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ABSTRACT

Variational quantum algorithms (VQAs) are prime contenders that exploit near-
term quantum machines to gain computational advantages over classical algo-
rithms. As such, how to accelerate the optimization of modern VQAs has at-
tracted great attention in past years. Here we propose a QUantum DIstributed
Optimization scheme (abbreviated as QUDIO) to address this issue. Conceptu-
ally, QUDIO utilizes a classical central server to partition the learning problem
into multiple subproblems and allocate them to a set of quantum local nodes. In
the training stage, all local nodes proceed with parallel training and the classical
server synchronizes optimization information among local nodes timely. In do-
ing so, we prove a sublinear convergence rate of QUDIO in the number of global
iterations under the ideal scenario. Moreover, when the imperfection of the quan-
tum system is considered, we prove that an increased synchronization time leads
to a degraded convergence rate or even incurs divergent optimization. Numerical
results on standard benchmarks illustrate that QUDIO can surprisingly reach a su-
perlinear clock-time speedup in terms of the number of local nodes. Our proposal
can be readily mixed with other advanced VQAs-based techniques to narrow the
gap between the state of the art and applications with the quantum advantage 1.

1 INTRODUCTION

Deep learning techniques have penetrated the world during past decades Goodfellow et al. (2016).
Prototypical applications comprise using deep neural networks (DNNs) to facilitate online shopping
Zhang et al. (2019), to accelerate molecule design Senior et al. (2020), and to enhance language
translation Devlin et al. (2019). Notably, the success of deep learning heavily relies on distributed
hardware and distributed optimization techniques Dean et al. (2012) in the sense that multiple GPU
cards are employed to collaboratively process the same learning task. For instance, to ensure that the
training of deep bidirectional transformers can be completed within a reasonable time (e.g., 4 days),
in total 64 GPU cards are used to conduct the distributed optimization Devlin et al. (2019). However,
the price to pay is ten thousands dollars and emitting 1438 lbs of carbon dioxide Strubell et al.
(2019). This considerable resource-consumption signifies that deep learning models will become
hard to develop and optimize when the problem size is continuously enlarged. Therefore, it is
highly demanded to seek novel techniques to resolve complicated problems in a fast, economic, and
environmentally friendly way.

The oath of quantum computing is to accomplish certain tasks beyond the reach of classical com-
puters Harrow & Montanaro (2017). During past years, big breakthrough has been achieved towards
this goal, e.g., a demonstration of the quantum supremacy experiment in the task of sampling the
output of a pseudo-random quantum circuit Arute et al. (2019). Among various quantum learning
models, variational quantum algorithms (VQAs) Bharti et al. (2021); Cerezo et al. (2020), which
are formed by parameterized quantum circuits (PQCs) and a classical optimizer, have attracted great
attention from industry and academia. The popularity of VQAs origins from the versatility of PQCs,
which guarantees their efficient implementations on the noisy intermediate-scale quantum (NISQ)
machines Preskill (2018), as well as theoretical evidence of quantum superiority Abbas et al. (2020);
Huang et al. (2021b;a). Moreover, prior studies have exhibited the progress of VQAs of accomplish-
ing diverse learning tasks, e.g., machine learning issues such as data classification Havlı́ček et al.

1The source code is available at https://anonymous.4open.science/r/QUDIO-1076/.
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Figure 1: The scheme of VQAs and quantum distributed optimization scheme (QUDIO). The left panel
illustrates the workflow of conventional VQAs. The right panel presents the workflow of QUDIO, which
consists of multiple local nodes and a central server. Each local node only manipulates a subgroup of the given
problem in parallel, while the central server communicates with all local nodes and synchronizes their results.
In this way, QUDIO can accelerate various VQAs.

(2019); Mitarai et al. (2018); Schuld & Killoran (2019) and image generation Huang et al. (2020);
Rudolph et al. (2020), combinatorial optimization Farhi et al. (2014); Harrigan et al. (2021), and
finance Alcazar et al. (2020); Coyle et al. (2021).

Despite the tantalizing achievements, modern VQAs are generally plagued by expensive or even
unaffordable wall-clock time for large-volume data, hampered by the regulation such that only a
single quantum chip is employed in optimization. For concreteness, we exemplify the machinery of
quantum neural networks (QNNs), as a crucial subclass of VQAs, when dealing with classification
tasks Havlı́ček et al. (2019). As shown in the left panel of Fig. 1, to correctly classify n training
examples, the classical optimizer iteratively feeds each example to PQCs and then leverages the
discrepancy between the obtained n predictions of QNN and n labels to conduct the gradient-based
optimization. In this way, the classical optimizer needs to query a single quantum processor at least
O(n) times to complete one iteration. Such overhead prohibits the applicability of QNNs for large n
Qian et al. (2021). With this regard, it is of great importance to enhance the computational efficiency
of VQAs, as the necessary condition to pursue quantum advantages.

To conquer the above issues, here we devise an efficient QUantum DIstributed Optimization scheme
(abbreviated as QUDIO) to accelerate the optimization of VQAs. Two key ingredients of QUDIO
are a classical central server and Q local nodes, i.e., each of them consists of a quantum processor
and a classical optimizer. Conceptually, the classical server partitions the learning problem into Q
subproblems and allocates them toQ local nodes. During the training procedure, all local nodes pro-
ceed optimization in parallel and the classical server synchronizes optimization information among
local nodes timely. An attractive property of QUDIO is adequately utilizing the accessible quantum
resources to accelerate VQAs, owing to its compatibility. Namely, the deployed quantum processors
are allowed to be any type of quantum hardware such as linear optical, ion-trap, and superconducting
quantum chips. Such compatibility contributes to apply a wide class of VQAs to manipulate varied
large-scale computational problems and seek potential quantum advantages by unifying quantum
powers in a maximum extent. To our best knowledge, QUDIO is the first distributed scheme ori-
ented to the acceleration of VQAs with theoretical guarantee. Moreover, the achieved empirical
results in this study indicate that:

QUDIO can linearly accelerate the optimization of VQAs when Q is linearly increased.

Contributions. We summarize our main results below.

1. We analyze the convergence rate of QUDIO under the ideal scenario. Particularly, we
prove an asymptotic convergence between QUDIO and conventional VQAs with a single
quantum processor. Moreover, unlike distributed methods in DNNs, QUDIO are immune to
the communication bottleneck, due to the small number of trainable parameters in VQAs.
These results can not only be employed as theoretical guidance to assure good performance
of QUDIO, but also motive us to devise more advanced distributed-VQAs schemes.

2. We further derive the convergence rate of QUDIO in the NISQ case, where the depolariza-
tion noise is employed to simulate the imperfection of the quantum system. The achieved
result implies that the convergence rate of QUDIO could become degraded with respect to
the amplified system noise and the decreased number of quantum measurements. Remark-
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ably, the convergence analysis of QUDIO sharply contrasts with classical distributed opti-
mization methods Boyd et al. (2011); Dean et al. (2012), due to the following fact. That is,
the gradients information operated in VQAs is biased, induced by the system imperfection
such as sample error and gate noise, whereas most classical distributed methods assume
the unbiased gradients information. Such discrepancy means that naively imitating clas-
sical distributed algorithms to design distributed VQAs is suboptimal, since the inevitable
biased gradient information in the quantum scenario may incur a deficient convergence.

3. We conduct extensive numerical simulations to validate the computational efficiency of our
scheme. In particular, QUDIO is exploited to accomplish the image classification task (see
Section 4) and the ground energy of hydrogen molecule estimation task (see Appendix
D) under both the ideal and noisy scenarios. The achieved simulation results validate
that QUDIO realizes sublinear and even superlinear speedups compared with conventional
QNNs and VQEs. The source code of QUDIO is available at the Github repository xxx.

