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Supplementary Materials for the Submission Titled

Iterative Graph Neural Network Enhancement using Explanations

In Appendix A we collect the necessary background about graph neural networks, the GNNEX-
PLAINER system, and frequent connected subgraph mining. Appendix B gives a high-level pictorial
representation of the EEGL framework. In Appendix C we describe the pattern-extraction module
which is a pre-requisite step for the top-k pattern filtering and the annotation phases. In Appendix D
we report the detailed experimental results obtained for M 0

2 (Fig. 1e in the submission) for all 10
folds. We have currently provided source code as a de-identified zip file with the supplementary
material. If the paper is accepted then the source code will be publicly shared on Github.

A BACKGROUND

For necessary background on GNN, GNNEXPLAINER, the Weisfeiler-Leman algorithm, and fre-
quent subgraph mining, the reader is referred to (15; 23; 27).

Graph Neural Networks (GNN) We give a simplified description of GNN, corresponding to the
type of networks used in GNNEXPLAINER (27). In this paper we consider node classification. A
GNN model � has as its inputs a graph G = (V,E) and a feature matrix X 2 Rd⇥|V |, where
Xv 2 Rd is a d-dimensional feature vector associated for every node v 2 V . It computes the
representation zv , the embedding of each node v 2 V , via L layers of neural message passing as
follows. Starting with initial node features h0

i = Xvi for every vi 2 V , repeat the following three
steps for each layer l 2 [L]:

(i) Compute neural messages ml
ij = MSG(hl�1

i , hl�1
j , rij) for every pair of nodes

(vi, vj) 2 V , where MSG is the function which computes the message passed from vj to
vi, and rij is a relation between vi and vj , e.g., the edge relation. Usually the message is
hl�1
j if (vi, vj) 2 E, else 0.

(ii) For each node vi aggregate the messages from its neighborhood Nvi as
M l

i = AGG(ml
ij |vj 2 Nvi), where AGG is the function used to aggregate all the

messages passed from the neighborhood. AGG should be invariant or equivariant to the
permutations of its inputs.

(iii) For every node vi update its features for using the aggregated messages from the neigh-
borhood and the previous features as hl

i = UPDATE(M l
i , h

l�1
i ), where UPDATE is the

function used to combine the two inputs.

After the computation through the L layers, the embedding for every node vi is the features com-
puted for the L’th layer i.e. zvi = hL

i . For a fully supervised node classification task, the training
loss is L =

P
v2Vtrain

�log(softmax(zv, yv)), where yv 2 {0, 1}c is one-hot vector indicating the
ground truth label for node v, c is number of labels, and Vtrain is the set of nodes in the training set.

GNNEXPLAINER (28) was the first general model-agnostic approach specifically designed for
post-hoc explanations on graph learning tasks. Given a graph G, and a query in the form of a node
in the graph, it identifies a compact subgraph structure and a small subset of node features that
show significant evidence in playing a role in the prediction of the query node. The GNNExplainer
procedure accomplishes this by formulating the explanation generation problem as an optimization
task that maximizes the mutual information between a GNN’s prediction and subgraph structures.

Frequent Subgraph Mining Frequent subgraph mining, a well-established subfield of data mining,
is concerned with the following problem: Given some finite (multi)set D of graphs and a frequency
threshold ⌧ 2 (0, 1], generate all connected graphs that are subgraphs of at least d⌧ |D|e graphs in
D. In the EEGL system we use GASTON (23), one of the most popular algorithms for the generation
of frequent connected subgraphs. Similarly to most other heuristics designed for frequent subgraph
mining, GASTON is based on the generate-and-test paradigm. One if its distinguishing features
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compared to other frequent subgraph mining algorithms is that it enumerates frequent patterns in
accordance with a structural hierarchy (path, trees, and cyclic graphs), where cyclic patterns are
generated in a DFS manner, “refining” frequent patterns by extending them with some new edge.
Regarding its pattern matching component, i.e., which decides whether a candidate pattern is fre-
quent or not, GASTON utilizes that frequent patterns are generated in increasing size. Instead of
testing subgraph isomorphism from scratch for the graphs in D, it stores the embeddings of the fre-
quent patterns already found and decides subgraph isomorphism for a candidate pattern by utilizing
the embeddings calculated for its antecedents.

B EXPLANATION ENHANCED GRAPH LEARNING

Pattern Extraction

GNN
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mining
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Figure 4: High-level depiction of the EEGL Process

Figure 4 shows a high level abstraction of the four major phases of the EEGL framework. We also
note that the pattern extraction module consists of two sub-modules 1. Frequent-subgraph mining
2. Top-k pattern filtering

C PATTERN EXTRACTION MODULE

For a class label c 2 C, function MAXIMAL FREQUENT PATTERN MINING (line 9 of Alg. 1)
computes a set of maximal frequent rooted patterns in Ec in two steps: (i) It generates a set of
frequent rooted subgraphs of Ec and (ii) selects the maximal rooted patterns from this set.

