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Abstract

Large Vision-Language Models (LVLMs) are001
increasingly adept at generating contextually002
detailed and coherent responses from visual003
inputs. However, their application in multi-004
modal decision-making and open-ended gen-005
eration is hindered by a notable rate of hal-006
lucinations, where generated text inaccurately007
represents the visual contents. To address this008
issue, this paper introduces the Instruction Con-009
trastive Decoding (ICD) method, a novel ap-010
proach designed to reduce hallucinations dur-011
ing LVLM inference. Our method is inspired by012
our observation that what we call disturbance013
instructions significantly exacerbate hallucina-014
tions in multimodal fusion modules. ICD con-015
trasts distributions from standard and instruc-016
tion disturbance, thereby increasing alignment017
uncertainty and effectively subtracting halluci-018
nated concepts from the original distribution.019
Through comprehensive experiments on dis-020
criminative benchmarks (POPE and MME) and021
a generative benchmark (LLaVa-Bench), we022
demonstrate that ICD significantly mitigates023
both object-level and attribute-level hallucina-024
tions. Moreover, our method not only addresses025
hallucinations but also significantly enhances026
the general perception and recognition capabil-027
ities of LVLMs.028

1 Introduction029

Recent research in large vision-language models030

(LVLMs) (Liu et al., 2023c,b; Li et al., 2023a)031

has seen remarkable progress, benefiting from032

the integration of advanced large language mod-033

els (LLMs) (Achiam et al., 2023; Touvron et al.,034

2023a,b) known for their robust language genera-035

tion and zero-shot transfer capabilities. In order036

to leverage off-the-shell LLMs, it is crucial to fa-037

cilitate cross-modal alignment. LLaVa (Liu et al.,038

2023c) employs a linear projection approach, while039

BLIP-2 (Li et al., 2023a) and InstructBLIP (Liu040

et al., 2023b) narrow the modality gap using a Q-041

Former. Although LVLMs have shown promising042

outcomes, the issue of hallucination remains. This 043

phenomenon occurs when the generated textual 044

content, despite being fluent and coherent, does not 045

accurately reflect the factual visual content. 046

The object hallucination was initially explored 047

within the realm of image captioning (Rohrbach 048

et al., 2018). As LVLMs harness the sophisticated 049

understanding and generative prowess of LLMs, 050

the scope of hallucination extends beyond mere 051

object existence. It now encompasses more com- 052

plex elements such as attributes and relationships 053

within the generated content. Consequently, distin- 054

guishing discriminative hallucination and the non- 055

hallucinatory portion in the generation has become 056

pivotal in assessing the performance of LVLMs in 057

terms of their fidelity to factual visual information. 058

The intertwined nature of modalities presents sig- 059

nificant challenges in identifying the root causes of 060

hallucinations in LVLMs. Research efforts have be- 061

gun to uncover the primary contributors to LVLM 062

hallucinations, including statistical biases (You 063

et al., 2023) encountered during the training pro- 064

cess and excessive dependence on language pri- 065

ors (Yan et al., 2023; Zhibo et al., 2023). Addi- 066

tionally, multimodal misalignment has been iden- 067

tified as a key factor in the occurrence of halluci- 068

nations (Jiang et al., 2023; Liu et al., 2023a). To 069

address dataset bias, annotation enrichment tech- 070

niques (Gunjal et al., 2024; You et al., 2023; Zhai 071

et al., 2023) have been introduced. Furthermore, to 072

counteract the influence of language priors, post- 073

processing strategies (Yin et al., 2023; Zhou et al., 074

2023) have been developed, along with compre- 075

hensive initiatives aimed at improving multimodal 076

alignment through optimizing alignment with hu- 077

mans (Sun et al., 2023; Jiang et al., 2023). While 078

these interventions have proven to be effective in 079

reducing hallucinations, they demand substantial 080

human involvement and incur significant computa- 081

tional costs for additional training or the integration 082

of supplementary modules. 083
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In this work, we reveal that appending instruc-084