2 BACKGROUNDS AND RELATED WORK

Basic notations. The fundamental unit in quantum computation is quantum bit (qubit), which refers
to a two-dimensional vector. Under Dirac notation, a qubit state is defined as |α〉 = a0 |0〉+a1 |1〉 ∈
C2, where |0〉 = [1, 0]> and |1〉 = [0, 1]> specify two unit bases, and the coefficients a0, a1 ∈ C
satisfy |a0|2 + |a1|2 = 1. An N -qubit state is denoted by |Ψ〉 =

∑2N

i=1 ai |i〉 ∈ C2N , where

|i〉 ∈ R2N is the unit vector whose i-th entry being 1 and other entries are 0, and
∑2N−1
i=0 |ai|2 = 1

with ai ∈ C. Besides Dirac notation, the density matrix can be used to describe more general qubit
states. For example, the density matrix of the state |Ψ〉 is ρ = |Ψ〉 〈Ψ| ∈ C2N×2N . For a set of qubit
states {pi, |Ψi〉}mi=1 with pi > 0,

∑m
i=1 pi = 1, and |Ψi〉 ∈ C2N for ∀i ∈ m, its density matrix is

ρ =
∑m
i=1 piρi with ρi = |ψi〉 〈ψi| and Tr(ρ) = 1.

There are three types of quantum operations using to manipulate qubit states, which are quantum
gates, quantum channels, and quantum measurements. Specifically, quantum gates, as unitary trans-
formations, can be treated as the computational toolkit for quantum circuit models, i.e., an N -qubit
gate U ∈ U(2N ) obeys UU† = I2N , where U(·) stands for the unitary group. In the open system,
quantum channels are applied to formalize the evolving of qubits states instead of unitary. Math-
ematically, every quantum channel E(·) is a linear, completely positive, and trace-preserving map
Nielsen & Chuang (2010). A special quantum channel is called the depolarization channel, which is
defined as Ep(ρ) = (1− p)ρ+ p

I2N
2N

. Quantum measurements is extracting quantum information of
the evolved state, which contains the computation result, into the classical form. Specifically, apply-
ing the measurement {Πi} to the state ρ, the probability of outcome i is given by Pr(i) = Tr(ρΠi).

Quantum neural networks. Denote the given dataset as D = {xi, yi}ni=1, where xi ∈ RDc

and yi ∈ R refer to the features and label for the i-th example. The generic form of the output
(prediction) of quantum neural networks (QNNs) Du et al. (2020a); Havlı́ček et al. (2019) is

ŷi ≡ h(θ, O, ρi) = Tr(OU(θ)ρiU(θ)†), ∀i ∈ [n], (1)

where ρi, U(θ), and O ∈ C2N×2N are the encoded N -qubit state corresponding to xi, the ansatz
with dQ parameters (i.e., θ ∈ [0, 2π)dQ ), and the fixed quantum observable, respectively. Notably,
the versatility of QNNs arises from diverse data embedding strategies (e.g., preparing ρi by basis,
amplitude, and qubit encoding methods LaRose & Coyle (2020)), flexible architectures of the ansatz
U(θ) (e.g., hardware-efficient and tensor-network based ansatzes), and the agile choice of O. The
aim of QNNs is to seek the optimal parameters θ∗ that minimize a predefined loss L. Throughout
the whole work, we specify L as the mean square error with l2-norm regularizer, i.e.,

L(θ,D) =
1

2n

n∑
i=1

(h(θ, O, ρi)− yi)2 + λ‖θ‖22, (2)

where λ ≥ 0 refers to the regularizer coefficient. Moreover, we set {O, I − O} in Eq. (1) as a
two-outcome positive operator valued measure (POVM) Nielsen & Chuang (2010). The updating
rule of θ is specified to the stochastic gradient method, i.e., in the ideal scenario, we have

θ(t+1) = θ(t) − η∇L(θ(t),x(t)), (3)
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where η is the learning rate, x(t) is randomly sampled from D, and θ(t) refers to the trainable
parameters at the t-th step. The evaluation of∇L(θ(t),x(t)) is typically achieved via the parameter
shift rule Mitarai et al. (2018), i.e., its j-th component for ∀j ∈ [dQ] yields

∇L(θ(t),x(t)) = (ŷ(t) − y(t)) ŷ
(t.+j) − ŷ(t,−j)

2
+ λθ

(t)
j , (4)

where ŷ(t,±j) = h(θ(t,±), O, ρ(t)) denote the outputs of QNNs with shifted parameters θ(t,±) =
θ(t) ± π

2 ej , ej is the unit vector whose j-th entry equals to 1. After T iterations, the updated
parameters θ(T ) serve as the approximation of the optimal solution θ∗ = arg minθ L(θ,D).

Related work. Prior literature related to our work can be divided into two categories. The first
category is distributed deep learning algorithms and the second category is quantum distributed
computation. Particularly, in the first category, the acceleration of training DNNs is achieved by
involving multiple GPUs to fulfill the joint optimization Dean et al. (2012); Bottou et al. (2018).
Despite of a similar manner, our proposal is sharply inconsistent with classical distributed optimiza-
tion methods from the following two perspectives. First, the gradients information operated in VQAs
is biased, induced by the system imperfection such as sample error and gate noise, whereas most
classical distributed methods assume the unbiased gradients information. Next, unlike distributed
methods in DNNs, VQAs are immune to the communication bottleneck, due to the small number of
trainable parameters. In the second category, quantum distributed computation Beals et al. (2013)
focuses on using multiple less powerful quantum circuits to simulate a standard quantum circuit,
which differs from our aim. Although some quantum software Bergholm et al. (2018); et. al. (2019)
showcases parallelling variational quantum eigen-solvers (VQEs) Peruzzo et al. (2014), how to de-
vise distributed-VQAs optimization schemes with both runtime boost and convergence guarantee
remains largely unknown.

3 ACCELERATE QNN BY QUANTUM DISTRIBUTED OPTIMIZATION SCHEME

We depict the paradigm of QUDIO in the right panel of Fig. 1 and present the corresponding Pseu-
docode in Alg. 1. The algorithmic implementation of QUDIO consists of three components.

1. At the preprocessing stage, the central server partitions the given problem into Q sub-
problems and allocates these subproblems to Q local node {Qi}Qi=1 (see Sections 4 for
elaboration of the problem partition).

2. The training procedure of QUDIO obeys an iterative manner. Define the total number of
global and local steps as T and W , respectively. At the t-th global step with t ∈ [T ], the
central server first dispatches the synchronized parameters θ(t) to Q local nodes, which
correspond to initial parameters for local updates (Line 5). With a slight abuse of notation,
we denote θ(t,w)

i to describe trainable parameters for the i-th local node at the w-th local
step. As such, the parameters for all local nodes at the t-th global step satisfy θ(t) =

θ
(t,w=0)
i , ∀i ∈ [Q]. After initialization, all local nodes {Qi} proceed W local iterations

independently to update θ(t,w)
i , ∀i ∈ [Q] (highlighted by the pink region in Lines 7-8).

Once all local updates are fulfilled, the central server collects parameters {θ(t,W )
i }Qi=1 from

all local nodes to execute synchronization of trainable parameters (Line 11), i.e., θ(t+1) =
1
Q

∑Q
i=1 θ

(t,W )
i . This completes the t-th global step.

3. Through repeating the above procedure with T global steps, the classical central server
outputs the synchronized θ(T ) = 1

Q

∑Q
i=1 θ

(T,W )
i to estimate the optimal solution θ∗.

Wall-clock time analysis. In principle, compared with conventional VQAs with a single quantum
processor, the parallel optimization mechanism presented above enables QUDIO to reduce the wall-
clock time of training VQAs by a constant factor that in terms of the number of local nodes Q. This
linear speedup is warranted by the small amount of trainable parameters for most VQAs, which
permits a low communication overhead.

Applications of QUDIO. A core component of QUDIO is the approach of decomposing the given

problem into Q parts, which in turn results in the varied forms of the estimated gradients {g(t,w)
i } in
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Algorithm 1 QUDIO The yellow and pink boxes refer to the local nodes and the central server, respectively.

