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Abstract: Learning-based control policies are widely used in various tasks in the1

field of robotics and control. However, formal (Lyapunov) stability guarantees2

for learning-based controllers with nonlinear dynamical systems are challenging3

to obtain. We propose a novel control approach, namely Control with Patterns4

(CWP), to address the stability issue over data sets corresponding to nonlinear dy-5

namical systems. For data sets of this kind, we introduce a new definition, namely6

exponential attraction on data sets, to describe nonlinear dynamical systems under7

consideration. The problem of exponential attraction on data sets is converted to8

a pattern classification one based on the data sets and parameterized Lyapunov9

functions. Furthermore, D-learning is proposed as a method for performing CWP10

without knowledge of the system dynamics. Finally, the effectiveness of CWP11

based on D-learning is demonstrated through simulations and real flight experi-12

ments. In these experiments, the position of the multicopter is stabilized using13

only real-time images as feedback, which can be considered as an Image-Based14

Visual Servoing (IBVS) problem.15

Keywords: Lyapunov Methods, Reinforcement Learning, Control with Patterns,16

D-learning, Visual Servoing17
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Figure 1: Closed-loop system by CWP.

In a data-rich age, a system is often under oper-19

ation when measurements of system inputs and20

outputs are accessible for collection through21

inexpensive and numerous information-sensing22

devices. Based on the input and output data, a23

direct way is often to model the dynamical sys-24

tem according to the first principles. Then, ex-25

isting methods are used to analyze the stability26

or design controllers for the identified system.27

However, there exist two difficulties. First, it is not easy to get the true form of the considered28

system, so the approximation may not be satisfied. Secondly, except for only a few experts, the29

approximated model may still be hard to handle with existing model-based methods.30

The development of deep learning and reinforcement learning [1],[2] has led to new advances31

in these difficulties [3],[4],[5]. The advancement of deep learning and reinforcement learning32

has significantly contributed to the development of neural network controllers for robotic systems33

[6],[7],[8]. For further discussion of related works, please refer to Appendix A.34

Despite the impressive performance of these controllers, many of these works lack critical stabil-35

ity guarantees that are essential for safety-critical applications. To overcome this lack, Lyapunov36

stability [20] in control theory provides a well-known framework for ensuring closed-loop stabil-37

ity of nonlinear dynamical systems. The core concept of this theory is the Lyapunov function, a38

scalar function whose value decreases along the closed-loop trajectory of the system. This function39
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demonstrates the process by which the system transitions from the system from any state within the40

Region of Attraction (ROA) to a stable equilibrium.41
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Figure 2: Overview of our method. The main contents consist of two parts. For the policy evaluation
step, the Lyapunov function and D function is updated by solving (13). After learning the D function,
we train the CWP controller by solving (14).

Previous studies [9],[10] that integrate deep learning and Lyapunov control methods have primarily42

furnished guarantees for state feedback control based on structured information (e.g., the state of43

a linear time-invariant system). Our work addresses the more challenging but practically relevant44

concern of unstructured information-based feedback control by identifying and overcoming the lim-45

itations of existing approaches to synthesize, and certify controllers for real-world applications. In46

order to demonstrate the effectiveness of our method on real robotic systems, we design a model-free47

flight controller that can (1) stabilize a hovering multicopter with only images as feedback, similar to48

visual servo controllers; (2) outperform reinforcement learning; and (3) provide Lyapunov stability49

guarantees.50

Our key contributions are:51

• We propose a Control with Patterns (CWP) approach for the stability issue of dynamical sys-52

tems, which transforms the controller design problem into a pattern classification problem. CWP53

represents a novel framework related to Lyapunov function learning, that can be used to develop54

model-free controllers for general dynamical systems.55

• We propose D-learning, which parallels to Q-learning [11] in Reinforcement Learning (RL) to ob-56

tain both Lyapunov function and its derivative. Unlike existing Lyapunov function learning methods57

relying on controlled models or their approximation with neural networks [12],[13], the system dy-58

namics are encoded into the so-called D function depending on actions. This allows one to perform59

CWP without any knowledge of the system dynamics.60

• The results of the simulation platform and real flight experiments demonstrate that our approach61

can stabilize a multicopter with only real-time images as feedback. Furthermore, the controller62

trained by D-learning exhibits superior performance to the controller trained by RL.63