tions with role prefixes to form disturbance instruc-085

tions can significantly exacerbate hallucinations.086

We hypothesize that identifying and subsequently087

detaching hallucination concepts from the original088

distribution could effectively reduce such hallucina-089

tions. Motivated by this insight, we introduce the090

Instruction Contrastive Decoding (ICD) method.091

This approach is novel in that it is training-free092

and agnostic to the underlying LVLMs. ICD dif-093

ferentiates between two distributions: one from094

the original instruction and another from the distur-095

bance instruction within the multimodal alignment096

module. Utilizing their difference, we aim at sup-097

pressing hallucinations. Through comprehensive098

experiments on discrimination hallucination bench-099

marks such as POPE (Li et al., 2023c) and MME100

hallucination sets (Fu et al., 2023), as well as the101

generation hallucination benchmark LLaVa-Bench102

(Liu et al., 2023c), our method incorporating state-103

of-the-art LVLMs like miniGPT4 and InstructBLIP,104

demonstrates significant efficacy in mitigating hal-105

lucinations at both object and attribute levels. Fur-106

thermore, our approach consistently enhances per-107

formance across general perception and recognition108

tasks. Our main contributions are as follows:109

• We perform an in-depth analysis of how dis-110

turbance in instructions exacerbates hallucina-111

tions. This phenomenon is elucidated through112

statistical bias and language priors, offering a113

nuanced understanding of underlying causes.114

• Drawing on these insights above, we intro-115

duce the ICD method. This novel strategy,116

which emphasizes initial highlight followed117

by de-emphasize of hallucination, effectively118

mitigates hallucinations during inference, by119

adjusting the distributions away from halluci-120

nations that we elicit.121

• Through extensive experimentation and anal-122

ysis, we validate the effectiveness of our pro-123

posed ICD method across both discrimina-124

tion and generation hallucination benchmarks,125

showcasing its robustness and versatility in126

enhancing LVLMs performance.127

2 Related Work128

Large Vision-Language Models: The field of129

vision-language pre-training (VLP) (Radford et al.,130

2021; Li et al., 2022; Bao et al., 2022; Wang et al.,131

2023a) and fine-tuning (Wang et al., 2023b; Wiehe 132

et al., 2022; Alayrac et al., 2022) have seen rapid 133

advancements, propelled by the evolution of large 134

language models (LLMs). As a result, large vision- 135

language models (LVLMs) have emerged, leverag- 136

ing the strengths of frozen LLMs while emphasiz- 137

ing the facilitating of multimodal alignment mod- 138

ules. Notably, models such as LLaVa and Qwen- 139

VL (Bai et al., 2023) adopt simple linear projec- 140

tions to achieve alignment, contrasting with BLIP-2 141

and miniGPT4 (Zhu et al., 2023), which introduce a 142

Q-Former. In further work, InstructBLIP integrates 143

task-aware instructions, enriching the understand- 144

ing of task-aware visual semantics. Our research 145

builds upon these advancements in LVLMs, focus- 146

ing on the impact of instruction disturbances. We 147

explore how such disturbances increase the uncer- 148

tainty in multimodal alignment, significantly con- 149

tributing to the exacerbation of hallucinations. 150

Hallucination in VLMs: Hallucination man- 151

ifests as detailed, fluent, and coherent responses 152

that inaccurately reflect the visual context, includ- 153

ing erroneous objects, attributes, and relations (Liu 154

et al., 2024). Various strategies have been pro- 155

posed to curb hallucinations. Annotation enrich- 156

ment techniques like M-HalDetect (Gunjal et al., 157

2024) and GRIT (You et al., 2023), as well as ap- 158

proaches such as HACL (Jiang et al., 2023) and 159

LLaVA-RLHL (Liu et al., 2023a), seek to improve 160

alignment with human instructions through addi- 161

tional annotations. Similarly, Woodpecker (Yin 162

et al., 2023) introduces a post-processing aimed 163

at mitigating biases from language priors. While 164

these methods have shown promise in reducing 165

hallucinations, they often require extensive data 166

annotation, fine-tuning, and supplementary mod- 167

ules, complicating their implementation. In con- 168

trast, our method directly addresses hallucinations 169

during inference. Additionally, (Leng et al., 2023) 170

introduced a visual contrastive decoding (VCD) 171

approach that contrasts with the distributions of 172

distorted visual inputs, a concept that bears resem- 173

blance to our method. However, our ICD method 174

suppresses hallucinations through disturbance in- 175

structions affecting multimodal alignment. 176

3 Method 177

3.1 Inference in LVLMs 178

Large Vision-Language Models (LVLMs) are com- 179

prised of three pivotal components: a visual en- 180

coder, a fusion module, and a language model. For 181

2



Figure 1: An illustration on inference framework and contrastive decoding process of ICD method. At the core
(middle orange box), the framework integrates a frozen image encoder, LLM, and query vectors (gray box) within
the Q-Former, focusing solely on adjusting the standard and disturbance instructions. The latter, exemplified by
adding role prefixes like ’You are a confused object detector,’ aims to increase multimodal alignment uncertainty.
This results in two distinct distributions: one from the standard instruction and another influenced by the disturbance.
The contrastive decoding method (right orange box) highlights how disturbance instructions amplify hallucinated
concepts (’person and fork’), which are then corrected by subtracting probabilities derived from the standard
instruction, ensuring accurate recognition of the correct concept ’dog’.

