string using a greedy approach (recall the RB JJ or JJ PP examples mentioned earlier). This
is why we minimized the number of NT/T symbols per level in our cfg3b, cfg3i, cfg3h, cfg3g, cfg3f
construction. For comparison, we also considered cfg3e1, cfg3e2, which have many NT/T symbols
per level. Figure 3 shows that such CFGs are extremely easy to learn.

To broaden the scope of this paper, we also briefly present results for some other CFGs. We in-
clude the real-life CFG derived from the Penn Treebank, and three new families of synthetic CFGs
(cfg8, cfg9, cfg0). Examples from these are provided in Figure 25 to allow readers to quickly com-
pare their difficulty levels.

H.1 THE PENN TREEBANK CFG

We derive the English CFG from the Penn TreeBank (PTB) dataset (Marcus et al., 1993). To make
our experiment run faster, we have removed all the CFG rules that have appeared fewer than 50 times

33

Under review as a conference paper at ICLR 2024

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64
cut0cut10

ge
n

ac
c

64.8 88.3 94.3 96.2 96.6 93.0 95.8 96.8 97.4 98.5 99.0 96.2 97.8 98.6 99.4 99.6 99.8 99.8 99.9 99.8
76.5 91.2 94.7 97.4 97.6 93.4 96.6 97.8 97.5 98.8 99.5 96.4 98.7 98.6 99.7 99.7 99.6 99.9 99.7 99.9

(a) generation accuracies for cuts c = 0 and c = 10

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64

KL div
0.08717 0.01760 0.01007 0.00586 0.00446 0.01154 0.00589 0.00404 0.00478 0.00231 0.00149 0.00631 0.00251 0.00262 0.00091 0.00072 0.00080 0.00057 0.00051 0.00038

(b) KL-divergence

truth

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64

gpt-12-12-64

entropy
model_size

60.6 60.5 64.3 58.5 58.2 59.9 57.0 59.3 59.0 59.2 57.8 58.3 61.2 59.3 59.9 59.2 57.3 57.6 58.1 57.5 59.1

12K 68K 135K 235K 335K 135K 235K 335K 468K 864K 1.3M 468K 864K 1.7M 3.3M 4.9M 7.3M 10.9M 19.2M 85.5M

(c) entropy and model size

Figure 26: Real-life PTB CFG learned by GPTrot of different model sizes.

gpt-1-1-16

gpt-4-2-16

gpt-2-4-16

gpt-4-4-16

gpt-6-4-16

gpt-2-2-32

gpt-4-2-32

gpt-6-2-32

gpt-2-4-32

gpt-4-4-32

gpt-6-4-32

gpt-2-2-64

gpt-4-2-64

gpt-2-4-64

gpt-4-4-64

gpt-6-4-64

gpt-4-6-64

gpt-6-6-64

gpt-6-8-64
cut0

cut10

ge
n

ac
c

0.0 0.0 0.0 0.2 1.4 0.0 0.2 0.8 0.1 0.7 4.0 0.0 0.7 0.2 4.5 16.6 5.9 30.2 32.8
0.0 0.0 0.0 0.2 1.2 0.0 0.2 0.6 0.0 0.9 3.9 0.0 0.8 0.3 3.3 16.7 4.6 29.3 31.8

Figure 27: By contrast, small GPTrot model sizes cannot learn the cfg3f data (generation accuracies).

in the data.15 This results in 44 T+NT symbols and 156 CFG rules. The maximum node degree is
65 (for the non-terminal NP) and the maximum CFG rule length is 7 (for S -> ‘‘ S , ’’ NP
VP .). If one performs binarization (to ensure all the CFG rules have a maximum length of 2), this
results in 132 T+NT symbols and 288 rules.
Remark H.1. Following the notion of this paper, we treat those symbols such as NNS (common
noun, plural), NN (common noun, singular) as terminal symbols. If one wishes to also take into
consideration the bag of words (such as the word vocabulary of plural nouns), we have called it
implicit CFG and studied it in Section A.1. In short, adding bag of words does not increase the
learning difficult of a CFG; the (possibly overlapping) vocabulary words will be simply encoded in
the embedding layer of a transformer.

For this PTB CFG, we also consider transformers of sizes smaller than GPT2-small. Recall GPT2-
small has 12 layers, 12 heads, and 64 dimensions for each head. More generally, we let GPT-ℓ-h-d
denote an ℓ-layer, h-head, d-dim-per-head GPTrot (so GPT2-small can be written as GPT-12-12-64).

We use transformers of different sizes to pretrain on this PTB CFG. We repeat the experiments in
Figure 3, that is, we compute the generation accuracy, completion accuracy (with cut c = 10), the
output entropy and the KL-divergence. We report the findings in Figure 26. In particular:

• Even a 135K-sized GPT2 (GPT-2-4-16) can achieve generation accuracy 96+% and have a KL
divergence on the order of 0.01. (Note the PTB CFG has 30 terminal symbols so its KL diver-
gence may appear larger than that of cfg3 in Figure 3.)