2 Problem Formulation64

Consider the following autonomous system65

ẋ′ = f ′ (x′,u) = f ′ (x′, c (x))

x = s (m (x′))
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where x′ ∈ D′ ⊆ Rn′
is original state unavailable to measure, m (x′) ∈ M is a measurement in the66

form of unstructured data such as images, s (·) is a designed feature selection function to code the67

measurement to a vector x ∈ D ⊆ Rn, and u = c (x) is the control policy. We aim to focus on x68

rather than x′, namely considering the following autonomous system69

ẋ =
∂s

∂m

∂m

∂x′ f
′ (x′,u) ≜ f (x,u) (1)

where f : D → Rn,x (0) = x0 ∈ D. From observing the controlled system (1), we can obtain the70

data set71

Pu = {(ẋi,xi) , i = 1, · · · , N} . (2)

We prepare to solve the exponential attraction (See Definition B.2) problem using the Lyapunov72

method. The Lyapunov function for the data set (2) is supposed to have the following form73

V (x) = g (x)
T
θg (3)

where V (0n×1) = 0, V : D/ {0n×1} → R+ and θg ∈ Sg ⊆ Rl1 . The set Sg is used to guarantee74

that the function V (x) is a Lyapunov function. The derivative of V (x) yields75

V̇ (x) =

(
∂g (x)

∂x
ẋ

)T

θg. (4)

We hope that the derivative satisfies76

V̇ (x) ≤ −W (θh,x) (5)

where W (θh,x) is also a Lyapunov function, which can be further written as77

W (θh,x) = h (x)
T
θh

where θh ∈ Sh ⊆ Rl2 . Similarly, the set Sh is used to guarantee that the function W (x) is a78

Lyapunov function as well.79

For the data set (2), suppose that we have80 (
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi

)T

θg ≤ −h (xi)
T
θh (6)

where i = 1, · · · , N. Then, in the following, based on (6), we show that the equilibrium state81

x = 0n×1 is exponentially attractive on the data set P in Theorem 2.1. For proof, please see82

Appendix C.2.83

Theorem 2.1. Under Assumptions C.1-C.5, for the autonomous system (1), if there exist parameter84

vectors θg ∈ Sg and θh ∈ Sh such that (6) holds for the data set P , then the equilibrium state85

x = 0n×1 is exponentially attractive on the data set P.86

Consequently, according to Theorem 2.1, the exponential attraction problem is converted to make87

the inequality (6) hold. The inequality (6) is rewritten as88

yT
i θ ≥ 0, i = 1, · · · , N (7)

where89

yi = −
[ (

∂g(x)
∂x

∣∣∣
x=xi

ẋi

)T

h (xi)
T
]T

θ =

[
θg
θh

]
∈ S ≜ Sg × Sh.

Formally, according to Theorem 2.1, we construct the Control with Patterns (CWP) problem formu-90

lation represented as follows91

Design u ∈ U and find θ ∈ S to make (7) hold on the data set (2) (8)

This problem is a pattern classification [14] problem. Here, yi is the compound features which92

describe the stability pattern for the autonomous system (1). As a result, f (θ) = yTθ can be con-93

sidered as a linear discriminant function [14]. So far, we turned the problem of system stabilization94

(6) into a problem of pattern classification (8).95
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3 Control with Patterns based on D-learning96

After formulating the CWP problem (8), we are going to consider how to construct the model-free97

controller based on data sets. To this end, we will design CWP controller based on a proposed98

D-learning method.99

3.1 Control with Patterns100

In order to solve the CWP problem (8), we solve the following optimization101

min
η,θg∈Sg,a>0,c

wa− η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (c)

)T

θg −W (θh,xi) ≥ 0

Fg (θg) ≤ a

(9)

where i = 1, · · · , N, Fg(·) is a constraint on θg, W (θh,x) is a Lyapunov function mentioned in102

(5). In the following for simplicity, let W (θh,x) = η ∥x∥2. An iterative procedure for solving the103

inequality (9) may be used, including policy evaluation and policy improvement.104

• Initialization. Select any admissible (i.e., stabilizing) control c0, k = 0.105

• Policy Evaluation Step. Under ck, at state xi, the control is u = ck (xi) ∈ U , resulting in106

ẋi (ck) ∈ D. Determine the solution θg,k, a > 0, ηk by107

min
η,θg∈Sg,a>0

wa− η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (ck)