processing an input image, a pre-trained visual en-182

coder, such as ViT-L/14 from CLIP (Radford et al.,183

2021), is employed to extract visual features, de-184

noted as XV. The fusion module facilitates multi-185

modal alignment. For instance, InstructBLIP intro-186

duces an instruction-aware querying transformer.187

Q-Former, a lightweight transformer architecture,188

utilizes K learnable query vectors QK to refine189

the extraction of visual features, thereby enhanc-190

ing multimodal alignment. It allows the instruction191

Xins to interact with the query vectors, fostering192

the extraction of task-relevant image features:193

ZV = Qθ(XV , QK , Xins), (1)194

where, ZV = Qθ(·) represents the fused visual195

features, conditioned on the instructions. Given196

its sophistication and effectiveness in multimodal197

alignment, we advocate for the adoption of the198

instruction-aware Q-Former architecture.199

For text queries Xq, a large language model,200

parameterized by ϕ, such as Vicuna (Chiang et al.,201

2023), processes the query, leveraging the derived202

visual features to formulate responses:203

YR = LLMϕ(HV , Xins), (2)204

where HV = g(ZV ) is the transformation ensuring205

the same dimensionality as the word embedding of206

the language model. By default, the instruction is207

the same as text query for both Q-Former and LLM208

as Xins = Xq.209

Mathematically, in the decoding phase, the re- 210

sponse R can be defined as a sequence of length L, 211

sampled from a probability distribution: 212

p(YR|XV , Xq) =

L∏
t=1

pϕ(yt|HV , Xq, y<t), (3) 213

where y<t represents the sequence of generated 214

tokens up to the time steps (t − 1). In the decod- 215

ing phase of LVLMs, hallucinations often emerge 216

when probable tokens lack grounding in the visual 217

context. (Jiang et al., 2023; Liu et al., 2023a) in- 218

dicates that multimodal misalignment is a critical 219

factor contributing to the generation of hallucina- 220

tions. Thus, we conduct an in-depth analysis of 221

the fusion module, specifically focusing on mul- 222

timodal alignment. Our work first demonstrates 223

that instructions within the multimodal alignment 224

module can exacerbate hallucinations. To address 225

this, we introduce instruction disturbance and pro- 226

pose an instruction contrastive decoding method, 227

employing a highlight and then detach strategy. 228

3.2 Instruction Can Amplify Hallucination 229

Prior studies have attributed the occurrence of hal- 230

lucinations in LVLMs to statistical biases within 231

multimodal training datasets (You et al., 2023) and 232

an over-reliance on language priors (Yan et al., 233

2023; Zhibo et al., 2023). Extending this line of ob- 234

servation, we introduce the concept of instruction 235

disturbance in this section. A prefix appended to 236

instructions affects multimodal alignment, thereby 237
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exacerbating statistical biases and the over-reliance238

on language priors.239

Introduction of instruction disturbance: We240

introduce the concept of instruction disturbance,241

which entails appending a role prefix to the orig-242

inal instructions delineated in Section 3.1. This243

disturbance aims to modulate the multimodal align-244

ment uncertainty within LVLMs. As illustrated245

in Figure 1, the base instruction “Describe this246

photo in detail” is combined with learned query247

vectors in the Q-Former. To implement instruction248

disturbance, we append either positive or negative249

prefixes to the base instruction. Positive prefixes250

aim to increase the LVLM’s confidence in multi-251

modal alignment. Conversely, negative prefixes are252

designed to reduce the model’s alignment confi-253

dence.254

Xins =

{
[Xd, Xq] if disturbance
Xq otherwise

, (4)255

where Xd denotes the role prefix, and Xq repre-256

sents the original instruction. Through this method,257

we strategically influence the LVLM’s confidence258

level in multimodal alignment by either encourag-259

ing a more definitive understanding or introducing260

ambiguity.261

Instruction disturbance amplifies statistical262

biases and language priors: Figure 1 presents263

the response from InstructBLIP, revealing that264

the LVLMs generate hallucinated tokens such as265

“fork and person.” To further explore this phe-266

nomenon, we undertake two specific analyses: the267

frequent hallucinated object occurrence and the268

co-occurrence of object hallucinations. Our study269

utilizes MSCOCO validation set (Lin et al., 2014),270

a common dataset for LVLM pre-training, to per-271

form hallucination detection across three distinct272

scenarios: the baseline LVLM, LVLM with a posi-273

tive disturbance, and LVLM with a negative distur-274

bance. Our analysis focuses on calculating the hal-275

lucination ratio, specifically identifying instances276

where the hallucinated objects are absent from the277

provided images.278

Figure 2 demonstrates that introducing instruc-279

tion disturbance significantly amplifies the occur-280

rence of hallucinations. Under the influence of281

negative disturbance, LVLMs are more likely to282

hallucinate objects that frequently co-occur, such as283

“person and dining table,” and show an increased284

tendency to hallucinate objects that typically co-285

occur with those actually present in the image, for286

example, “fork and person.” This suggests that in-287

Figure 2: The left figure shows the top frequent objects
hallucination ratio and the right depicts the ratio of
co-occurring object hallucinations with dining table.