• Even a 1.3M-sized GPT2 (GPT-6-4-32) can achieve generation accuracy 99% and have a KL
divergence on the order of 0.001.

• Using M = 10000 samples, we estimate the entropy of the ground truth PTB CFG is around 60
bits, and the output entropy of those learned transformer models are also on this magnitude.

• By contrast, those small model sizes cannot learn the cfg3f data, see Figure 27.

15These are a large set of rare rules, each appearing with a probability ≤ 0.2%. We are evaluating whether
the generated sentence belongs to the CFG, a process that requires CPU-intensive dynamic programming. To
make the computation time tractable, we remove the set of rare rules.

Note that cfg3 does not contain rare rules either. Including such rules complicates the CFG learning pro-
cess, necessitating a larger transformer and extended training time. It also complicates the investigation of a
transformer’s inner workings if these rare rules are not perfectly learned.

34

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg8a
cfg8b
cfg8c
cfg8d
cfg8e

ge
ne

ra
ti

on
 a

cc
 (

%
)

99.6 99.6 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.8
99.8 99.8 100 100 100 100 100 100 99.9 99.9
95.3 95.2 99.4 99.4 99.2 99.2 98.7 98.6 98.8 98.8
97.5 97.5 98.3 98.3 98.0 98.0 97.9 97.9 97.6 97.4
82.1 82.3 97.4 97.6 93.7 93.7 94.6 94.4 93.0 93.5

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg9a
cfg9b
cfg9c
cfg9d
cfg9e

ge
ne

ra
ti

on
 a

cc
 (

%
)

99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9 100 99.9
99.8 99.9 99.9 100 99.9 99.8 99.9 99.9 99.9 99.9
99.4 99.4 99.6 99.7 99.6 99.6 99.4 99.5 99.7 99.7
99.8 99.9 99.8 99.9 99.9 99.9 99.8 99.9 99.9 99.9
96.6 96.7 99.7 99.8 99.7 99.7 99.1 98.9 98.6 98.8

GPT GPT_rel GPT_rot GPT_pos GPT_uni

cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20 cut0 cut20

cfg0a
cfg0b
cfg0c
cfg0d
cfg0e

ge
ne

ra
ti

on
 a

cc
 (

%
)

97.4 97.5 98.9 98.8 98.3 98.4 98.5 98.5 98.5 98.4
90.9 91.3 96.0 95.9 94.1 93.1 92.9 92.8 92.5 92.5
99.5 99.6 99.6 99.7 99.6 99.6 99.7 99.7 99.6 99.6
98.0 98.3 98.5 98.6 98.4 98.5 98.7 98.8 98.1 98.2
99.7 99.8 99.7 99.7 99.7 99.7 99.7 99.8 99.7 99.7

Figure 28: Generation accuracies for cfg8/9/0 data family; suggesting our results also hold for unbalanced
trees with len-1 rules.

H.2 MORE SYNTHETIC CFGS

Remember that the cfg3 family appears “balanced” because all leaves are at the same depth and the
non-terminal (NT) symbols at different levels are disjoint. This characteristic aids our investigation
into the inner workings of a transformer learning such a language. We introduce three new synthetic
data families, which we refer to as cfg8/9/0 (each with five datasets, totaling 15 datasets). These
are all “unbalanced” CFGs, which support length-1 rules.16 Specifically, the cfg0 family has a depth
of 11 with rules of length 1 or 2, while the cfg8/9 family has depth 7 with rules of length 1/2/3. In
all of these families, we demonstrate in Figure 28 that GPT can learn them with a satisfactory level
of accuracy.

For this ICLR submission, we have included all the trees used in the supplementary materials. Be-
low, we provide descriptions of how we selected them.

CFG8 family. The cfg8 family consists of five CFGs, namely cfg8a/b/c/d/e. They are constructed
similarly to cfg3b/i/h/g/f, with the primary difference being that we sample rule lengths uniformly
from {1, 2, 3} instead of {2, 3}. Additionally,

• In cfg8a, we set the degree |R(a)| = 2 for every NT a; we also ensure that in any generation rule,
consecutive pairs of terminal/non-terminal symbols are distinct. The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8b, we set |R(a)| = 2 for every NT a; we remove the distinctness requirement to make the
data more challenging than cfg8a. The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8c, we set |R(a)| ∈ {2, 3} for every NT a to make the data more challenging than cfg8b.
The size is (1, 3, 3, 3, 3, 3, 3).

• In cfg8d, we set |R(a)| = 3 for every NT a. We change the size to (1, 3, 3, 3, 3, 3, 4) because
otherwise a random string would be too close (in editing distance) to this language.