)T

θg − η ∥xi∥2 ≥ 0

Fg (θg) ≤ a

(10)

where i = 1, · · · , Nk.108

• Policy Improvement Step. Determine an improved policy using109

min
c,η

−η

s.t. −
(
∂g(x)
∂x

∣∣∣
x=xi

ẋi (c)

)T

θg,k − η ∥xi∥2 ≥ 0
(11)

where i = 1, · · · , Nk.110

By fixing xi for every step k, the iteration can be chosen to stop after sufficient steps if wak − ηk111

and −ηk are nearly not changed. This is because the iterative procedure is in fact used to solve the112

optimization (9) with the coordinate descent [15].113

3.2 Control with Patterns Based on D-Learning114

Unfortunately, in the Policy Improvement Step (10) , one requires knowledge of the system dynamics115

ẋi (c). To avoid knowing any of the system dynamics, similar to Q-Learning [29] in the field of RL,116

we can rewrite V̇ (x) in (4) as117

D (x,u) =

(
∂g (x)

∂x
f (x,u)

)T

θg

where (1) is utilized. We call it the D function as it is the derivative of the Lyapunove function118

and it is expected to be decreased. If one obtains D (x,u) by learning directly, then the use of the119

input coupling function is avoided. In the nonlinear case, one assumes that the value of D (x,u) is120

sufficiently smooth. Then, according to the Weierstrass higher order approximation theorem, there121

exists a dense basis set {φi (x,u)} such that122

D (x,u) =

∞∑
i=1

θiφi (x,u) =

L∑
i=1

θiφi (x,u) +

∞∑
i=L+1

θiφi (x,u) ≜ θT
dϕ (x,u) + εL (x,u)
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where basis vector θd = [θ1 θ2 · · · θL]T, ϕ (x,u) = [φ1 (x,u) φ2 (x,u) · · · φL (x,u)]T and εL123

converges uniformly to zero as the number of terms retained L→ ∞.124

It is expected to make D (x,u)− V̇ (x) as small as possible. Mathematically, one has to decrease b125

as small as possible with the following constraint126 ∣∣∣∣∣θT
dϕ (xi, ck (xi))− θT

g

∂g (x)

∂x

∣∣∣∣
x=xi

ẋi (ck (xi))

∣∣∣∣∣ ≤ b

where i = 1, · · · , Nk, k = 1, · · · ,M.127

On the other hand, (5) is rewritten as128

θT
dϕ (x,u) ≤ −η ∥x∥2 .

Furthermore, the inequality (7) is rewritten as129

y′T
i θ

′ ≥ 0, i = 1, · · · , N (12)

where130

y′
i = −

[
ϕ (xi,ui)

T
h (xi)

T ]T

θ′ =

[
θd
θh

]
∈ S ′ ≜ RL × Sh.

With the D function, iterative procedures for solving the inequality (9) should be rewritten, including131

policy evaluation and policy improvement.132

• Initialization. Select any admissible (i.e., stabilizing) control c0, k = 0.133

• Policy Evaluation Step (Based on D-learning). Under ck, at state xi, the control is u = ck (xi) ∈134

U , resulting in ẋi (ck) ∈ D. Determine the solution θg,k,θd,k, ak, bk > 0, ηk ∈ R by135

min
θd∈RL,θg∈Sg,a,b>0,η∈R

−η + w1a+ w2b

s.t. −θT
dϕ (xi, ck (xi))− η ∥xi∥2 ≥ 0∣∣∣∣θT
dϕ (xi, cj (xi))− θT

g
∂g(x)
∂x

∣∣∣
x=xi

ẋi (cj (xi))

∣∣∣∣ ≤ b

Fg (θg) ≤ a

(13)

where w1, w2 > 0 are weights, ẋi (cj (xi)) = f (xi, c(xi)), j = 0, · · · , k, i = 1, · · · , Nk.136

• Policy Improvement Step (Based on D-learning). Determine an improved policy using137

min
c,η∈R

−η

s.t. −θT
d,kϕ (xi, c (xi))− η ∥xi∥2 ≥ 0

(14)

where i = 1, · · · , Nk.138

4 Simulations and Experiments139

In this section, simulations and experiments demonstrate that the CWP-based controller can stabilize140

a hovering multicopter with only images as feedback, which can be considered as an IBVS [16]141

problem.142

4.1 Simulations Design143

4.1.1 Problem Formulation of Visual Servoing144

Since the camera is fixed to the body of the multicopter, based on Semi-Autonomous Autopilots145