struction disturbances, whether positive or negative, 288

intensify the hallucination effect, exacerbating the 289

issues of imbalanced object distribution and corre- 290

lation patterns inherent in the training dataset. 291

3.3 Instruction Contrastive Decoding 292

3.3.1 Contrastive Decoding with Disturbance 293

Our analysis reveals that instruction disturbances 294

exacerbate hallucinations by increasing multimodal 295

alignment uncertainty. This uncertainty predis- 296

poses LVLMs to more readily adopt biased co- 297

occurrence concepts from pretraining datasets, as 298

reflected in the learned query vectors. As these 299

hallucinations accumulate, LVLMs increasingly 300

over-rely on language priors. Notably, disturbances 301

involving negative prefixes significantly intensify 302

these hallucinations. We hypothesize that by ini- 303

tially emphasizing the probabilities of hallucinated 304

concepts and subsequently detaching these from 305

the original probability distribution, hallucinations 306

may be reduced. Inspired by this insight, we intro- 307

duce an Instruction Contrastive Decoding method 308

(ICD) aimed at mitigating hallucinations during 309

LVLM inference. 310

Motivated by the language contrastive decoding 311

(Sennrich et al., 2024) in reducing hallucinations 312

within machine translation frameworks—where it 313

prevents potentially accurate translations that, how- 314

ever, deviate from the desired target language—we 315

adopt a similar approach to our model. Given the 316

extraction of visual features XV from the visual 317

encoder and a textual query Xq, our model calcu- 318

lates two distinct token distributions: one condi- 319

tioned on the original instructions, and the other 320

on instructions with disturbance Xd as Equation 4. 321

Contrary to the conventional approach of select- 322

ing the token that maximizes the probability, our 323

strategy involves choosing the token that concur- 324

rently maximizes pϕ(yt|XV , Xins) and minimizes 325

pϕ(yt|XV , X
′
ins), the latter representing the proba- 326

bility of tokens that are more likely to be halluci- 327
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nations. To adjust the balance between these prob-328

abilities, we introduce a hyperparameter λ, which329

regulates the intensity of the contrastive penalty.330

Formally, this process is described as follows:331

picd(YR|XV , Xq) =

L∏
t=1

(
pϕ(yt|XV , Xins, y<t)332

− λpϕ(yt|XV , X ′
ins, y<t)

)
, (5)333

where larger λ indicates a more decisive penalty on334

the decision made by LVLMs with disturbances.335

3.3.2 Adaptive Plausibility Constrains336

The ICD objective is designed to favor tokens337

preferred by the LVLM output while imposing338

penalties on tokens influenced by instruction dis-339

turbances. However, this approach might inadver-340

tently penalize accurate predictions—those tokens341

that, under both standard and disturbance instruc-342

tion conditions, are confidently identified and are343

well-grounded in the visual context (such as ob-344

jects, verbs, attributes, and relations) due to their345

simplicity and high likelihood. Conversely, it might346

erroneously reward tokens representing implausi-347

ble concepts. To address this issue, we draw inspira-348

tion from adaptive plausibility constraints utilized349

in open-ended text generation (Li et al., 2023b).350

Consequently, we refine the ICD objective to incor-351

porate an adaptive plausibility constraint:352

yt ∼ softmax
(
logitϕ(yt|XV , Xins, y<t)353

− λlogitϕ(yt|XV , X ′
ins, y<t)

)
354

subject to yt ∈ Vhead(y<t) (6)355

356

Vhead(y<t) =

{
yt ∈ V : pϕ(yt|XV , Xins, y<t)357

≥ α max
token

pϕ(token|XV , Xins, y<t)

}
,

(7)