1: Input: The initialized parameters θ(0) ∈ [0, 2π)dQ , the employed loss function L, the hyper-
parameters {Q, η,W, T}

2: The central server partitions the given problem intoQ parts and allocates them toQ local nodes
3: for t = 0, · · · , T − 1 do
4: for Quantum processor Qi, ∀i ∈ [Q] in parallel do
5: θ

(t,0)
i = θ(t)

6: for w = 0, · · · ,W − 1 do

7: Compute the estimate stochastic gradient g(t,w)
i

8: Update θ(t,w+1)
i = θ

(t,w)
i − ηg(t,w)

i

9: end for
10: end for

11: Synchronize θ(t+1) = 1
Q

∑Q
i=1 θ

(t,W )
i

12: end for
13: Output: θ(T )

Line 7 of Alg. 1. For the purpose of elucidating, in the rest of the main text, we focus on elaborating
the way of problem partition and the gradients estimation when applying QUDIO to speed up the
training of QNNs with both empirical and theoretical evidence. In Appendix D, we exhibit how
to utilize QUDIO to accelerate variational quantum eigensolvers (VQEs), as a crucial paradigm
of VQAs in the regime of quantum chemistry. Furthermore, although our work mainly focuses on
accelerating QNNs and VQEs, QUDIO can be effectively extended to accelerate other VQA-based
paradigms such as quantum approximate optimization algorithms Farhi et al. (2014); Hadfield et al.
(2019); Zhou et al. (2020).

4 ACCELERATING THE OPTIMIZATION OF QNN BY QUDIO

We now elaborate on how to exploit QUDIO in Alg. 1 to accelerate the training of QNN formulated
in Eq. (2). Concretely, at the preprocessing stage, the central server splits the dataset D into Q
subgroups {Di}Qi=1 and assigns them intoQ local nodes {Qi}Qi=1. In the training procedure, QUDIO
adopts an iterative strategy presented in Lines 3-11 of Alg. 1 to optimize the trainable parameters.
At the t-th global step, when Q local nodes receive the synchronized parameters θ(t) sent by the
central server, they proceed W local updates independently. Define θ(t,w=0)

i = θ(t) for ∀i ∈ [Q]
and ∀w ∈ [W ]. The updating rule of Qi associated with the stochastic gradient descent optimizer
satisfies

θ
(t,w+1)
i = θ

(t,w)
i − ηgi(θ(t,w)

i ,x
(t,w)
i ) ∈ [0, 2π)dQ , (5)

where η is the learning rate, (x
(t,w)
i , y

(t)
i ) refers to the i-th example uniformly sampled from Di,

and gi(θ
(t,w)
i ,x

(t,w)
i ) denotes the estimation of ∇L(θ

(t,w)
i ,x

(t,w)
i ) induced by the system noise

and sample error. Once all local updates are finished, the central server receives {θ(t,W )
i }Qi=1 and

synchronizes them to update the global trainable parameters θ(t) in Line 11 of Alg. 1. Through
repeating the above process with T times, QUDIO outputs θ(T ) = 1

Q

∑Q
i=1 θ

(t,W )
i to estimate the

optimal solution θ∗.

In the rest of this section, we analyze the convergence rate of QUDIO. The crux to achieve this goal
is establishing the mathematical expression of the estimated gradient gi in Eq. (5). More precisely,
suppose that the depolarization noise channel Np(·) is injected to each quantum circuit depth, i.e.,
Np(ρ) = (1− p)ρ+ p I

2N
. The quantum state before measurements yields

γ
(t,w)
i = (1− p̃)U(θ(t,w))ρ

(t)
i U(θ(t,w))† + p̃

I
2N

,
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where p̃ = 1 − (1 − p)LQ and LQ refers to the total circuit depth Du et al. (2020a). Then apply-
ing quantum measurement to the state γ(t,w)

i produces the outcome that can be viewed as a binary
random variable with the Bernoulli distribution, i.e., V (t,w)

k ∼ Ber(Tr(Oγ
(t,w)
i )). In this way, the

sample mean ȳ(t,w)
i =

∑K
k=1 V

(t,w)
k /K corresponding to Tr(Oγ

(t,w)
i ) is obtained after K measure-

ments. In conjunction with above observations and the analytic gradients in Eq. (4), the explicit
form of the estimated gradients for the j-th component with ∀j ∈ [dQ] satisfies

gi,j(θ
(t,w)
i ,x

(t,w)
i ) = (ȳ

(t,w)
i − y(t)i )

ȳ
(t,w,+j)
i − ȳ(t,w,−j)

i

2
+ λθ

(t,w)
i,j , (6)

where ȳ(t,w,±j)
i = 1

K

∑K
k=1 V

(±j)
k are estimated outputs with shifted parameters, i.e., V (±j)

k ∼
Ber(Tr(Oγ

(±j)
i )) and γ(±j)

i = (1− p̃)U(θ(t,w,±j))ρiU(θ(t,w,±j))† + p̃ I
2N

.

We quantify the convergence of QUDIO by the utilityR1 = 1
T

∑T
t=1 E[‖∇L(θ(t))‖2], where the ex-

pectation is taken over the randomness of data sample, the imperfection of quantum system, and the
finite quantum measurements. Intuitively, R1 evaluates how far QNN is away to a stationary point,
which is a standard measure in non-convex optimization theory Jain & Kar (2017); Sun (2019). The
following theorem summarizes the convergence of QUDIO whose proof is provided in Appendix B.
Theorem 1. Assume that the discrepancy between the collected local gradients and the analytic
gradients is bounded, i.e., ∀i ∈ [Q] and ∀θ ∈ [0, 2π)dQ , there exists

E
x

(t,w)
i ∼Di

[∥∥∥g(t,w)
i −∇L̄

(
θ
(t,w)
i ,x

(t,w)
i

)∥∥∥2] ≤ σ. (7)

Following notations above, when the system noise is modeled by the depolarization channelNp and
the measurement shot is K, the convergence rate of QUDIO yields

R1 ≤ O
(
λdQ

√
S

T
+

√
S

T

(
4W 2σ2 + 2W 2G2

)
+ C1

)
,

where C1 ∼ O(W 2(p̃dQ + p̃dQ/K)), p̃ = (1− (1− p)LQ), LQ is the total circuit depth, and S (G)
is the smooth (Lipschitz) constant of L.

The results of Theorem 1 deliver three-fold implications. First, large system noise and few number
of measurements may induce the optimization of QUDIO to be divergent, since the term C1 is inde-
pendent with T and is amplified by p and 1/K. This observation hints the importance of integrating
error mitigation techniques Cai et al. (2020); Du et al. (2020b); McClean et al. (2020); Strikis et al.
(2020) into QUDIO to enhance its trainability. Second, in the NISQ scenario, reducing the itera-
tion number of local updating W suggests a better performance, because C1 is proportional to W .
This phenomenon is starkly contrast with classical distributed optimization methods, which adopt
large W to alleviate the communication overhead. Last but not least, under the ideal setting, the
convergence rate between conventional QNNs and QUDIO is identical, i.e., both of them scale with
O(1/

√
T ) with respect to the step number T Du et al. (2020a). Celebrated by the joint optimization

strategy, the similar convergence rate warrants that QUDIO promises a linear runtime speedup with
respect to the increased number of local nodes Q.

Remark. We emphasize that the developed tools in the proof of Theorem 1 can be easily extended to
analyze the convergence of QUDIO-based QNNs with other loss functions, quantum noisy models,
and optimizers. Moreover, the result of Theorem 1 indicates that naively imitating classical dis-
tributed algorithms to design distributed VQAs is suboptimal, since the inevitable biased gradient
information in the quantum scenario may incur a deficient convergence. This suggests us to devise
novel quantum distributed algorithms with an improved convergence rate.