(SAAs), the plant [17] can be modeled as146

ṙ = v

I = mc (r)
(15)
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where r,v ∈ R3 indicate the pose and velocity of the multicopter, and I = mc(r) represents the147

mapping from the position r of the multicopter to the image I ∈ I taken by the camera.148

For IBVS, visual servoing is a minimization problem between the image features s(r) extracted149

from the current pose r and the desired features s∗ from the desired pose r∗. Then, the controller is150

decided by151

e = s(I)− s(I∗)

v = c (e)
(16)

where s(·) ∈ S is a designed feature selection function, such as neural networks, to code the mea-152

surement to a vector in a latent space S; v = c(e) represents the controller based on CWP, and its153

input e is the error between the features of current image I ∈ I and the desired image I∗.154

To extract the features from the current image I , we use deep metric learning methods, suggested155

by the work [18], to train the feature selection function. More details about feature extraction can156

be obtained in Appendix D.157

4.1.2 D-learning Controller Design158

We train the D-learning controller based on the latent Shape S. The Lyapunov function is designed159

as a quadratic function as160

V (e) = eTPe = gT (e)θg (17)

where e = s(I) − s(I∗), g (e) =
[
eT ⊗ e

]T
(⊗ represents Kronecker product), and θg = vec (P)161

,which represents the vectorization of the matrix P.162

Using the Lyapunov function (17), the CWP controller u = c(e) is given in Algorithm 1, in which163

the D function D(e,u) and the CWP controller u = c(e) is both designed as a 4-layer perceptron,164

with ReLU activations after each hidden layer.165

Algorithm 1: Control with Patterns Based on D-learning with Constraints
Input: The data set generated by any admissible (i.e., stabilizing) control u = c0(e)
Output: CWP controller u = ck(e)

1 Initialization. Select any admissible (i.e., stabilizing) control policy parameters u = c0(e) ,
D-function parameters θd,0 , Lyapunov function parameters θg,0,and data set
P = {(ei,ui, ti) , i = 1, . . . , N} ;

2 while stopping criterion not satisfied η > 0 do
3 Calculate the parameter θg of the Lyapunov function by solving optimization problem

min
θg∈Sg,a>0

wa− η

s.t. −
(
g(ei+1)

Tθg − g(ei)
Tθg
)
− η (ti+1 − ti) ∥ei∥2 ≥ 0

Fg (θg) ≤ a

where i = 1, . . . , N − 1, and Fg (·) represents the constraints on the variable θg ;
4 Estimate the Lyapunov derivative function V̇ (ei) = V (ei+1)− V (ei)/(ti+1 − ti) ;
5 Update D-function by (13), where w1, w2 > 0 are weights, i = 1, · · · , N − 1;
6 Determine an improved policy u = ck(e) by solving optimization problem (14);
7 end

166

4.2 Simulations Results167

To verify the effectiveness of our control algorithm in the IBVS task, we first perform experimental168

validation in a simulation environment constructed using RflySim1.169

We sample the camera position in a dimension of 22m × 8m centered on the desired position. Then,170

the multicopter departs from a set start position and arrives at the desired position by the Position-171

Based Visual Servoing (PBVS) [16] method based on the position information. By sampling with172

1https://rflysim.com/
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Figure 3: The simulation experiments and results. (a) The control system of multicopter. Given the
desired image I∗ and the current image I acquired from the camera, the feature error s(I) ∈ S ⊆ R32

is solved by neural network ψ : I → R32. The encoding error e = s(I)− s(I∗) is used as an input
to the controller u = c(e). The output of the controller is velocity v ∈ R3. (b) Performance
evaluations of the servo error ∆r = r − r∗ on the simulation environment compared between
the controller trained by D-learning and DDPG. Red square shows that D-learning controller have
smaller error than DDPG controller. (c) PCA projection of the Lyapunov function (17) learned
for the system (15), overlaid with trajectories of the system controlled by the D-learning controller
and DDPG controller, which shows that D-learning controller have better stability guarantees than
DDPG controller.

equal spacing, 301 trajectories are captured. Based on the collected data tuple (r,u, I) ∈ R3×R3×173

