
Under review as a conference paper at ICLR 2024

Table 2: Mean together with first and ninth deciles (within parentheses) of explained variance, R2;
bandwidth selection time in milliseconds, t; and selected bandwidth, σ, for the U.K. rainfall data. The
Jacobian method performs significantly better and significantly faster than the competing methods.
While unseeded MML selects a too large bandwidth, hampering performance, Jacobian seeded MML
performs identically to the Jacobian method, but at a much higher computational time. The p-value
of 0.00024 corresponds to the Jacobian method performing better in all 12 experiments.

Method R2 t [ms] σ

Jacobian 0.981 (0.967, 0.994) 0.108 (0.100, 0.119) 0.214 (0.209, 0.219)

GCV 0.969 (0.953, 0.988) 25400 (20800, 28900) 0.296 (0.131, 0.352)
pWil = 0.00024 pWil = 0.00024

MML 0.554 (0.408, 0.678) 29100 (24300, 33700) 6.56 (6.47, 6.65)
pWil = 0.00024 pWil = 0.00024

Seeded MML 0.981 (0.967, 0.994) 210000 (176000, 240000) 0.214 (0.209, 0.219)
pWil = 1 pWil = 0.00024

Silverman 0.971 (0.957, 0.990) 0.168 (0.16, 0.18) 0.306 (0.304, 0.309)
pWil = 0.00024 pWil = 0.00024

A ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments to those of the main manuscript.

In Figure 7, we compare the approximate and true Jacobian norms as a function of the bandwidth
on the temperature and synthetic data sets. The approximate norm captures the structure of the true
norm quite well. In the absence of regularization, the minima of the two functions approximately
agree. When regularization is added the selected bandwidth, σ0, is close to the elbow of both the
approximate and true norms.

In Figures 8, we vary the regularization strength, λ for fixed sample size. For the synthetic data, 1000
test observations were generated, while the real data was randomly split into training and testing data.
For each data set, n was chosen to a value where the different methods performed approximately
equally well in the experiments with varying sample size (Figure 6 in the main manuscript). Thus
the splits were 25/15, 100/148, and 50/1000 for the 2D temperature, 1D temperature, and synthetic
data, respectively. In all cases 1000 random splits were used to estimate the variance of R2, i.e. the
proportion of the variation in the data that is explained by f̂(x∗), the selected bandwidth σ, and
bandwidth selection computation time in milliseconds, t. The experiments were run on a cluster with
Intel Xeon Gold 6130 CPUs. It is again confirmed that the Jacobian method, in addition to being
much faster than GCV and MML, is much more stable in terms of bandwidth selection. For the
Cauchy distributed data, the median version of the Jacobian method was used; this method requires
slightly more time than the standard Jacobian method.

We note that when n is large compared to λ for the 1D temperature data, and when λ is large for the
Cauchy distributed data, MML performs very badly, which can be attributed to a local minimum
of the likelihood function. This leads us to introduce Jacobian seeded MML, where we instead of
Brent’s method, which does not use a seed, use the Nelder-Mead method (Nelder & Mead, 1965)
and seed it with the Jacobian bandwidth. In Figure 9, we revisit the jackknife resampling of the 1D
temperature data, this time including the Jacobian seeded MML method, which performs much better
than standard MML. In Table 2 we extend Table 1 in the main manuscript with Jacobian seeded
MML. Using the Jacobian seed, MML performs identically to the Jacobian method in terms of R2

and σ, albeit more than a million times slower.
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Figure 7: Comparison of the approximate (green, left y-axis) and true (blue, right y-axis) Jacobian
norms as a function of bandwidth and regularization. The approximate Jacobian norm captures the
structure of the true Jacobian norm quite well, especially for the 2D temperature data, where for
λ = 0, the minima of the two functions agree very well. For λ > 0, the selected bandwidth, σ0, is
close to the elbow of both the approximate and true norms. In the rightmost panel, λ > 2ne−3/2,
which means that the approximate Jacobian norm has no local minimum and σ0 is selected as if
λ = 2ne−3/2.
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Figure 8: Mean together with first and ninth deciles for explained variance, R2; selected bandwidth,
σ; and computation time in milliseconds t, for different regularization strengths, using the four
bandwidth selection methods. The Jacobian and Silverman’s methods are several orders of magnitude
quicker than the two other methods. They are also much more stable in terms of bandwidth selection.
In terms of prediction, the Jacobian method generally performs better than, or on par with, the
competing methods. For both the 1D temperature data and the Cauchy data, MML gets stuck in a
local minimum. For the Cauchy data, the, slightly slower, median version of the Jacobian method
was used.
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Figure 9: Means and standard deviations of KRR predictions from jackknife resampling on the 1D
temperature data. The lower bottom plot shows a zoom-in on the first 4 days. Jacobian seeded MML
performs much better than standard MML, and similarly to the Jacobian method.

B PROOFS

In this section, we provide the proofs of the propositions in the main manuscript.

Proof of Proposition 1.
Denote d := 2lmax

((n−1)1/p−1)π
. Then

Ja
2 (σ, l, n, p,λ) = Ja

2 (σ, n, d,λ) =
1

σ
�
n exp

�
−

σ
d

�2�
+ λ

� ,

from which we obtain
lim

σ→0+
Ja
2 (σ) = +∞

and

lim
σ→+∞

Ja
2 (σ) =

�
+∞ if λ = 0

0 if λ > 0.