358

here, α acts as a pivotal hyperparameter that modu-359

lates the truncation of the probability distribution,360

effectively tailoring the LVLM’s response to its361

confidence level. This is particularly crucial for362

mitigating the influence of implausible tokens, es-363

pecially when LVLMs exhibit high confidence and364

are accurately anchored in visual semantics.365

ICD serves as a self-corrective mechanism,366

which successfully identifies hallucinations in367

LVLMs and then de-emphasizes them through con-368

trastive decoding. Moreover, the integration of369

adaptive plausibility constraints further hones the 370

contrastive distribution by considering the confi- 371

dence levels of LVLMs, thereby narrowing the 372

decision-making process to a more reliable can- 373

didate pool. This method not only significantly 374

reduces hallucinations within LVLMs but also cur- 375

tails the generation of implausible tokens, showcas- 376

ing the efficacy of our proposed method in enhanc- 377

ing model reliability and output validity. 378

4 Experiment 379

In this section, we explore the evaluation of our 380

ICD method for mitigating hallucinations. Our ex- 381

amination is twofold: firstly, through the lens of 382

hallucination discrimination, and secondly, via the 383

generation of non-hallucinatory content. More pre- 384

cisely, we assess the efficacy of ICD in alleviating 385

object-level hallucination symptoms utilizing the 386

POPE benchmark. Furthermore, we extend our 387

analysis to include both object and attribute-level 388

symptoms through the MME benchmark. Finally, 389

the performance of our method in generating non- 390

hallucinatory content is evaluated using the LLaVa- 391

Bench dataset. 392

4.1 Experimental Settings 393

4.1.1 Datasets and Evaluation Metrics 394

POPE: The Polling-based Object Probing Evalu- 395

ation (POPE) stands as a popular benchmark in 396

discerning hallucination at the object level. POPE 397

employs a binary question-answering format, in- 398

quiring LVLMs to determine the presence or ab- 399

sence of a specified object within a given image. 400

This benchmark is structured around three dis- 401

tinct subsets—MSCOCO, A-OKVQA (Schwenk 402

et al., 2022), and GQA (Hudson and Manning, 403

2019)—each comprising 500 images alongside six 404

questions per image. POPE introduces three set- 405

tings within each subset: random (selecting absent 406

objects at random), popular (choosing the most fre- 407

quently occurring objects in the dataset as absent), 408

and adversarial (selecting absent objects that of- 409

ten co-occur with ground-truth objects). We adopt 410

Accuracy, Precision, Recall, and F1 score as the 411

evaluation metrics. 412

MME: MME benchmark serves as a comprehen- 413

sive tool for assessing the capabilities of LVLMs 414

across both perception and cognition, spanning a to- 415

tal of 14 tasks. Among these, tasks focusing on exis- 416

tence, count, position, and color are specifically de- 417

signed as hallucination discrimination benchmarks. 418
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Dataset Setting Method miniGPT4 Backbone InstructBLIP Backbone

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

MSCOCO

Random
default 67.04 69.06 66.54 67.77 80.71 81.67 79.19 80.41
+vcd 69.60 72.76 66.73 69.62 84.53 88.55 79.32 83.68
+icd 73.51 74.36 76.87 75.60 86.43 92.01 80.73 85.61

Popular
default 60.89 61.34 65.74 63.46 78.22 77.87 78.85 78.36
+vcd 62.91 63.69 64.81 64.24 81.47 82.89 79.32 81.07
+icd 67.61 66.69 76.87 71.42 82.93 84.45 80.73 82.55

Adversarial
default 59.42 59.64 64.45 61.95 75.84 74.30 79.03 76.59
+vcd 62.07 62.15 66.76 64.37 79.56 79.67 79.39 79.52
+icd 64.36 63.68 75.11 68.93 80.87 80.95 80.73 80.84

A-OKVQA

Random
default 64.79 65.26 65.73 65.50 80.91 77.97 86.16 81.86
+vcd 66.68 66.47 68.21 67.33 84.11 82.21 87.05 84.56
+icd 69.04 68.50 77.04 72.52 85.82 83.80 88.94 86.29

Popular
default 60.75 60.67 68.84 64.50 76.19 72.16 85.28 78.17
+vcd 62.22 62.23 68.55 65.24 79.78 76.00 87.05 81.15
+icd 62.81 61.62 75.78 67.97 81.64 78.50 88.77 83.32

Adversarial
default 58.88 58.56 68.50 63.14 70.71 65.91 85.83 75.56
+vcd 60.67 60.56 68.47 64.28 74.33 69.46 86.87 77.19
+icd 60.71 59.27 77.68 67.24 74.42 70.24 88.93 78.48

GQA

Random
default 65.13 65.38 66.77 66.07 79.75 77.14 84.29 80.56
+vcd 67.08 68.30 69.04 68.67 83.69 81.84 86.61 84.16
+icd 72.24 75.08 79.54 77.24 85.10 84.21 86.40 85.29

Popular
default 57.19 58.55 60.81 59.66 73.87 60.63 84.69 76.42
+vcd 62.14 61.14 72.26 66.24 78.57 74.62 86.61 80.17
+icd 62.84 61.09 80.54 69.48 78.80 75.15 87.53 80.87

Adversarial
default 56.75 56.26 67.99 61.57 70.56 66.12 84.33 74.12
+vcd 57.78 57.70 69.82 63.18 75.08 70.59 85.99 77.53
+icd 59.64 58.21 76.81 66.23 75.17 70.59 86.27 77.65

Table 1: Results on discrimination hallucination benchmark POPE. The default under methods denotes the
standard decoding, whereas VCD represents visual contrastive decoding (Leng et al., 2023), and ICD is our
instruction contrastive decoding. The best performances within each setting are bolded. Comparable (±1.0) but not
the best performances between VCD and ICD methods are underlined.