• In cfg8e, we set |R(a)| ∈ {3, 4} for every NT a. We change the size to (1, 3, 3, 3, 3, 3, 4) because
otherwise a random string would be too close to this language.

A notable feature of this data family is that, due to the introduction of length-1 rules, a string in this
language L(G) may be globally ambiguous. This means that there can be multiple ways to parse it
by the same CFG, resulting in multiple solutions for its NT ancestor/boundary information for most
symbols. Therefore, it is not meaningful to perform linear probing on this dataset, as the per-symbol
NT information is mostly non-unique.17

CFG9 family. Given the ambiguity issues arising from the cfg8 data construction, our goal is to
construct an unbalanced and yet challenging CFG data family where the non-terminal (NT) infor-
mation is mostly unique, thereby enabling linear probing.

To accomplish this, we first adjust the size to (1, 4, 4, 4, 4, 4, 4), then we permit only one NT per
layer to have a rule of length 1. We construct five CFGs, denoted as cfg9a/b/c/d/e, and their
degree configurations (i.e., R(a)) are identical to those of the cfg8 family. We then employ rejection
sampling by generating a few strings from these CFGs and checking if the dynamic programming
(DP) solution is unique. If it is not, we continue to generate a new CFG until this condition is met.

Examples from cfg8e are illustrated in Figure 25. We will conduct linear probing experiments on
this data family.

16When a length-1 CFG rule is applied, we can merge the two nodes at different levels, resulting in an
“unbalanced” CFG.

17In contrast, the cfg3 data family is only locally ambiguous, meaning that it is difficult to determine its
hidden NT information by locally examining a substring; however, when looking at the entire string as a whole,
the NT information per symbol can be uniquely determined with a high probability (if using for instance
dynamic programming).

35

Under review as a conference paper at ICLR 2024

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

an
ce

st
or

 (
%

)

100 98.7 83.6 83.9 71.9 94.1
99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 99.9 99.9 100 100 100 100 100 100 100 100 84.8 78.6 82.6 82.8 91.0
99.6 99.8 99.7 99.8 100 99.7 99.8 99.7 99.8 100 99.7 99.8 99.7 99.8 100 99.7 99.8 99.8 99.8 100 99.7 99.9 99.8 99.9 100 100 100 100 99.9 100 86.4 66.8 66.4 69.7 94.7
100 99.7 99.6 99.4 99.6 100 99.7 99.5 99.3 99.6 100 99.7 99.5 99.4 99.7 100 99.8 99.6 99.5 99.7 100 99.8 99.6 99.5 99.7 100 100 99.8 99.6 99.9 91.7 66.3 69.4 69.6 75.1
99.1 98.5 95.6 95.0 93.9 99.1 98.5 95.5 95.2 94.9 99.1 98.6 95.8 95.3 95.0 99.1 98.7 96.1 95.3 94.6 99.2 98.8 96.3 95.5 94.7 99.7 99.6 98.4 96.9 93.9 72.6 56.1 52.0 54.4 67.2

Figure 29: Same as Figure 4 but for the cfg9 family. After pre-training, hidden states of generative models
implicitly encode the NT ancestors information. The NTℓ column represents the accuracy of pre-
dicting sℓ, the NT ancestors at level ℓ. This suggests our probing technique applies more broadly.

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

di
ag

on
al

 m
as

ki
ng

)

100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 98.4 98.7 95.6 89.6 91.6 84.6 96.8
98.2 97.3 99.8 100 100 98.2 97.3 99.8 100 100 98.2 97.2 99.8 100 100 98.2 97.3 99.8 100 100 98.2 97.2 99.8 99.9 100 100 100 100 99.9 99.6 85.0 76.6 73.1 71.0 81.0
97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 97.3 98.9 99.6 100 100 100 100 99.9 94.6 97.0 73.7 65.7 68.6 79.0 95.9
99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.0 97.8 99.8 99.9 99.9 99.1 97.8 99.8 99.9 99.9 99.1 97.8 99.8 100 100 99.8 97.9 97.8 92.9 80.1 81.5 78.8 83.9
98.5 98.5 97.1 94.0 98.8 98.5 98.5 97.2 94.2 99.0 98.6 98.6 97.2 94.2 99.0 98.6 98.5 97.1 94.1 98.7 98.5 98.5 97.1 94.0 98.6 99.6 99.0 95.9 89.0 88.0 81.1 71.1 70.5 68.4 82.5

GPT GPT_rel GPT_rot GPT_pos GPT_uni deBERTa baseline (GPT_rand)

NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2 NT6 NT5 NT4 NT3 NT2

cfg9acfg9b2
cfg9c
cfg9d
cfg9e

pr
ed

ic
t

N
T

at
 N

T-
en

d
 (

tr
id

ia
go

na
l m

as
ki

ng
)

