
A Proof of Theorem 1

To begin with, we give the formal definitions of translation and rotation group, along with the notion
of shift invariance and rotation invariance.
Definition A.1. (Translation Group & Shift Invariance) Translation group T(m) is a transformation

group isomorphic to m-dimension Euclidean space, where each group element Tv transforms a

vector x 2 R
m

by Tv(x) = x+ v. An operator A is said to be shift-invariant if A(� � Tv)(x) =
A�(Tv(x)) = A�(x+ v).
Definition A.2. (Rotation Group & Rotation Invariance) Rotation group SO(m) is a transformation

group also known as the special orthogonal group, where each group element R 2 R
m⇥m

satisfying

R>R = I transforms a vector x 2 R
m

by R(x). An operator A is said to be rotation-invariant if

A(� �R)(x) = A�(Rx).

Proof. (Shift Invariance) To show the shift invariance of our model Eq. 3, it is equivalent to show
any differential operators are shift-invariant. For the first-order derivatives (gradients), we consider
arbitrary shift operator Tv 2 T, by chain rule we will have:

r[� � Tv](x) =


d(x+ v)

dx

�>
r�(x+ v) = r�(x+ v), (7)

where the Jacobian matrix of Tv(x) is an identity matrix. Eq. 7 implies that gradient operator is
shift-invariant. By induction, any high-order differential operators must also be shift-invariant:

rk[� � Tv](x) = rk�(x+ v), (8)
Therefore, we can conclude ⇧(�,r�,r2�, · · · ) is shift-invariant for any ⇧ combining derivatives
in any form.

(Rotation Invariance) By Lemma A.1, given arbitrary function � : Rm ! R, and for every rotation
matrix R 2 SO(m), we can compute the k-th derivatives as:

vec
�
rk[� �R](x)

�
= R>⌦k vec (r�(Rx)) . (9)

Then adopting properties of Kronecker product [89], the norm of rk[� �R](x) can be written as:

krk[� �R](x)k2F = Tr
h
vec (r�(Rx))> R⌦kR>⌦k vec (r�(Rx))

i
(10)

= vec (r�(Rx))>
⇣
R⌦k�1 ⌦R

⌘⇣
R>⌦k�1 ⌦R>

⌘
vec (r�(Rx)) (11)

= vec (r�(Rx))>
⇣⇣

R⌦k�1R>⌦k�1
⌘
⌦ I

⌘
vec (r�(Rx)) (12)

= · · · = vec (r�(Rx))> I⌦k vec (r�(Rx)) = kr�(Rx)k2F (13)
where Eq. 11 is due to the fact (A ⌦ B)> = A> ⌦ B>, Eq. 12 is because of (A ⌦ B)(C ⌦
D) = AC ⌦ BD, and Eq. 13 is yielded by applying the orthogonality of R and repeating
step Eq. 12 to Eq. 13. Therefore, for every integer k > 0, operator krk�(x)k22 is rotation-
invariant. Hence, ⇧ = f

���⇥�(x) r�(x) r2�(x) · · ·
⇤��

F

�
= f

⇣pP
k=0krk�(x)k22

⌘
is

also rotation-invariant.

Below we supplement the Lemma A.1 used to prove Theorem 1.
Lemma A.1. Suppose given function f : Rm ! R and arbitrary linear transformation A 2 R

m⇥m
,

then vec
�
rk[f �A](x)

�
= A>⌦k vec

�
rkf(Ax)

�
for 8k � 0.

Proof. vec
�
rk[f �A](x)

�
= A>⌦k vec

�
rkf(Ax)

�
trivially holds for k = 0, 1. Then we prove

Lemma A.1 by induction. Suppose the (j�1)-th case satisfies the equality: vec
�
rj�1[f �A](x)

�
=

A>⌦j�1 vec
�
rj�1f(Ax)

�
, then consider the j-th case:

rj [f �A](x) = r vec
�
rj�1[f �A](x)

�
= rA>⌦j�1 vec

�
rj�1f(Ax)

�
= A>rjf(Ax)A⌦j�1,

where the first equality is done by reshaping the mj tensor to be an m ⇥ mj�1 Jacobian matrix,
the second equality is due to the induction hypothesis, and the third equality is an adoption of
chain rule. Due to the fact vec(ABC) = (C> ⌦ A) vec(B), we have vec

�
rj [f �A](x)

�
=

A>⌦j vec
�
rjf(Ax)

�
. Then by induction, we can conclude the proof.
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B Proof of Theorem 2