I, we first train the network ψ : I → S to obtain s (I) ∈ R32. Then, we use Algorithm 1 to train174

the controller based on D-learning. Finally, we replace the PBVS controller with the D-learning175

controller, the experimental results are shown in Fig.3(a). The CWP controller can stabilize the176

multicopter using only images as feedback.177

As a comparison, we also train the RL controller. We consider the collected trajectory data as a178

replay buffer, and use the Deep Deterministic Policy Gradient (DDPG) [19] algorithm to train an179

actor as a controller.The comparison between the D-learning controller and the DDPG controller180

is shown in Fig.3(b), in which the DDPG controller, although it can also converge to the reference181

point, the error is larger than that of the D-learning controller and the Lyapunov function fails to182

achieve sustained convergence. This result manifests that the D-learning controller provides more183

reliable stability guarantees than the RL controller.184

Multicopter

Monocular Camera

Desired Image 𝐈∗

TPV FPV

(1)

(2)

(3)

(a) (b)

(1)

(2)

(3)

Desired Image 𝐈∗

Multicopter

Figure 4: The real flight experiments and results. (a) On the real flight experiments, we use DJI
Tello EDU, which features a front-facing camera. The desired image I∗ of IBVS is centered on a
drawing. (b) On the left is the Third-Person View (TPV) and on the right is the onboard camera’s
First-Person View (FPV). The multicopter positions trend (1) → (2) → (3), and the image from
FPV converges on the desired image I∗.
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4.3 Real Flight Experiment185

We also deploy our method on a multicopter which features a front-facing camera. We sample186

the camera position in a dimension of 1.6m × 0.8m centered on the desired position. The target187

image for image servoing is a painting. The details of real flight experiments are shown in Fig.4.188

By sampling with equal spacing, 97 trajectories are captured. Based on the collected data tuple189

(r,u, I) ∈ R3 × R3 × I, we first train the network ψ : I → S to obtain s (I) ∈ R32. Then, we190

use Algorithm 1 to train to get the controller based on D-learning. Finally, We replace the controller191

using poses as feedback with a controller using only images as feedback. Experimental results are192

shown in Fig.5(a). The initial displacement ∆r0 is (−0.60m, −0.02m,−0.29m). The D-learning193

controller can stabilize the multicopter using only images as feedback. 3D trajectory pairs based194

on the PBVS controller using pose as feedback and the D-learning controller using only images as195

feedback are shown in Fig.5(b).196
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Figure 5: The real flight result for visual servoing. (a) The position error ∆r = r− r∗, the encoding
error in the latent space e = s(I) − s(I∗), and the velocity of multicopter v show the effectiveness
of CWP based on D-learning. (b) 3D trajectory based on the PBVS controller using 3D position as
feedback and the D-learning controller using only 2D image as feedback.

5 Discussion197

Conclusion. We propose a sampling-based stability condition, exponential attraction, to meet the198

Lyapunov stability for learning-based controller. Based on the Theorem 2.1, we propose CWP,199

which transforms the controller design problem into a pattern classification problem. After that, we200

propose D-learning for performing CWP without knowledge of the system dynamics. Finally, on201

the simulation platform and real multicopter platform, we show that our approach can synthesize202

and verify neural-network controllers for a control system with only images as feedback, and CWP203

controller has better performance than the controller trained by reinforcement learning.204

Limitation. Despite the success in simulated and real flight tasks, our method has not been evaluated205

in complex practical scenarios. It is anticipated that our approach will prove applicable to more206

complex real-world robotic control tasks, such as locomotion and navigation. To achieve this goal,207

our future work needs to further improve data utilization and provide stability guarantees. Moreover,208

the feature function, Lyapunov function, and controller in the form of neural networks could be209

learned together in order to achieve superior performance.210
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A Related Work280

Two ways, namely reinforcement learning (RL) [1],[2] and Lyapunov function learning (or certifi-281

cate learning further, including barrier function and contraction metrics learning) [3],[4], have the282

potential to handle control problems of complicated systems with big data.283

A.1 Reinforcement Learning284

As a solution to optimal control problems forward-in-time, RL often focuses on optimization based285

on the Bellman equation [21]. In the traditional control field, the Bellman equation is often used as286

an analysis tool rather than a direct design tool in optimization control. However, the hand-design287

Lyapunov’s method, depending on pseudo-energy functions, is the most popular tool in both anal-288

ysis and design, aiming to decrease pseudo-energy functions over time so that the state converges289

to a fixed point. Technically, RL is required to define the rewards function and compute the value290

function (optimal objectives are defined as priors). In contrast, Lyapunov function learning requires291

training a parameterized Lyapunov function to match the data set (concrete Lyapunov functions are292