100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 100 99.8 99.7 97.8 93.4 94.8 90.5 99.2
98.8 98.3 99.9 100 100 98.8 98.3 99.9 99.9 100 98.8 98.2 99.9 99.9 100 98.8 98.2 99.9 100 100 98.8 98.2 99.9 100 100 100 100 100 100 99.9 88.0 82.7 76.5 77.5 93.1
98.1 99.3 99.7 100 100 98.1 99.3 99.7 100 100 98.1 99.3 99.7 100 100 98.1 99.3 99.8 100 100 98.1 99.3 99.7 100 100 100 100 99.9 98.6 98.6 77.7 69.7 73.8 83.0 99.2
99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 99.9 99.9 99.2 98.5 100 100 100 99.8 99.3 99.5 94.2 81.3 82.7 82.4 91.6
98.7 98.7 97.6 95.6 99.2 98.8 98.8 97.7 95.7 99.3 98.7 98.8 97.7 95.7 99.3 98.7 98.8 97.7 95.6 99.1 98.7 98.7 97.6 95.5 99.1 99.6 99.3 97.8 93.3 91.2 82.8 73.1 72.1 71.0 85.1

Figure 30: Same as Figure 5 but for the cfg9 data family. Generative pre-trained transformer encodes NT
ancestors almost exactly at NT boundaries. The NTℓ column represents the accuracy of predicting
sℓ(i) at locations i with bℓ(i) = 1. This suggests our probing technique applies more broadly.

CFG0 family. Since all the CFGs above support rules of length 3, we have focused on L = 7 to
prevent the string length from becoming excessively long.18 In the cfg0 family, we construct five
CFGs, denoted as cfg9a/b/c/d/e. All of them have a depth of L = 11. Their rule lengths are
randomly selected from {1, 2} (compared to {2, 3} for cfg3 or {1, 2, 3} for cfg8/9). Their degree
configurations (i.e., R(a)) are identical to those of the cfg8 family. We have chosen their sizes as
follows, noting that we have enlarged the sizes as otherwise a random string would be too close to
this language:

• We use size [1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4] for cfg0a/b.
• We use size [1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6] for cfg0c.
• We use size [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for cfg0d/e.

Once again, the CFGs generated in this manner are globally ambiguous like the cfg8 family, so we
cannot perform linear probing on them. However, it would be interesting to demonstrate the ability
of transformers to learn such CFGs.

Additional Experiments. We present the generation accuracies (or the complete accuracies for
cut c = 20) for the three new data families in Figure 28. It is evident that the cfg8/9/0 families can
be learned almost perfectly by GPT2-small, especially the relative/rotary embedding ones.

As previously mentioned, the cfg9 data family is predominantly globally ambiguous, making it an
excellent synthetic data set for testing the encoding of the NT ancestor/boundary information, similar
to what we did in Section 4. Indeed, we replicated all of our probing experiments in Figure 29 and
Figure 30. This suggests that our probing technique has broader applicability.

18Naturally, a larger transformer would be capable of solving such CFG learning tasks when the string
length exceeds 1000; we have briefly tested this and found it to be true. However, conducting comprehensive
experiments of this length would be prohibitively expensive, so we have not included them in this paper.

36

	1 Introduction
	2 Context-Free Grammars
	3 Transformer Learns Such CFGs
	4 How Do Transformers Learn CFGs?
	4.1 Finding 1: Transformer's Hidden States Encode NT Ancestors and Boundaries
	4.2 Finding 2: Transformer's Hidden States Encode NT Ancestors At NT Boundaries

	5 How Do Transformers Learn NTs?
	5.1 Position-Based Attention
	5.2 Boundary-Based Attention

	6 Conclusion
	A Extensions of CFGs
	A.1 Implicit CFG
	A.2 Robustness on Corrupted CFG

	B Experiment Setups
	B.1 Dataset Details
	B.2 Model Architecture Details
	B.3 Pre-Training Details
	B.4 Predict NT ancestor and NT boundary

	C More Experiments on Generation
	C.1 Generation Diversity via Birthday Paradox
	C.2 Marginal Distribution Comparison

	D More Experiments on NT Ancestor and NT Boundary Predictions
	D.1 NT Ancestor and NT Boundary Predictions
	D.2 NT Predictions Across Transformer's Layers
	D.3 NT Predictions Across Training Epochs

	E More Experiments on Attention Patterns
	E.1 Position-Based Attention Pattern
	E.2 From Anywhere to NT-ends
	E.3 From NT-ends to NT-ends
	E.4 From NT-ends to Adjacent NT-ends

	F More Experiments on Implict CFGs
	G More Experiments on Robustness
	H Beyond the CFG3 Data Family
	H.1 The Penn TreeBank CFG
	H.2 More Synthetic CFGs