5 NUMERICAL SIMULATIONS

5.1 EXPERIMENTAL SETUP

Dataset. We carry out numerical simulations to exhibit how QUDIO accelerates QNNs when deal-
ing with a standard binary classification task with a large size of training examples. More precisely,
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（a） （b） （c）

Figure 2: Simulation results of QUDIO towards hand-written digits image classification. (a) A
visualization of some training examples sampled from the MNIST dataset. (b) Scaling behavior of QUDIO in
clock-time for increasing number of local nodes Q for varied number of local steps W . The labels ‘W = a
(I)’ and ‘W = a (N)’ refer that the total number of local iterations is W = a under the ideal and NISQ
scenarios respectively. The hyper-parameters settings for the NISQ case are p = 10−5 and K = 100. (c) The
achieved test accuracy of QUDIO with varied W and Q in the NISQ scenario, where the hyper-parameters
settings are same with those described in (b).

we sample 756 digit images labeled with ‘0’ and ‘1’ from the MNIST handwritten digit database
LeCun (1998), where 256 images (examples) compose the training set and the rest 500 images (ex-
amples) form the test dataset. Fig. 2(a) visualizes some examples in the distilled dataset. Once
the distillation is completed, the data preprocessing is applied, i.e., all examples are down-sampled
to 8 × 8 pixels followed by the vectorization and l2 normalization. In other words, each example
corresponds to a 64-dimensional vector.

Implementation of QUDIO-based QNNs. When applying QUDIO-based QNNs to learn the clas-
sification rule toward the training set established above, i.e., D = {xi, yi}ni=1 with n = 256 and
xi ∈ R64, the central server partitions it into {Di}Qi=1 and allocates them to Q local nodes. For
example, when Q = 32, we have |Di| = 8 for ∀i ∈ [32]. Due to the identical implementation
of all local nodes, here we only state the setup of the i-th local node Qi for ∀i ∈ [Q]. The QNN
relation to Qi can be formulated as h(θ, O, ρi) = Tr(OU(θ)ρiU(θ)†) defined in Eq. (1). Par-
ticularly, the amplitude encoding method is adopted to encode xi ∈ Di to the quantum state ρi,
i.e., ρi = |xi〉 〈xi| , and |xi〉 =

∑64
j=1 xi,j |j〉. In this way, the required number of qubits to

implement QNN is N = 8. The prepared state ρi is interacted with the hardware-efficient ansatz
U(θ) =

∏L
l=1 Ul(θ) Kandala et al. (2017). The block number is set as L = 4. The operator O is

set as O = I25 ⊗ |0〉 〈0|. Refer to Appendix C for implementation details.

Hyper-parameters setting. The number of local nodes Q ranges from 1 to 32. The number of
total local iterations has six settings, i.e., W ∈ [1, 2, 4, 8, 16, 32]. In the NISQ case, we set K ∈
{5, 20, 50, 100} and p ∈ [10−4, 10−1]. Each setting is repeated with 5 times to collect the statistical
results. For the stochastic gradient descent optimizer, its initial learning rate is set as 0.01 and the
decay-rate is set as 0.1 every 40 global iterations.

The source code of QUDIO. The realization of QUDIO is based on Pytorch Paszke et al. (2019)
and its distributed communication package. To be more concrete, we select the GLOO backend and
ring all-reduce operations to achieve the communication protocol between processes on CPU. Note
that this distributed optimization framework can be easily extended to coordinate multiple quantum
processors. All simulation results in this study are completed by the classical device with Intel(R)
Xeon(R) Gold 6267C CPU @ 2.60GHz and 128 GB memory. We release our code to the repository
https://anonymous.4open.science/r/QUDIO-1076/.

Metric. To better quantify the performance of QUDIO from different angles, we introduce two
metrics, i.e., the speedup to accuracy and the test accuracy, to evaluate the achieved results. Namely,
the former considers the speedup ratio of QUDIO compared with the setting of Q = 1 (original
QNN), i.e., supposes that the train accuracy reaches a threshold (e.g., 95%) in T1 (T2) clock-time
for Q = 1 (Q = a), the speedup to accuracy is evaluated by T1/T2. The latter intends to compare
the top test accuracy of QUDIO within a fixed number of global steps T with varied Q and W .
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5.2 EXPERIMENTAL RESULTS

Our main experimental results are exhibited in Fig. 2. As shown in Fig. 2 (b), under the measure of
speedup to accuracy, QUDIO gains the acceleration for both ideal and NISQ scenarios by increasing
the number of local nodes Q. Strikingly, QUDIO can even reach a superlinear speedup in the NISQ
scenario when W = 32, e.g., it achieves 5.355 times speedup when Q = 4. This phenomenon
accords with our theoretical claim such that QUDIO is insensitive to the communication bottleneck,
which differs from distributed DNNs Dean et al. (2012). Moreover, the distinct scaling behavior of
QUDIO between the ideal and the NISQ cases is mainly caused by the fact that the evaluation of the
analytic gradients in the ideal case is extremely fast and the communication cost gradually dominates
the clock time when Q becomes large. The box plot in Fig. 2(c) pictures the achieved results of
QUDIO in the measure of test accuracy. For all settings of Q, an increased W generally degrades
the performance of QUDIO from a statistical view. These results partially echo with Theorem 1
such that larger W suggests worse performance. An evidence is when Q = 16, QUDIO achieves
the best test accuracy whenW = 4. Envisioned by the above observations, we next comprehensively
investigate what factors dominate the capability of QUDIO.
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Figure 3: The speedup ratio of QUDIO
in the measure of the time to accuracy.
The labels ‘N’ and ‘I’ represent the noisy
and ideal scenarios, respectively.

Speedup analysis. We adopt the following settings to ex-
plore the speedup ratio of QUDIO. Concretely, both the
number of local nodes and the number of local iterations
have six varied settings, i.e., Q,W ∈ {1, 2, 4, 8, 16, 32}.
In the NISQ scenario, the depolarization rate and the
number of measurements are set as p = 10−4 and K =
100, respectively. Fig. 3 depicts the speedup ratio of
QUDIO in the measure of time to accuracy. In particu-
lar, QUDIO attains a sublinear acceleration in terms of
Q. Besides, a larger number of local iterations W gen-
erally promises a higher speedup ratio. We also notice
that there exists a manifest margin between the noiseless
and NISQ settings. This phenomenon is mainly caused
by the opposite role of the communication overhead, i.e.,
the communication overhead occupies a large portion of
the computational runtime in the noiseless case, while it
becomes negligible in the NISQ case. Tab. 1 records the
concrete clock time under each setting.

Table 1: The runtime of QUDIO with respect to the varied number of Q and W .

Number of local nodes (Q) 1 2 4 8 16 32
Ideal: Time to accuracy (s) 104.53 66.20 40.81 36.02 34.25 28.14
NISQ: Time to accuracy (s) 2518.46 1049.63 470.25 270.47 200.10 93.16
Number of local steps (W) 1 2 4 8 16 32
Ideal: Time to accuracy (s) 54.37 55.85 52.24 45.67 43.62 28.14
NISQ: Time to accuracy (s) 169.99 155.37 117.18 115.20 117.73 93.16

Accuracy analysis. We next turn to explore how the factors Q and W influence the final test
accuracy of QNN. Analogous to the speedup analysis, the number of local nodes and local iterations
have six settings, i.e., Q,W ∈ {1, 2, 4, 8, 16, 32}. Meanwhile, the depolarizing rate and the number
of measurement are set as p = 0.0001 andK = 100 respectively. As shown in Fig. 4, for all settings,
the test accuracy achieved by QUDIO is above 95%. This observation reflects the robustness of
QUDIO. Moreover, when the number of local iterations W is kept to be identical, QUDIO gains the
highest test accuracy with the setting Q = 16. On the contrary, when the number of local nodes Q is
identical (box with the same color), increasing the local iterations W results in a slightly deteriorate
test accuracy and a large variance. These phenomena compile with the claim of Theorem 1 and
suggest that the performance of QUDIO highly depends on the number of local nodes W .

The role of the system noise and the number of measurements. We last examine how the factors
of system noise p and the number of measurements K influence the performance of QUDIO. In
particular, we evaluate the test accuracy of QUDIO by scaling the depolarization rate p from 0.0001

8
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Figure 4: Role of number of quantum processors and local iterations.

to 0.0512 and ranging the number of measurements from 5 to 100. The number of local nodes and
local iterations is fixed to be Q = 16 and W = 2, respectively.