NOT defined as priors). Therefore, they are different in both application and design. RL with Lya-293

punov functions, where certificates are used to ensure safety or stability, has also been proposed294

recently [8]. A commonly used certificate is the sum of cost over a limited time horizon as a valid295

Lyapunov candidate [5]. Lyapunov function learning is more flexible in candidate selection com-296

pared to RL.297

RL based on the Bellman equation is prevalent in the field of computer science due to its model-free298

characteristics. More importantly, it can solve very complicated control problems. Compared with299

RL, Lyapunov’s methods’ achievements on complicated problems with big data are less. Because300

of the gap between developments by the Lyapunov’s method and the Bellman equation, it is hypoth-301

esized that there is an increasing focus on Lyapunov function learning from data. The expectation is302

to unveil its enormous potential, which is also the major motivation of this paper.303

A.2 Lyapunov Function Learning304

Lyapunov function learning, which aims to construct Lyapunov functions from data, has two main305

types of methods:306

• Construct a Control Lyapunov Functions (CLF) [22] in formal methods. Lyapunov-stable neural-307

network control [12], learning-based robust control Lyapunov barrier function [23], neural Lyapunov308

control [10], and learning-based robust neuro-control [24] employ neural networks to construct both309

Lyapunov functions and controller simultaneously. These formal methods, that synthesize and ver-310

ify controllers and Lyapunov function together, formulate the Lyapunov certification problem as311

proving that certain functions (the Lyapunov function itself, together with the negation of its time312

derivative) are always non-negative over a domain.313

• Learn a certificate in deep learning methods. Demonstration learning [25],[26], episodic Learning314

[27], and imitation learning [28] aim at only searching for a certificate from given control policy315

data. Despite the impressive performance of these controllers, many of these controllers require a316

sufficiently large amount of data to learn semiglobal stabilization, and the data collected from actual317

robotic systems is expensive.318

B Preliminary Remarks319

B.1 Exponentially Stability and Exponentially Attraction320

In this part, some definitions about stability are given related to the system (1) and the data set (2).321

Definition B.1 (Exponentially Stable). For the autonomous system (1), an equilibrium state x =322

0n×1 is exponentially stable if there exist α, λ ∈ R+ such that ∥ϕ (τ ; 0,x0)∥ ≤ α ∥x0∥ e−λτ in323
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some neighborhoods around the origin. Global exponential stability is independent of the initial324

state x0.325

Here, ϕ (τ ; 0,x0) represents the solution starting at x0, τ ≥ 0. It should be noted that we can only326

use the data set (2). So, a new definition related to stability, especially for the data set is proposed in327

the following.328

Definition B.2 (Exponentially Attractive on P). For the autonomous dynamics (1), an equilibrium329

state x = 0n×1 is exponentially attractive on the data set P with α, λ, ε, δ ∈ R+ if ∥ϕ (τ ; 0,x)∥ ≤330

α ∥x∥ e−λτ , ∀τ ∈ [0, δ] , ∀x ∈ B (xi, ε) for any xi ∈ P , where B (xi, ε) denotes a neighborhood331

around xi with radius ε.332

Definition B.2 is to describe the trajectory of the autonomous system (1) starting from the state. It333

is hard or impossible to get the exponential stability only based on the data set (2) except for more334

information on f (x) obtained further. So, the definition of exponential attraction especially for335

the data set can be served as an intermediate result for classical stability results. For some special336

systems, we can build the relationship between the exponential stability and exponential attraction.337

Theorem B.3. For the autonomous dynamics ẋ = Ax, suppose i) the equilibrium state x = 0n×1338

is exponential attractive on the data set P with ε, ii) as shown in Fig.6, ∃ l ∈ R+, Cl ⊆ ∪iB (xi, ε) ,339

xi ∈ P , where Cl =
{
x ∈ D|xTPx = l

}
for a positive-definite matrix 0 < P = PT ∈ Rn×n.340

Then the equilibrium state x = 0n×1 is globally exponential stability.341

l

( ),
i
x

i
x

Figure 6: Cl belongs to the collection of B (xi, ε).