These tasks aim to scrutinize both object-level and419

attribute-level hallucination symptoms. MME sim-420

ilarly utilizes a question-answering format to fa-421

cilitate this evaluation. Consequently, task scores422

are reported as the evaluation metric for measuring423

performance.424

LLaVa-Bench: The LLaVa-Bench is designed425

to quantify the extent of hallucinated content pro-426

duced during the open-ended generation tasks per-427

formed by LVLMs. This benchmark encompasses428

a varied collection of 24 images, accompanied by429

60 questions that cover a wide range of scenarios,430

including indoor and outdoor scenes, memes, paint-431

ings, and sketches. Unlike discriminative bench-432

marks, where accuracy serves as the evaluation met-433

ric, generative benchmarks, such as this, currently434

do not have well-established metrics specifically435

devised for the detailed analysis of hallucinations436

(Liu et al., 2024). Therefore, we utilize case studies437

on this dataset as a means to qualitatively evalu-438

ate the effectiveness of our ICD method (see in 439

appendix B). 440

4.1.2 LVLM Baselines 441

We employ two state-of-the-art LVLMs as back- 442

bone frameworks. Specifically, we implement our 443

ICD on InstructBLIP and miniGPT4, which utilize 444

the Vicuna 7B as their underlying LLM and the so- 445

phisticated Q-Former architecture for fusion mod- 446

ules, respectively. Additionally, we explore the use 447

of LLaVa-1.5 (Liu et al., 2023b), which incorpo- 448

rates linear projection for its fusion module along- 449

side InstructBLIP, to identify optimal practices in 450

applying the ICD method (see in appendix D). Fi- 451

nally, we compare our method against the visual 452

contrastive decoding approach (Leng et al., 2023), 453

designed to mitigate hallucinations arising from 454

visual uncertainties. We posit that our method, be- 455

ing LVLM-agnostic, can be conveniently integrated 456

into various off-the-shelf LVLMs. 457
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Figure 3: Performance on MME full benchmark. The left figure in purple is the results based on miniGPT4,
while the right figure in blue is the results based on InstructBLIP.

4.2 Experimental Results458

4.2.1 Results on POPE459

The experimental results on POPE, summarized in460

Table 1, demonstrate the efficacy of our instruction461

contrastive decoding method across three distinct462

subsets within the POPE benchmark—MSCOCO,463

A-OKVQA, and GQA settings. Notably, our ICD464

method consistently outperforms the foundational465

LVLMs, miniGPT4, and InstructBLIP. Specifi-466

cally, the ICD method exceeds the performance467

of miniGPT4 and InstructBLIP, showing a substan-468

tial improvement of 10.5% and 6.0%, respectively,469

across all metrics (7.0% in accuracy, 8.5% in pre-470

cision, 8.7% in recall, and 7.9% in F1 score for471

both models). This significant enhancement as per472

four metrics on POPE underscores the effectiveness473

of our highlight and then detach strategy.474

Furthermore, the progressive movement from475

random to popular and then to adversarial settings476

reveals a marked decline in performance, highlight-477

ing the growing impact of statistical biases and478

language prior to contributing to hallucinations in479

LVLMs. Despite these challenges, our ICD method480

consistently demonstrates improvements across all481

settings, affirming our hypothesis that disturbance482

instruction exacerbates hallucinations by influenc-483

ing multimodal alignment, thereby deepening er-484

rors rooted in statistical bias and over-reliance on485

language priors, which can be subtracted by con-486

trastive decoding. Our method effectively mitigates487

these issues and object-level hallucinations.488

In comparison to the VCD approach, our ICD489

method achieves an overall improvement of 3.9%.490

While the VCD method aims to ensure that the491

output distributions are closely aligned with visual492

inputs and compares distributions derived from dis-493

torted images, it requires additional processing to494

LVLM Method Object-Level Attribute-Level Total Scores

Existence Count Position Color

miniGPT4
default 46.67 26.67 38.33 38.33 150.00
+vcd 48.33 31.67 40.00 45.00 165.00
+icd 66.67 61.67 40.00 61.67 230.01

InstructBLIP
default 135.00 53.33 56.67 93.33 338.33
+vcd 123.33 81.67 55.00 106.67 366.67
+icd 136.67 90.00 76.67 123.33 426.67

Table 2: Results on the MME hallucination Subset.
The best performances within each setting are bolded.

distort images via diffusion models (Ho and Sali- 495

mans, 2022) and is sensitive to the choice of hyper- 496

parameters in its experimental setup (Leng et al., 497

2023). Conversely, our ICD method offers a more 498

straightforward and efficient solution, yielding su- 499

perior results in an end-to-end manner. 500

4.2.2 Results on MME 501

Results on MME Hallucination Subset: The anal- 502

ysis of the POPE benchmark underscores the effi- 503

cacy of our ICD method in mitigating object-level 504

hallucination symptoms. Given that hallucinations 505

can also manifest at the attribute level (Liu et al., 506

2024), it becomes imperative to extend our investi- 507

gation to these dimensions. To this end, we lever- 508

age the MME hallucination subset, which encom- 509

passes both object-level (existence and count tasks) 510

and attribute-level (position and color tasks) bench- 511

marks, to conduct a comprehensive evaluation of 512

the ICD method. 513

As detailed in Table 2, our ICD method signifi- 514

cantly surpasses the baseline LVLMs and the VCD 515

method across all four tasks, demonstrating its su- 516

perior capability in suppressing both object and 517

attribute-level hallucinations with a large margin 518

(+84.2 and +62.5 respectively in total scores). Inter- 519

estingly, while the VCD method experiences a de- 520

cline in performance on the position hallucination 521
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task, our method maintains robust performance.522