Fig. 5 summarizes the exprimental results. In particular, when p < 0.0064, the performance of
QUDIO heavily depends on the number of measurements. For example, the test accuracy is around
98% withM = 100, while it drops to 87% withM = 5. When p > 0.0064, both p andK determine
the performance of QUDIO. For example, for the setting K = 5, the test accuracy of QUDIO
with p = 0.0512 is reduced by 14% than the setting p = 0.0256 (i.e., from 77% to 66%). This
observation echoes with our theoretical analysis such that integrating error mitigation techniques
Cai et al. (2020); Du et al. (2020b); McClean et al. (2020); Strikis et al. (2020) into QUDIO is
crucial to enhance its trainability.
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Figure 5: The test accuracy of QUDIO with varied depolarization rate and the number of
measurements. The label ‘K = a’ refers that the number of measurements K is set as a.

6 DISCUSSION AND CONCLUSION

In this study, we devise QUDIO to accelerate VQAs with multiple quantum processors. We also
provide theoretical analysis about how the system noise and the number of measurements influ-
ence the convergence of QUDIO. An attractive feature is that in the ideal setting, QUDIO obeys
the asymptotic convergence rate with conventional QNNs, which ensures its runtime speedup with
respect to the increased number of local nodes. The achieved numerical simulation results confirm
the effectiveness of our proposal. Particularly, in the NISQ scenario, QUDIO can achieve superline
speedups in the measure of time-to-accuracy. For these reasons, QUDIO and its variants, which
marry the distributed techniques with VQAs, could substantially contribute to use NISQ machines
to accomplish real-world problems with quantum advantages. Furthermore, QUDIO is highly com-
patible and can be seamlessly embedded into the cloud computing, since it supports various types
of quantum processors to set up local nodes and its central server is purely classical.
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A APPENDIX

B THE PROOF OF THEOREM 1

The outline of this section is as follows. In Appendix B.1, we simplify some notations and introduce
basic concepts in optimization theory for ease of discussion. Next, in Appendix B.2, we demonstrate
the proof details of Theorem 1.

B.1 BASIC NOTATIONS AND CONCEPTS

Notations. Let us first simplify some notations defined in the main text to facilitate the derivation.
When no confusion occurs, we simplify the global loss function as

L
(
θ(t),D

)
≡ L

(
θ(t)
)

=
1

Q

Q∑
i=1

Li
(
θ
(t,w)
i ,Di

)
. (8)

The gradients of the global loss is written as ∇L(θ(t),D) or ∇L(θ(t)), interchangeably. Besides,
we define the loss of the local node Qi as

L
(
θ
(t,w)
i ,Di

)
≡ Li

(
θ
(t,w)
i

)
=

1

2|Di|

|Di|∑
j=1

(
h(θ

(t,w)
i , O, ρj)− yj

)2
+ λ‖θ(t,w)

i ‖22, (9)

where ρj and yj refers to the encoded quantum example and corresponding label with respect to the
j-th example in Di. Following the same routine, the gradients of the local loss is∇L(θ

(t,w)
i ,Di) or

∇Li(θ(t,w)
i ), interchangeably.

In QUDIO, to decrease the wall-clock time, the stochastic gradient descent is employed to update
training parameters. To distinguish with the local loss Li(θ(t,w)

i ), we simply the notation as

Li
(
θ
(t,w)
i ,x

(t,w)
i

)
≡ L̄i

(
θ
(t,w)
i

)
, and ∇Li

(
θ
(t,w)
i ,x

(t,w)
i

)
≡ ∇L̄i

(
θ
(t,w)
i

)
. (10)

We note that the gradients between∇Li
(
θ
(t,w)
i

)
and∇L̄i

(
θ
(t,w)
i

)
have the relationship

E
x

(t,w)
i ∼Di

[
∇L̄i

(
θ
(t,w)
i

)]
= ∇Li

(
θ
(t,w)
i

)
, (11)

where the expectation is taken over the randomness of sampled examples.

Basic concepts in optimization theory. We introduce two definitions, i.e., S-smooth and G-
Lipschitz Boyd et al. (2004), which are employed to quantify properties of loss functions and achieve
the proof of Theorem 1.

Definition 1. A function f is S-smooth over a set C if ∇2f(u) � SI with S > 0 and ∀u ∈ C. A
function f is G-Lipschitz over a set C if for all u,w ∈ C, we have |f(u)− f(w)| ≤ G‖u−w‖2.

As proved in Du et al. (2020a), the mean square error loss defined in Eq. (2) is smooth and Lipschitz.

Lemma 1 (Lemma 2, Du et al. (2020a)). The loss function L in Eq. (2) is S-smooth with S =
(3/2 + λ)d2 and G-Lipschitz with G = d(1 + 3πλ).

B.2 PROOF DETAILS

The proof of Theorem 1 exploits the relation between the analytic and estimated gradients of QNN,
i.e., ∇jL̄i(θ(t,w)

i ) and ∇jLi(θ(t,w)
i ).

Lemma 2. Denote p̃ = 1 − (1 − p)LQ with LQ being the quantum circuit depth. The discrepancy
between the analytic gradients ∇Li(θ(t,w)

i ) and the estimated gradients ∇L̄i(θ(t,w)
i ) for the i-th
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node at the t-th global step and the w-th local iteration satisfies

E
ς
(t,w)
i,j

[∥∥∥∇L̄i(θ(t,w)
i )−∇Li

(
θ
(t,w)
i

)∥∥∥2]
≤(p̃− 2)2p̃2

∥∥∥∇Li (θ(t,w)
i

)∥∥∥2 +
(1− p̃)2p̃2dQ

4
+ (2− p̃)2p̃2GdQ +

7(1− p̃
2 )2 + 1

8

K
dQ, (12)

where G is the Lipschitz constant in Lemma 1, dQ is the total number of trainable parameters, and
the expectation is taking over the random variable ς(t,w)

i,j that is formulated by quantum system noise
and the measurement error.

The proof of the above lemma is given in Appendix B.3.

We are now ready to prove Theorem 1.

Proof of Theorem 1. The machinery of QUDIO in Alg. 1 indicates that the difference between the
trainable parameters at the (t+ 1)-th and t-th global steps satisfies

θ(t+1) − θ(t) = − η
Q

Q∑
i=1

W∑
w=1

g
(t,w)
i . (13)

Supported by S-smooth property of L(θ) in Lemma 1, we have
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)
,θ(t+1) − θ(t)

〉
+
S

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2 . (14)

Combining Eqs. (13) and (14), we obtain
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(15)

where the inequality uses the definition of the smooth property and the equality is supported by
Eq. (13).

We next derive the upper bounds of the terms T2 and T1 by first removing the data sample noise
(i.e., calculating E

x
(t,w)
i ∼Di

[·]) and then removing the system noise (i.e., calculating Eςt,wi,j
[·]).

The elimination of the data sample noise. For the term T1, we utilize Lemma 2 to rewrite g(t,w)
i by

∇L̄i(θ(t,w)
i ) to remove the randomness of sampling training examples. Mathematically, we have

Exj∼Di
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+∇L̄i

(
θ
(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)
+∇Li

(
θ
(t,w)
i

)∥∥∥2]

≤2W

Q

Q∑
i=1

W∑
w=1

Exj∼Di

[∥∥∥g(t,w)
i −∇L̄i

(
θ
(t,w)
i

)
+∇L̄i

(
θ
(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2]
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+
2W

Q

Q∑
i=1

W∑
w=1

Exj∼Di

[∥∥∥∇Li (θ(t,w)
i

)∥∥∥2]

=
4W

Q

Q∑
i=1

W∑
w=1

Exj∼Di

[∥∥∥g(t,w)
i −∇L̄i

(
θ
(t,w)
i

)∥∥∥2]+
2W

Q

Q∑
i=1

W∑
w=1

Exj∼Di

[∥∥∥∇Li (θ(t,w)
i

)∥∥∥2]

+
4W

Q

Q∑
i=1

W∑
w=1

Exj∼Di

[∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2]

≤4W 2σ2 +
4W

Q

Q∑
i=1

W∑
w=1

∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2︸ ︷︷ ︸
T3

+2W 2G2, (16)

where the first inequality employs ‖∑n
i=1 ai‖2 ≤ n

∑n
i=1 ‖ai‖2, the second inequality uses the

triangle inequality with ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2, and the last inequality exploits the bounded
variance of the estimated gradients in the assumption and the G-Lipschitz property of the loss func-
tion in Lemma 2.