Proof. For any x∗ ̸= 0n×1 ∈ Rn, since x∗TPx∗ ̸= 0 due to P being a positive-definite matrix, we342

have343

x̄∗ = θx∗ ∈ Cl

where θ =
√

l
x∗TPx∗ . Since ϕ (τ ; 0,x) = eAτx, for x̄∗ ∈ Cl, the solution is ϕ (τ ; 0, x̄∗) satisfying344

ϕ (τ ; 0, x̄∗) = θϕ (τ ; 0,x∗) .
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On the other hand, since the equilibrium state x = 0n×1 is exponential attractive on the data set P345

with ε, there exist α, λ, ε, δ ∈ R+ such that ∥ϕ (τ ; 0, x̄∗)∥ ≤ α ∥x̄∗∥ e−λτ , ∀τ ∈ [0, δ] . Therefore,346

∥ϕ (τ ; 0,x∗)∥ =
1

θ
∥ϕ (τ ; 0, x̄∗)∥

≤ α

θ
∥x̄∗∥ e−λτ

= α ∥x∗∥ e−λτ

∀τ ∈ [0, δ] , ∀x ∈ B (x∗, ε) for any xi ∈ P. Therefore, the equilibrium state x = 0n×1 is globally347

exponentially stable. □348

Remark 2. Theorem B.3 implies that, for autonomous linear dynamics, exponential attraction is349

equivalent to exponential stability if the data sets cover the boundary of an ellipsoid. For general350

dynamics, the least amount of data required for the equivalence is worth studying. Some research351

has applied statistical learning theory to provide probabilistic upper bounds on the generalization352

error, but these bounds tend to be overly cautious [3].353

C Details of Theoretical Analysis354

C.1 Assumptions of Theorem 2.1355

Assumption C.1. For x ∈ D, ∥x∥ ≤ d, where d ∈ R+.356

Assumption C.2. For x ∈ D, the function f satisfies ∥∂f (x) /∂x∥ ≤ lf , where lf ∈ R+.357

Assumption C.3. For x1,x2 ∈ D, there exists lg ∈ R+ such that358

∥∥∂g (x) /∂x |x=x1
− ∂g (x) /∂x |x=x2

∥∥ ≤ lg ∥x1 − x2∥ .

Assumption C.4. For x ∈ D, there exist k1, k2 ∈ R+ such that k1 ∥x∥2 ≤
∥∥∥g (x)

T
θg

∥∥∥ ≤ k2 ∥x∥2 .359

Assumption C.5. For x ∈ D, there exists a k3 ∈ R+ such that k3 ∥x∥2 < h (x)
T
θh.360

C.2 Proof of Theorem 2.1361

Proof. This proof consists of three steps.362

Step 1. ∥∆ẋi∥ ≤ lf ∥∆xi∥ . For any x ∈ B (xi, ε
′), it can be written as363

x = xi +∆xi

where xi +∆xi,xi ∈ D and ∆xi ∈ B (0, ε′) . Then ∥∆xi∥ ≤ ε′. In this case, we have364

ẋ = ẋi +∆ẋi = f (xi +∆xi) ⇒ ∆ẋi = f (xi +∆xi)− f (xi) .

Under Assumption C.2, we further have ∥∆ẋi∥ ≤ lf ∥∆xi∥ .365

Step 2. ∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ for ∀x ∈ B (xi, ε) , where ε = ε′ /2 . For any x ∈ B (xi, ε
′) ,366

according to the definition of V (x) in (3), we have367
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V̇ (x) =

(
∂g (x)

∂x
ẋ

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

(ẋi +∆ẋi)

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi+
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

(ẋi +∆ẋi)−
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi

)T

θg

=

(
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi +
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

ẋi −
∂g (x)

∂x

∣∣∣∣
x=xi

ẋi +
∂g (x)

∂x

∣∣∣∣
x=xi+∆xi

∆ẋi

)T

θg

≤ −h (xi)
T
θh + lg ∥∆xi∥ ∥ẋi∥ ∥θg∥+ lg ∥xi +∆xi∥ ∥∆ẋi∥ ∥θg∥ (From Assumption 3)

≤ −h (xi)
T
θh + lglf ∥θg∥ ∥xi∥ ε′ + lglf ∥θg∥ (∥xi∥+ ε′) ε′

≤ −h (xi)
T
θh + 2lglf ∥xi∥ ε′ + lglfε

′2.