We now identify stationary points by setting the derivative to 0.
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= −
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,
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where W denotes the Lambert W function. Since this function has real outputs only if its argument
is greater than −e−1, in order to obtain stationary points we need

−λ
√
e

2n
≥ −e−1 ⇐⇒ λ ≤ 2ne−3/2

which gives us the two stationary points

σ0 =

√
2

π

lmax

(n− 1)1/p − 1

s
1− 2W0

�
−λ

√
e

2n

�

and

σ−1 =

√
2

π

lmax

(n− 1)1/p − 1

s
1− 2W−1

�
−λ

√
e

2n

�
.

W−1(x) < W0(x) for x ∈ (−e−1, 0), which implies that σ0 < σ−1. Combined with the limits
above, this implies that, when existing, σ0 is a local minimum and σ−1 is a local maximum.

Finally, for λ = 0, W0(0) = 0 and limλ→0 W−1

�
−λ

√
e

2n

�
= −∞, which means that in the absence

of λ, σ0 =
√
2

π
lmax

(n−1)1/p−1
and σ−1 = +∞.

Proof of Proposition 2.
We first note that for di = x∗ − xi,

∂f̂(x∗)
∂di

= ∂f̂(x∗)
∂x∗ :

∂di

∂x∗ =
∂(x∗ − xi)

∂x∗ =
∂x∗

∂x∗ − ∂xi

∂x∗ = I − 0 = I

∂f̂(x∗)
∂x∗ =

∂f̂(x∗)
∂di

· ∂di

∂x∗ =
∂f̂(x∗)
∂di

· I =
∂f̂(x∗)
∂di

.

Now,
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∂x∗






1

·
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(a)
=
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1

·



(K(X,X) + λI)
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2
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where in (a), we used the chain rule together with ∂di

∂x∗ = I .

Proof of Proposition 3.
In spherical coordinates,






∂kG(di,σ)

∂di






1

=

����
∂kG(di,σ)

∂di

����+
pX

j=2

����
1

di

∂kG(di,σ)
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���� ,
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where the sum is over the angular coordinates. Since the Gaussian kernel is rotationally invariant,
this sum is 0 and 





∂kG(di,σ)

∂di






1

=

����
∂

∂di
exp

�
− d2i
2σ2

����� =
di
σ2

exp

�
− d2i
2σ2

�
.

To find the di that maximizes the derivative, we look where the second derivative is zero.

∂

∂di

����
∂kG(di,σ)

∂di

���� =
 �

di
σ2

�2

− 1

σ2

!
exp

�
− d2i
2σ2

�
.

Setting the second derivative to zero amounts to
�
di
σ2

�2

=
1

σ2
⇐⇒ d2i = σ2 =⇒ di = σ.

Plugging this into the first derivative we obtain 1
σ exp


− 1

2

�
, which is greater than

����
∂kG(0,σ)

∂di

���� =
����
∂kG(∞,σ)

∂di

���� = 0,

and consequently

max
di






∂kG(di,σ)

∂d






1

= max
di

����
∂kG(di,σ)

∂di

���� =
1

σ
√
e
.

Proof of Proposition 4.
To alleviate notation, from now on we do not explicitly state that K depends on X . We first note
that




(K + λI)
−1





2
= 1

sn(K+λI) , where sn denotes the smallest singular value of K. Since K

is symmetric and positive semi-definite, it is diagonalizable as K = UΣU⊤, while λI = λUU⊤,
which means that K + λI = U (Σ+ λI)U⊤, i.e. the singular values of K + λI are the singular
values of K, shifted by λ.

According to Bermanis et al. (2013), for x ∈ Rp, where each xi is restricted to an interval of length li,
i = 1, 2, . . . p, for a Gaussian kernel matrix K ∈ Rm×n, with singular values s1, . . . sn, the number
of singular values larger than δ · s1 for some δ > 0, Rδ(K), is bounded according to

Rδ(K) := #

�
j :

sj(K)

s1(K)
≥ δ

�
≤

dY

i=1

�
2

π

li
σ

p
log(1/δ) + 1

�
≤

�
2

π

lmax

σ

p
log(1/δ) + 1

�p

.

Solving for δ, we obtain

Rδ(K) ≤
�
2

π

lmax

σ

p
log(1/δ) + 1

�p

⇐⇒ (Rδ(K)1/p − 1)
πσ

2lmax
≤
p

log(1/δ)

⇐⇒ δ ≤ exp

 
−
�
(Rδ(K)1/p − 1)πσ

2lmax

�2
!
.

Now, if Rδ(K) = n, then all singular values (including sn) are larger than or equal to δ · s1. If
Rδ(K) = n− 1, then all but one (namely sn) of the singular values are larger than or equal to δ · s1.
So for Rδ(K) = n− 1, sn < δ · s1, which implies

sn < s1δ ≤ s1 exp

 
−
�
((n− 1)1/p − 1)πσ

2lmax

�2
!

≤ n exp

 
−
�
((n− 1)1/p − 1)πσ

2lmax

�2
!
,

where we used σ1(K)· ≤ n · ∥K∥max = n · 1.

Thus 


(K + λI)
−1





2
=

1

sn + λ
≥ 1

n exp

�
−
�

((n−1)1/p−1)πσ
2lmax

�2
�
+ λ

.
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