The derivation of the upper bound of the term T2 is similar to the operations applied to T1, i.e., the
estimated gradient g(t,w)

i is substituted with ∇L̄i(θ(t,w)
i ) to remove the randomness of the sampled

data. Mathematically, we have

Exj∼Di

[〈
∇L

(
θ(t)
)
,− η

Q

Q∑
i=1

W∑
w=1

g
(t,w)
i

〉]

=

〈
∇L

(
θ(t)
)
,Exi

[
− η
Q

Q∑
i=1

W∑
w=1

g
(t,w)
i

]〉

=

〈
∇L

(
θ(t)
)
,− η

Q

Q∑
i=1

W∑
w=1

∇L̄i
(
θ
(t,w)
i

)〉

=− η

2

∥∥∥∇L(θ(t))∥∥∥2 − η

2

∥∥∥∥∥ 1

Q

Q∑
i=1

W∑
w=1

∇L̄i
(
θ
(t,w)
i

)∥∥∥∥∥
2

+
η

2

∥∥∥∥∥∇L(θ(t))− 1

Q

Q∑
i=1

W∑
w=1

∇L̄i
(
θ
(t,w)
i

)∥∥∥∥∥
2

≤− η

2

∥∥∥∇L(θ(t))∥∥∥2 +
η

2

∥∥∥∥∥∇L(θ(t))− 1

Q

Q∑
i=1

W∑
w=1

∇L̄i
(
θ
(t,w)
i

)∥∥∥∥∥
2

≤− η

2

∥∥∥∇L(θ(t))∥∥∥2 +
η

2

W

Q

Q∑
i=1

W∑
w=1

∥∥∥∇Li (θ(t,w)
i

)
−∇L̄i

(
θ
(t,w)
i

)∥∥∥2︸ ︷︷ ︸
T3

, (17)

where the second equality uses the unbiased estimation property in terms of the sampled data in
Eq. (11), the third equality uses 〈a, b〉 = 1

2 (‖a‖2 + ‖b‖2 − ‖a− b‖2), the first inequality employs
the triangle inequality, and the last inequality exploits the explicit form of the analytic gradient such
that∇L

(
θ(t)
)

= 1
Q

∑Q
i=1

∑W
w=1∇Li

(
θ(t,w)

)
, and the relation ‖∑n

i=1 ai‖2 ≤ n
∑n
i=1 ‖ai‖2.

In conjunction with Eqs. (15), (16), and (17), we obtain

E
x

(t,w)
i ∼Di,ς

(t,w)
i,j

[
L
(
θ(t+1)

)
− L

(
θ(t)
)]

≤− η

2

∥∥∥∇L(θ(t))∥∥∥2 +
ηW

2Q

Q∑
i=1

W∑
w=1

E
ς
(t,w)
i,j

[∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2]︸ ︷︷ ︸
T3

+
Sη2

2

(
4W 2σ2 + 2W 2G2

)
+
Sη2

2

4W

Q

Q∑
i=1

W∑
w=1

E
ς
(t,w)
i,j

[∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2]︸ ︷︷ ︸
T3

.

(18)
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The elimination of the system and measurement noise. By employing Lemma 2, the term T3 can be
upper bounded by

E
ς
(t,w)
i,j

[∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2]
≤(p̃− 2)2p̃2

∥∥∥∇Li (θ(t,w)
i

)∥∥∥2 +
(1− p̃)2p̃2dQ

4
+ (2− p̃)2p̃2GdQ +

7(1− p̃
2 )2 + 1

8

K
dQ. (19)

Then, supported by Eqs. (18) and (19), the upper bound in Eq. (14) satisfies

E
xj∼Di,ς

(t,w)
i,j

[
L
(
θ(t+1)

)
− L

(
θ(t)
)]

≤− η

2

∥∥∥∇L(θ(t))∥∥∥2 +
Sη2

2

(
4W 2σ2 + 2W 2G2

)
+

(
Sη2

2

4W

Q
+
ηW

Q

) Q∑
i=1

W∑
w=1

E
xj∼Di,ς

(t,w)
i,j

∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li

(
θ
(t,w)
i

)∥∥∥2︸ ︷︷ ︸
T3


≤− η

2

∥∥∥∇L(θ(t))∥∥∥2 +
Sη2

2

(
4W 2σ2 + 2W 2G2

)
+

(
Sη24W 2

2
+ ηW 2

)(
(p̃− 2)2p̃2G2 +

(1− p̃)2p̃2dQ
4

+ (2− p̃)2p̃2GdQ +
7(1− p̃

2 )2 + 1
8

K
dQ

)
.

(20)

Rearranging the terms in Eq. (20), the norm of the gradients ‖∇L(θ(t))‖ is upper bounded by∥∥∥∇L(θ(t))∥∥∥2
≤2

η
Exj∼Di,ςi

[
L
(
θ(t)
)
− L

(
θ(t+1)

)]
+ Sη

(
4W 2σ2 + 2W 2G2

)
+
(
Sη4W 2 + 2W 2

)(
(p̃− 2)2p̃2G2 +

(1− p̃)2p̃2dQ
4

+ (2− p̃)2p̃2GdQ +
7(1− p̃

2 )2 + 1
8

K
dQ

)
.

(21)

Summing over t and dividing both sides by T in Eq. (21), we obtain

1

T

T∑
t=1

∥∥∥∇L(θ(t))∥∥∥2
≤2

η
Exj∼Di,ςi

[
L
(
θ(1)

)
− L

(
θ(T+1)

)]
+ Sη

(
4W 2σ2 + 2W 2G2

)
+
(
Sη4W 2 + 2W 2

)(
(p̃− 2)2p̃2G2 +

(1− p̃)2p̃2dQ
4

+ (2− p̃)2p̃2GdQ +
7(1− p̃

2 )2 + 1
8

K
dQ

)

≤2 + 80λdQ
ηT

+ Sη
(
4W 2σ2 + 2W 2G2

)
+
(
4SηW 2 + 2W 2

)(
(p̃− 2)2p̃2G2 +

(1− p̃)2p̃2dQ
4

+ (2− p̃)2p̃2GdQ +
7(1− p̃

2 )2 + 1
8

K
dQ

)
,

(22)

where the second inequality exploits the upper bound of the discrepancy of loss function.

With setting η =
√

1/ST , we immediately achieve

R1 =
1

T

T∑
t=1

∥∥∥∇L(θ(t))∥∥∥2
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≤(2 + 80λdQ)

√
S

T
+

√
S

T

(
4W 2σ2 + 2W 2G2

)
+

(
4W 2

√
S

T
+ 2W 2

)(
(p̃− 2)2p̃2G2 +

(1− p̃)2p̃2dQ
4

+ (2− p̃)2p̃2GdQ +
7(1− p̃

2 )2 + 1
8

K
dQ

)
.

(23)

B.3 PROOF OF LEMMA 2

As shown in Du et al. (2020a), the estimated gradients, which are caused by the gates noise and the
sample errors, can be explicitly formulated to relate with its analytic gradients.
Lemma 3 (Modified from Theorem 3, Du et al. (2020a)). Denote p̃ = 1− (1−p)LQ with LQ being
the quantum circuit depth. At the (t, w)-th iteration, we define five constants with

C
(t,w)
i,j,a =



(1− p̃)p̃( 1
2 − y

(t,w)
i )(ŷ

(t,w,+j)
i − ŷ(t,w,−j)

i )− (2p̃− p̃2)λθ
(t,w)
j , a = 1

(1− p̃)
(
ŷ
(t,w,+j)
i − ŷ(t,w,−j)

i

)
, a = 2

(1− p̃)ŷ(t,w)
i + p̃

2 − y
(t,w)
i , a = 3

−(1−p̃)(ŷ(t,w)
i )2+(1−p̃)2ŷ(t,w)

i + p̃
2−

p̃2

4

K , a = 4
−(1−p̃)((ŷ(t,w)

i,+j
)2+(ŷ

(t,w)
i,−j

)2)+(1−p̃)2(ŷ(t,w)
i,+j

+ŷ
(t,w)
i,−j

)+p̃− p̃2

2

K , a = 5,

where ŷ(t,w,±j)
i , ŷ(t,w)

i , and y(t,w)
i are defined in Eq. (6), K refers to the number of quantum mea-

surements.