This distinction underscores the adaptability and523

effectiveness of the ICD method in addressing a524

broader spectrum of hallucination symptoms, mak-525

ing it a more versatile solution in LVLMs.526

Results on MME Benchmark: Our method is527

designed to mitigate hallucinations in LVLMs dur-528

ing inference. We delve deeper into ascertaining529

whether our approach not only preserves but po-530

tentially enhances the fundamental recognition and531

reasoning capabilities of LVLMs. To this end, we532

analyze performance across the full comprehensive533

MME benchmark, which encompasses 14 subtasks534

designed to assess perception and recognition.535

Figure 3 illustrates that implementing ICD with536

both backbone models significantly improves task537

scores, surpassing the performance of foundation538

LVLMs and established VCD method. This out-539

come suggests that our method not only manages540

hallucinations effectively during inference but also541

elevates the accuracy of foundational LVLM tasks.542

In a more detailed model-specific analysis, our543

approach consistently outperforms both the back-544

bone miniGPT4 and the VCD method with the545

same backbone across all 14 subtasks. Conversely,546

the VCD method exhibits diminished performance547

in specific areas such as posters, artwork, OCR,548

numerical calculation, text translation, and code549

reasoning when compared to the baseline LVLM.550

Moreover, when InstructBLIP serves as the back-551

bone, the effectiveness of VCD decreases in tasks552

related to existence, position, scene, and code rea-553

soning. We surmise that while leveraging visual554

uncertainty may anchor predictions more firmly555

in visual input, it simultaneously introduces draw-556

backs by fostering an over-reliance on visual cues557

at the expense of instruction-based grounding. Con-558

versely, our ICD method, by focusing on multi-559

modal alignment, does not compromise the fun-560

damental reasoning capabilities of LVLMs. No-561

tably, our method’s performance on the landmark,562

OCR, commonsense reasoning, and text translation563

tasks under InstructBLIP is weaker than the VCD564

method, whereas VCD exhibits superior results in565

these domains. This suggests that these subtasks566

within the MME benchmark may demand a robust567

visual discrimination capability.568

4.3 Discussions on ICD and VCD569

In addressing hallucinations in LVLMs, our ICD570

method and the baseline VCD both leverage con-571

trastive decoding tailored for open-ended gener- 572

ation (Li et al., 2023b). While our ICD method 573

introduces disturbance instructions to increase mul- 574

timodal alignment uncertainty, VCD employs dis- 575

torted images to amplify visual uncertainty. Posit- 576

ing that a synergistic approach could harness the 577

strengths of both methods, we propose to analyze 578

a straightforward integration of these two methods. 579

Figure 4: Performance of the VCD-enhanced ICD
method on MME Subset. The underlying LVLM is
InstructBLIP.

Our combined approach begins with the VCD, 580

utilizing standard instructions. This is followed by 581

contrasting the resulting distribution with that of a 582

VCD output generated under disturbance instruc- 583

tions, thereby establishing the final output distribu- 584

tion. Figure 4 showcases the integration method on 585

color, posters, landmarks, OCR, commonsense rea- 586

soning, and text translation. This approach yields 587

notable enhancements across these subtasks, un- 588

derlining the importance of discriminative visual 589

features and multimodal alignment as complements 590

in grounding LVLM responses. 591

This exploration suggests a promising avenue 592

for future research aimed at optimally amalgamat- 593

ing the advantages of both methods. Detailed re- 594

sults and comprehensive analysis of the combined 595

method performance across full MME are provided 596

in the appendix C for further reference. 597

5 Conclusion 598

We introduce a novel instruction contrastive decod- 599

ing approach that effectively detaches hallucinatory 600

concepts by contrasting distributions derived from 601

standard and disturbance instructions where role 602

prefixes are appended to amplify hallucinations. 603

Comprehensive experiments across various bench- 604

marks and different LVLMs demonstrate the capa- 605

bility of our method in mitigating hallucinations 606

and substantially improving the general perception 607

and recognition performance of LVLMs. 608
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Limitations609

In this paper, we have concentrated on address-610

ing hallucinations within LVLMs by deploying611

our novel ICD method. We have validated its effi-612

cacy through rigorous evaluation on various hallu-613

cination discrimination benchmarks and have also614

qualitatively assessed its performance on genera-615

tive benchmarks, which are pivotal for examining616

hallucinatory content. Despite their importance,617

generative benchmarks currently lack established618

metrics for thoroughly analyzing hallucinations, in-619

dicating a significant area for future research to620

enhance open-ended generation performance eval-621

uation with robust automatic metrics.622

Ethics Statement623

We propose the Instruction Contrastive Decoding624

method to address hallucination issues in LVLMs,625

thereby enhancing their safety and reliability within626

the community. Additionally, the datasets utilized627

for inferring and evaluating the ICD method are628

publicly accessible, promoting transparency and629

reproducibility in our research. Furthermore, we630

have made our code available to the public, ensur-631

ing it is convenient for researchers and practitioners632

to access and implement.633
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A Implementation Details822