Regarding (i), the following frequent pattern mining problem is solved: Given Ec containing m
explanation graphs for some m � 0 integer and a frequency threshold ⌧ 2 (0, 1], enumerate the set
of rooted patterns (P, r) such that (P, r) is frequent, i.e., there is a set E 0

c ✓ Ec of rooted explanation
graphs such that |E 0

c| = d⌧me and for all (P 0, r0) 2 E 0
c there exists a rooted subgraph isomorphism

from (P, r) to (P 0, r0). Note that Ec may contain explanation graphs that are not associated with a
root. While such explanation graphs do not support any of the frequent rooted patterns, they have an
impact on the rooted patterns’ (relative) frequencies. The above problem is solved by GASTON (22)
as follows: For all rooted explanation graphs (P, v) 2 Ec, v is associated with a distinguished node
attribute label. Running GASTON on these modified explanation graphs with frequency threshold
⌧ , it returns a set of frequent subgraphs. From this set we keep only the connected components of
the frequent subgraphs that contain a node with the distinguished attribute label. This node will be
regarded as the root of the pattern.

Regarding (ii), we remove all rooted patterns returned in the previous step that have a rooted sub-
graph isomorphism to some other rooted pattern and return the remaining rooted pattern set.

D RESULTS

In this section we present the detailed results obtained for M 0
2 (Fig. 1e in the submission). For each

of the 10 folds, we present the
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• the weighted F1-score results in percentage (top left table) obtained with the label encoding,
random, and adversarial settings, as well as after the three iterations of EEGL (Round-0,
Round-1, Round-2),

• the frequencies of the node labels in the test data (top right table),
• the confusion matrices obtained with the label encoding, random, and adversarial settings,

as well as after the three iterations of EEGL (Round-0, Round-1, Round-2),
• the d = 10 maximal frequent subgraphs extracted by EEGL in the first (R0 ! R1) and the

second (R1 ! R2) iteration. (Class labels are indicated on the top. Note that we can have
more than one pattern for a node label.)
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FOLD 01

F1-Score

Label Encoded 98.91
Random 80.75
Adversarial 47.88
(Vanilla) Round-0 42.46
Round-1 71.02
Round-2 97.85

0 1 2 3 4 5 6 7 8

Frequency 25 6 6 8 14 5 2 6 22

15



Under review as a conference paper at ICLR 2024

FOLD 02

F1-Score

Label Encoded 100.00
Random 79.77
Adversarial 48.64
(Vanilla) Round-0 50.65
Round-1 100.00
Round-2 100.00

0 1 2 3 4 5 6 7 8

Frequency 32 3 2 9 17 7 3 5 16

16



Under review as a conference paper at ICLR 2024

FOLD 03

F1-Score

Label Encoded 98.94
Random 86.94
Adversarial 59.69
(Vanilla) Round-0 54.52
Round-1 67.41
Round-2 96.69

0 1 2 3 4 5 6 7 8

Frequency 33 3 3 8 15 3 4 9 16
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FOLD 04

F1-Score

Label Encoded 97.96
Random 70.58
Adversarial 55.16
(Vanilla) Round-0 55.31
Round-1 64.74
Round-2 95.22

0 1 2 3 4 5 6 7 8

Frequency 39 6 3 5 12 2 5 7 15
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FOLD 05

F1-Score

Label Encoded 98.92
Random 71.78
Adversarial 40.72
(Vanilla) Round-0 45.62
Round-1 91.67
Round-2 97.81

0 1 2 3 4 5 6 7 8

Frequency 24 9 5 3 16 4 4 12 17
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FOLD 06

F1-Score

Label Encoded 100.00
Random 84.41
Adversarial 52.73
(Vanilla) Round-0 47.25
Round-1 100.00
Round-2 98.91

0 1 2 3 4 5 6 7 8

Frequency 25 3 3 13 16 6 4 9 15
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FOLD 07

F1-Score

Label Encoded 97.84
Random 85.17
Adversarial 54.01
(Vanilla) Round-0 62.68
Round-1 87.44
Round-2 95.67

0 1 2 3 4 5 6 7 8

Frequency 31 6 5 7 12 3 4 7 19
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FOLD 08

F1-Score

Label Encoded 100.00
Random 76.41
Adversarial 44.82
(Vanilla) Round-0 49.10
Round-1 97.87
Round-2 98.95

0 1 2 3 4 5 6 7 8

Frequency 27 1 4 9 24 1 7 6 15
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FOLD 09

F1-Score

Label Encoded 98.94
Random 79.97
Adversarial 63.93
(Vanilla) Round-0 59.63
Round-1 98.98
Round-2 100.00

0 1 2 3 4 5 6 7 8

Frequency 29 1 3 10 14 6 4 9 18
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FOLD 10

F1-Score

Label Encoded 100.00
Random 78.57
Adversarial 57.24
(Vanilla) Round-0 55.21
Round-1 100.00
Round-2 100.00

0 1 2 3 4 5 6 7 8

Frequency 35 2 6 8 20 3 3 10 7
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