The relation between the estimated and analytic gradients of QNN follows

∇jL̄i(θ(t,w)) = (1− p̃)2∇jLi(θ(t,w)) + C
(t,w)
i,j,1 + ς

(t,w)
i,j ,∀j ∈ [d] (24)

with ς(t,w)
i,j = C

(t,w)
i,j,2 ξ

(t,w)
i + C

(t,w)
i,j,3 ξ

(t,w)
i,j + ξ(t,w)ξ

(t,w)
i,j , where ξ(t,w)

i and ξ(t,w)
i,j are two random

variables with zero mean and variances C(t,w)
i,j,4 and C(t,w)

i,j,5 , respectively.

This results can be used to obtain Lemma 2.

Proof of Lemma 2. We first derive the term

E
ς
(t,w)
i,j

[∥∥∥∇L̄i (θ(t,w)
i

)
−∇Li
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θ
(t,w)
i

)∥∥∥2]

=

dQ∑
j=1

E
ς
(t,w)
i,j

[(
∇jL̄i

(
θ
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i
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E
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(
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i

)
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[
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]
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+ (2− p̃)(1− p̃)p̃2GdQ

≤(p̃− 2)2p̃2
∥∥∥∇Li (θ(t,w)

i

)∥∥∥2 +
(1− p̃)2p̃2dQ

4
+ (1− p̃)2dQ

(1− p̃)2 + 1/4

K
+
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1− p̃
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+ (2− p̃)(1− p̃)p̃2GdQ

≤(p̃− 2)2p̃2
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)∥∥∥2 +
(1− p̃)2p̃2dQ

4
+ (2− p̃)2p̃2GdQ +

7(1− p̃
2 )2 + 1

8

K
dQ , (25)

where the first equality comes from the definition of the l2 norm, the second equality uses Eq. (24),
the first inequality employs E

ς
(t,w)
i,j

[ς
(t,w)
i,j ] = 0 and the G-Lipschitz property of Li in Lemma 1, the

second inequality utilizes the upper bounds of C(t,w)
i,j,a in Lemma 3, and the last inequality simplifies

the factor p̃.

C NUMERICAL SIMULATION DETAILS OF QUDIO-BASED QNNS

The implementation of local nodes. Due to the identical implementation of all local nodes, here
we mainly consider the setup of the i-th local node Qi. The construction of PQCs of Qi, i.e.,
h(θ, O, ρi) = Tr(OU(θ)ρiU(θ)†), ∀i ∈ [n] in Eq. (1), is illustrated in Fig. 6. Particularly, the
amplitude encoding method is adopted to encode xi ∈ Di to the quantum state ρi, i.e.,

ρi = |xi〉 〈xi| , and |xi〉 =

64∑
j=1

xi,j |j〉 . (26)

The prepared state ρi is interacted with U(θ) implemented by the hardware-efficient ansatz. Note
that we set the block number in U(θ) as L = 4 and each block contains a single-qubit layer,
i.e., ⊗Ni=1Rot(θi) = ⊗Ni=1 RZ(θi,1) RY(θi,2) RZ(θi,3) and an entangled layer formed by CNOT
gates, as highlighted in the dashed box of Fig. 6. The quantum measurement operator O is set as
O = I25 ⊗ |0〉 〈0|.
The predicted label of xi is assigned as ‘0’ if h(θ, O, ρi) ≤ 0.5; otherwise, xi is classified as ‘1’.
In the NISQ setting, xi is predicted as ‘0’ if the sample mean follows ȳi ≤ 0.5; otherwise, xi is
classified as ‘1’.

0

|0〉

U(x)

Rot(θ1) Rot(θ2) Rot(θ3) Rot(θ4)

|0〉 Rot(θ5) Rot(θ6) Rot(θ7) Rot(θ8)

|0〉 Rot(θ9) Rot(θ10) Rot(θ11) Rot(θ12)

|0〉 Rot(θ13) Rot(θ14) Rot(θ15) Rot(θ16)

|0〉 Rot(θ17) Rot(θ18) Rot(θ19) Rot(θ20)

|0〉 Rot(θ21) Rot(θ22) Rot(θ23) Rot(θ24)

1

Figure 6: The implementation of the local nodeQi in the binary classification task. The amplitude
embedding method is exploited to convert the classical example xi into the quantum state |xi〉. The
hardware-efficient ansatz is adopted to implement the trainable unitary U(θ). The quantum observable is set
as O = I25 ⊗ |0〉 〈0|.

D ACCELERATE VQE BY QUDIO

Variational quantum eigen-solvers (VQEs) Cervera-Lierta et al. (2021); Kandala et al. (2017); Pe-
ruzzo et al. (2014); Tang et al. (2021) belong to another pivotal subclass of VQAs and have a broad
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（a） （b）
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H H

Figure 7: Simulation results of QUDIO towards the ground state energy estimation of hydrogen
molecule. (a) The speedup ratio with respect to different number of local nodes Q and local iterations W . (b)
The potential energy surface estimated by QUDIO. The black dotted line represents the exact ground state
energy. The inner plot compares the error between the ground truth and the estimated results of QUDIO with
the case of 0.3Å inter-atomic distance.

usage of tackling quantum chemistry problems such as ground state estimation. The paradigm of
VQEs is analogous to QNNs and other VQAs, which is completed by minimizing a problem-specific
loss via gradient descent methods. Define the input Hamiltonian as

H =

n∑
i=1

αiHi ∈ C2N×2N ,

where Hi refers to the i-th local Hamiltonian term and αi ∈ R is the corresponding coefficient.
Without loss of generality, suppose that Hi ∈ {X,Y,Z, I}⊗N is generated by Pauli operators. The
loss function of VQEs yields

L(θ, H) = Tr(HU(θ)ρ0U(θ)†), (27)

where ρ0 = (|0〉 〈0|)⊗N is a fixed N -qubit quantum state and U(θ) is the ansatz defined in Eq. (1).
Note that to evaluate L(θ, H), conventional VQEs use a single quantum chip to sequentially com-
pute the results {Tr(HiU(θ)ρ0U(θ)†)}ni=1 followed by a linear combination with {αi}. This im-
plies the computational hardness of VQEs when the number of terms n becomes large.

When applying QUDIO to accelerate VQEs, the central server splits the set of local Hamiltonians
and their coefficients into Q subgroups {Si}Qi=1 and assigns them into Q local nodes {Qi}Qi=1. For
instance, in the extreme case of Q = n, we have Si = {(αi, Hi)}. For the case of Q < n, n
local hamiltonians are divided into Q subgroups such that Si = ∪j∈Si

{(αj , Hj)}, where Si refers
to the i-th index set with ∪Qi=1Si = [n] and Si ∩ Sj = ∅ when i 6= j. Moreover, the training
procedure follows the same manner with accelerating QNNs. The updating rule of the local node
Qi for ∀i ∈ [Q] yields

θ
(t,w+1)
i = θ

(t,w)
i − ηgi(θ(t,w)

i , HSi
), (28)

where gi(θ
(t,w)
i , HSi

) refers to the estimated gradient of ∇Li(θ(t,w)
i , Hsi) =

Tr(HSiU(θ
(t,w)
i )ρ0U(θ

(t,w)
i )†) with HSi =

∑
j∈Si

αjHj .

In the subsequent subsections, we first exhibit the explicit form of the estimated gradient
gi(θ

(t,w)
i , HSi

) and then conduct extensive numerical simulations to validate performance of
QUDIO. Remarkably, to facilitate simulation, here we mainly focus on the scenario in which the
estimation error is caused by the finite number of measurement and the system is noiseless.