In our experiments, we adopted the contrastive823

decoding configurations by setting the decisive824

penalty on the decision made by LVLMs with dis-825

turbance λ = 1 and the hyperparameter α = 0.1826

that modulates the truncation of the probability dis-827

tribution, in line with the configurations reported in828

previous studies (Li et al., 2023b; Leng et al., 2023).829

For the decoding strategy, we uniformly applied830

the sampling method across all experiments, incor-831

porating a top p = 1, a repetition penalty = 1,832

and a number of beams = 1 for LLMs. For833

both VCD and ICD methods, we sample from the834

modified softmax distribution, as delineated in835

Equation 7.836

B Qualitative Evaluation on837

LLava-Bench838

In this section, we extend our analysis by focus-839

ing on the evaluation of generative hallucination.840

Utilizing LLaVa-Bench, we conduct a qualitative841

analysis on the task of open-ended generation. Fig-842

ure 5 showcases two case studies that compare843

our method with backbone LVLMs using identi-844

cal input images. The example displayed on the845

left presents various Asian dishes. While the base-846

line LVLMs accurately identify and generate con-847

cepts such as spoons, tables, and cups, they also848

erroneously introduce the unrelated concept of a849

“person.” This error stems from the high frequency850

of co-occurrence between “person” and "tables"851

in the training data. Furthermore, the example852

on the right depicts a well-known scene from the853

movie "Titanic." Here, the baseline LVLMs incor-854

rectly perceive the characters Jack and Rose as two855

women, leading to an inaccurate generation of text856

regarding same-sex relationships. This error is a re-857

sult of the language prior biases, which contribute858

to hallucinations in LVLMs.859

Contrastingly, our ICD approach produces flu-860

ent, coherent text that is closely grounded in the861

visual context, effectively mitigating the hallucina-862

tions caused by statistical biases and the inherent863

language priors of LVLMs.864

C Further Analysis on VCD-Enhanced865

ICD866

We comprehensively analyze the ICD and VCD867

combined method, detailed in Section 4.3, within868

the full MME benchmark, utilizing InstructBLIP as869

the backbone LVLM. Figure 6 illustrates that inte- 870

grating our ICD method significantly enhances the 871

VCD’s performance across various tasks, includ- 872

ing existence, count, color, celebrity, scene, land- 873

mark, and artwork. Similarly, incorporating VCD 874

in ICD yields improvements in color, posters, land- 875

marks, OCR, commonsense reasoning, and transla- 876

tion tasks. These findings suggest that addressing 877

both visual and multimodal alignment uncertainties 878

in a complementary fashion effectively mitigates 879

hallucinations. However, we also note a perfor- 880

mance decrement in the ICD method for count, 881

position, artwork, calculation, and code reasoning 882

tasks when combined with VCD. This observation 883

underscores the necessity for more refined combi- 884

nation strategies to fully harness the potential of 885

integrating these two methods. 886

Combining the strengths of both the ICD and 887

VCD methods has opened a promising avenue for 888

future investigations. We aim to develop and re- 889

fine contrastive decoding methods for the seamless 890

integration of both techniques, potentially a new 891

method for mitigating hallucinations in LVLMs. 892

D Optimal Position to Apply Contrastive 893

Decoding 894

Upon detailed examination of the inference frame- 895

work depicted in Figure 1, we identify three poten- 896

tial points for integrating the ICD method: within 897

the Q-Former’s instruction, the LLM’s instruction, 898

and a combination of both. This analysis, based 899

on the POPE GQA Random sub-dataset, aims to 900

pinpoint the optimal application site for ICD. To 901

ensure a comprehensive comparison, we selected 902

two distinct LVLMs, InstructBLIP and LLaVa, as 903

backbones to represent varied fusion approaches. 904

InstructBLIP employs Q-Former for multimodal 905

alignment, whereas LLaVa utilizes a linear projec- 906

tion. 907

Figure 7 reveals that, under the InstructBLIP 908

framework, ICD enhances performance across all 909

implementation sites, with the singular application 910

within Q-Former yielding the most significant im- 911

provement. A comparison between the LVLMs 912

indicates that LLaVa also benefits from the ICD 913

method when ICD is applied within LLMs. How- 914

ever, exclusive application of ICD in LLMs pro- 915

duces less pronounced improvements, mirroring 916

the observations with InstructBLIP as the backbone. 917

Consequently, our findings suggest that deploying 918

the ICD method within the Q-Former architecture 919
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Figure 5: Qualitative analysis on LLava-Bench. The left figure highlights the statistical bias, and the right figure
shows the language prior that contributes to hallucinations in LVLMs. Hallucinated concepts have been highlighted
in red.

Figure 6: Performance of the VCD-enhanced ICD method on full MME benchmark. The underlying LVLM is
InstructBLIP. ICD+VCD indicates the combination approach detailed in Section 4.3.
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Figure 7: Performance of the ICD method imple-
mented on difference positions evaluated on POPE
(GQA Random) dataset. The underlying LVLMs are
InstructBLIP and LLaVa-1.5.

represents the most effective strategy.920
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