From Assumption C.5, it is easy to obtain that −h (xi)
T
θh + k3 ∥xi∥2 < 0, then there exists a368

ε′ ∈ R+ such that V̇ (x) ≤ −k3 ∥x∥2 . Then, by Assumption C.4, we have369

V̇ (x) ≤ −k3 ∥x∥2 ≤ −2λV (x) ,∀x ∈ B (xi, ε
′)

where λ = k3 /2k2 . Consequently, for x ∈ B (xi, ε) , we have370

V (ϕ (τ ; 0,x)) ≤ ∥V (x)∥ e−2λτ

where τ ∈ [0, τ ′] and τ ′ is the first time that ϕ (τ ; 0,x) is escaping out of B (xi, ε
′). Note that371

B (xi, ε) ⊂ B (xi, ε
′) . As a result, by Assumption C.4, we have372

∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ

for x ∈ B (xi, ε) , where α =
√
k2 /k1 .373

Step 3. For any x ∈ B (xi, ε) , the escaping time τ ′ > δ = ε
lfd

. Under Assumptions C.1-C.2, since374

ϕ (τ ; 0,x)− x =

∫ τ

0

ẋ (s) ds

we have375

∥ϕ (τ ; 0,x)− x∥ ≤ τ ′ ∥f (x)∥ ≤ τ ′lfd.

The condition ∥ϕ (τ ; 0,x)− x∥ > ε = ε′ /2 implies that ϕ (τ ; 0,x) is escaping out of B (xi, ε
′) .376

As a result, we have τ ′lfd > ε and then τ ′ > δ.377

With Steps 1-3, there exist α =
√
k2 /k1 , 0 < λ < k3 /2k2 , ε > 0, and δ = ε /(lfd) such that378

∥ϕ (τ ; 0,x)∥ ≤ α ∥x∥ e−λτ , ∀τ ∈ [0, δ] , ∀x ∈ B (xi, ε). Moreover, α, λ, ε and δ are independent379

of xi, so the result is applicable to any xi ∈ P. Therefore, the equilibrium state x = 0n×1 is380

exponentially attractive on the data set P.381

D Details of Feature Extraction382

To extract the features from the current image I ,we use a ResNet-18 [30] which is trained by metric383

learning. The main purpose of metric learning is to learn a new metric to reduce the distances384

between samples of the same class and increase the distances between the samples of different class.385

In order to better represent the feature, we propose to create a multimodal latent space S, in which386

both pose and image representations are mapped. The relationship between latent space and im-387

ages/poses is illustrated in Fig.7(a). The pose r maps to an feature embedding sr, while the image I388

acquired at the pose r is noted sI.389
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Figure 7: (a) The proposed latent space for visual servoing. Both images and poses are projected in
the feature space S, where they can be compared. (b) PCA projection of trajectories sI − sI∗ in the
latent space, for 2D motions. Circles show the error for the pose embeddings sr − sr∗ for various
distances.

We argue that for the best VS behavior, the distance between two embeddings should be equal to390

the distance between their underlying poses: dS(sIj , sIj ) = ∥rj − rk∥2, where dS is the Euclidean391

distance:392

dS(sj , sk) = ∥sj − sk∥2. (18)

To learn the space S, we propose to use two distinct, parallel neural networks. The first is ϕ : R3 →393

S , that maps a pose r to an embedding sr = ϕ(r) . The second model ψ : I → S, maps an image394

I to its latent representation sI = ψ(I) .395

In order to train ϕ and ψ, we devise our loss function LS that is based on the distances between396

latent representations of camera tuple (rj , Ij) and camera tuple (rk, Ik) by397

LS = Lϕ,R3 + Lψ,R3 + Lϕ,ψ (19)

where Lϕ,R3 is the loss function to train ϕ : R3 → S, Lψ,R3 is the loss function to train ψ : I → S,398

and Lϕ,ψ is the loss function to shape the feature space S in the following399

Lϕ,R3 = MSELoss
(
∥rj − rk∥2 ,

∥∥srj − srk
∥∥
2

)
(20a)

Lψ,R3 = MSELoss
(
∥sIj − srk∥2, ∥srj − srk∥2

)
(20b)

Lϕ,ψ = MSELoss
(
∥sIj − sIk∥2, ∥srj − srk∥2

)
. (20c)

By comparing a representation with every specific tuples, we ensure that a single iteration forces the400

encoding towards a more stable location. As can be seen in Fig.7(b), the minimization of e in the401

latent space leads to nearly straight lines in the latent space. The error between pose embeddings402

also correlates well with the error from image representations.403
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