D.1 THE ACQUISITION OF THE ESTIMATED GRADIENTS

Before diving into deriving the explicit of estimated gradient, let us first recall the analytic gradient
ofLi(θ(t,w)

i , Hsi). Specifically, based on the parameter shift rule, the j-th component of the analytic
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gradients is

∇jLi(θ(t,w)
i , HSi

) =
ŷ
(t,w,+j)
i − ŷ(t,w,−j)

i

2
, (29)

where θ(t,w,±)i = θ
(t,w)
i ± π

2 ej and ŷ(t,w,±j)
i =

∑
j∈Si

αj Tr(HjU(θ
(t,w,±)
i )ρ0U(θ

(t,w,±)
i )†).

When a finite number of measurement is allowable, the trace terms of ŷ
(t,w,±j)
i in

Eq. (29) can only be acquired with estimation error. The detailed procedure to estimate
Tr(HjU(θ

(t,w,±)
i )ρ0U(θ

(t,w,±)
i )†) is as follows. To estimate this result by measuring the quan-

tum state ρ = U(θ
(t,w)
i )ρ0U(θ

(t,w)
i )† along the computational basis, an alignment operation should

be executed. Mathematically, the quantum state ρ needs to interact with the unitary operator Ri to
generate the quantum state ρ′ = RjρR

†
j , where Rj is composed of a sequence of rotational single-

qubit gates whose row vectors are the eigen-basis of Hj . Define hi as a vector that collects the
eigenvalues of Hj , Vk ∼ Cat(2N ,p(ρ′)) as a random variable following the categorical distribution
(also called generalized Bernoulli distribution), and p(ρ′) ∈ R2N refers as a discrete distribution
with pj(ρ′) = Tr(ρ′ |j〉 〈j|). Following the above notations, the term Tr(Hjρ

′) is estimated by
1
K

∑K
k=1 hi,Vk

, where hi,Vk
is the Vk-th eigenvalue of Hj . Based on Eq. (29), the estimated gradi-

ent satisfies

gi,j(θ
(t,w)
i , HSi

) =
ȳ
(t,w,+j)
i − ȳ(t,w,−j)

i

2
,∀j ∈ [dQ], (30)

where ȳ(t,w,±j)
i =

∑
i∈Si

αi
1
K

∑K
k=1 hi,V (±j)

k

and the definition of V (±j)
k ∼ Cat(2N ,p(ρ(±j)))

follows the same manner with Eq. (6).

Considering that the training procedure is exactly identical to the way of applying QUDIO to ac-
celerate QNNs, Theorem 1 can also describe the convergence behavior of QUDIO for accelerating
VQEs.

D.2 NUMERICAL SIMULATIONS

We perform numerical simulations to validate the effectiveness of QUDIO to accelerate conventional
VQEs. To do so, we apply QUDIO to estimate the ground state energy of hydrogen molecule
H2 with varied bond distance, whose Hamiltonian contains n = 15 local Hamiltonian terms and
requires N = 4 qubits with H =

∑15
i=1 αiHi ∈ C24×24 Kandala et al. (2017). The implementation

of all local nodes mainly follows the proposal Kandala et al. (2017) such that the input quantum
state is ρ0 = |1100〉 〈1100| and the trainable unitary refers to the hardware-efficient ansatz. The
hyper-parameters settings are as follows. The number of local nodes and local iterations is set as
Q ∈ {1, 2, 4, 8} and W ∈ [1, 2, 4, 8], respectively. We fix the number of measurements to be
K = 100. Each setting is repeated with 5 times to collect the statistical results. See Appendix E for
the omitted implementation details.

The simulation results are shown in Fig. 7. In particular, the left subplot illustrates the speedup ratio
of QUDIO in terms of the factors Q and W . For all settings of W , QUDIO gains runtime speedups
by involving more local nodes. For example, we obtain 1.469 times acceleration when utilizing 8
local nodes to optimize VQE with 1 local update. Although QUDIO provides certain speedups in
the task of estimating the ground state energy of hydrogen molecule, there is a clear gap towards
the linear speedup ratio. It is noteworthy that this gap arises from the simplicity of the manipulated
problem, where the communication overhead dominates the total computational runtime. We expect
that QUDIO has the ability to earn higher speedup ratio for large-scale tasks.

The potential energy surface estimated by QUDIO is presented in Fig. 7(b). The outer plot suggests
that for all bond distance settings ranging from 0.3Å to 2.1Å, QUDIO obtains the best performance
with W = 1, which is almost the same with the exact values. By contrast, there exists an apparent
separation between the exact values and the estimated results of QUDIO withW = 8. The inner plot
further evidences this phenomenon. Specifically, when the bond distance equals to 0.3Å, QUDIO
witnesses the largest approximation error 0.9Ha with W = 8 and Q = 2, while the error is reduced
to nearly zero with W = 1 regardless of the number of local nodes. All of the above observations
collaborate with Theorem 1, where decreasingW warrants a better performance. Refer to Appendix
E for deep comprehension.

20



Under review as a conference paper at ICLR 2022

E NUMERICAL SIMULATION DETAILS OF QUDIO TOWARDS THE GROUND
STATE ENERGY ESTIMATION OF HYDROGEN MOLECULE

This section provides elaboration about applying QUDIO to estimate the ground state energy of
hydrogen molecule tasks. First, the setup of local nodes and the hyper-parameters settings are shown
in Appendix E.1. Then, we provide complementary simulation results of QUDIO together with
thorough discussions in Appendix E.2.

E.1 IMPLEMENTATION OF LOCAL NODES AND HYPER-PARAMETERS SETTING

The implementation of QUDIO mainly follows the proposal Kandala et al. (2017). Namely, the
binary tree encoding method Bravyi & Kitaev (2002) is used to map the hydrogen molecular Hamil-
tonian into a 4-qubit system, where H ∈ C24×24 consists of n = 15 local Hamiltonian terms. In
QUDIO, the central server partitions these 15 local terms into Q subgroups {Si} and allocate them
to Q local nodes.

The realization of all local nodes follows the same routine. With this regard, here we only discuss
the realization of the node Qi. The input quantum state is modified to ρ0 = |1100〉 〈1100|. The
implementation of the ansatz U(θ) is shown in Fig. 8(a), which is formed by 4 trainable single-qubit
gates followed by 3 CNOT gates. The prepared state is continuously operated with the observable
HSi to proceed optimization.

(a) ansatz (b) Q=2 (c) Q=4

Figure 8: The implementation of local nodes in QUDIO and simulation results. (a) The circuit
implementation in the local node. (b)-(c) The estimated potential energy surface achieved by QUDIO
when Q = 2 and Q = 4.

E.2 MORE SIMULATION RESULTS

We conduct extensive numerical simulations to benchmark how the number of local nodesQ and the
number of local iterations W effect the performance of QUDIO. Besides, we explore the trainability
of QUDIO. Note that for all settings, we fix K = 100.

The role of Q. Fig. 8(b) and (c) show the potential energy surface estimated by QUDIO with
the different number of local nodes Q. Concisely, for both Q = 2 and Q = 4, increasing the
number of local stepsW incurs an enhanced estimation error. Moreover, when QUDIO synchronizes
trainable parameters at every local iteration (e.g., W = 1), the approximation error approaches to
be zero. These outcomes accord with the simulation results obtained in the main text and the claim
of Theorem 1.

The role ofW . Fig. 9 compares the potential energy surface estimated by QUDIO with the different
number of local iterations W while the factor of local nodes is set as Q = {2, 4, 8}. Specifically,
when W = 1, QUDIO achieves the zero approximation error regardless of the number of local
nodes Q. By contrast, when W = 8, the performance of QDUIO becomes inferior. In conjunction
with the results in Fig. 8, the factor W determines the performance of QUDIO in the NISQ setting,
as shown in Theorem 1.

The trainability of QUDIO. Fig. 10 indicates the estimated ground state energy of QUDIO with
respect to the number of global iterations. The three subplots hint that the number of local iterations
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Figure 9: Performance of QUDIO with different number of local updates W .
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Figure 10: The estimated energy achieved by QUDIO during the training process. The inter-atomic
distance is fixed to be 0.3Å.
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W determines the trainability of QUDIO. Concretely, a smaller number of local updates W assures
a faster convergence.
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