For a sake of clarity, we first introduce few notations in algebra and real analysis. We use Ck(X ,R)
to denote the k-th differentiable functions defined over domain X , W k,p(X ,R) to denote the k-th
differentiable and Lp integrable Sobolev space over domain X . We use notation A[f ] to denote the
image of function (say f ) under the transformation of an operator (say A). We use symbol � to denote
function composition (e.g., f � g(x) = f(g(x))). We use dot-product · between two functions (say
f and g) to represent element-wise multiplication of function values (say f · g(x) = f(x) · g(x)).
Besides, we list the following definitions and assumptions:
Definition B.1. (Polynomial) We use R[x1, · · · , xm] to represent the multivariate polynomi-

als in terms of x1, · · · , xm with real coefficients. We write a (monic) multivariate monomial

m(x1, · · · , xm) = xn1
1 xn2

2 · · ·xnm
m as m(x) = xn

where n = [n1 · · · nm] 2 N
m

. Then

we denote a polynomial as p(x) = a1xn1 + · · ·+ adxnd 2 R[x1, · · · , xm] where xni denotes the

i-th multivariate monomial and ai 2 R is the corresponding coefficient.

Definition B.2. (Differential Operator) Suppose a compact set X ✓ R
m

. we denote Dn :
C1(X ,R)! C1(X ,R) as the high-order differential operator associated with indices n 2 N

m
:

Dn[f ] =
@knk1

@xn1
1 · · · @xnm

m
f. (14)

Definition B.3. We define polynomial in gradient operator as: p(r) = p
⇣

@
@x1

, · · · , @
@xm

⌘
=

a1Dn1 + · · · + adDnd 2 R[x1, · · · , xm] where Dni denotes the ni-th order partial derivative

(Definition B.2) and ai 2 R is the corresponding coefficient.

Remark B.1. The mapping between p(x) and p(r) is a ring homomorphism from polynomial ring

R[x1, · · · , xm] to the ring of endomorphism defined over C1(X ,R).

Definition B.4. (Fourier Transform) Given real-valued function f : Rm ! C that satisfies Dirichlet

condition
5
, then Fourier transform F is defined as:

F [f ](w) =

Z

Rm

f(x) exp(�2⇡iw>x)dx. (15)

Inverse Fourier transform F�1
exists and has the form of:

f(x) =

Z

Rm

F [f ](w) exp(2⇡iw>x)dw. (16)

Definition B.5. (Convolution) Given two real-valued functions f : Rm ! R and g : Rm ! R,

convolution between f and g is defined as:

(f ? g)(x) =

Z

Rm

f(x� ⇠)g(⇠)d⇠. (17)

Then we denote f ? g = Tg[f ], where Tg represents a convolutional operator associated with the

function g.

We make the following mild assumptions on the signals and convolutional operators, which are
widely satisfied by the common signals and systems.
Assumption B.6. (Band-limited Signal Space) Define the signal space S as a Sobolev space

W1,1(Rm,R) of real-valued functions such that for 8f 2 S:

(I) f 2 C1(Rm,R) is continuous and smooth over R
m

.

(II) f satisfies the Dirichlet condition.

(III) f has a limited width of spectrum: there exists a compact subset W ⇢ R
m

such that

|F [f ](w)| = 0 if w /2W , and
R
W |F [f ](w)|dw <1.

5Dirichlet condition guarantees Fourier transform exists: (1) The function is L1 integrable over the entire
domain. (2) The function has at most a countably infinite number of infinte minima or maxma or discontinuities
over the entire domain.
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Assumption B.7. (Convolution Space) Define a convolutional operator space T such that 8Tg 2 T :

(IV) g : Rm ! R is real-valued function.

(V) F [g] 2 C(Rm,R) has a continuous spectrum.

Before we prove Theorem 2, we enumerate the following results as our key mathematical tools:

First of all, we note the following well-known result without a proof.
Lemma B.1. (Convolution Theorem) For every Tg 2 T , it always holds that F � Tg[f ](w) =
F [f ](w) · F [g](w).

Next, we present Stone-Weierstrass Theorem as our Lemma B.2 as below.
Lemma B.2. (Stone-Weierstrass Theorem) Suppose X is a compact metric space. If A ⇢ C(X ,R)
is a unital sub-algebra which separates points in X . Then A is dense in C(X ,R).

A straightforward corollary of Lemma B.2 is the following Lemma B.3.
Lemma B.3. Let X ⇢ R

m
be a compact subset of R

m
. For every ✏ > 0, there exists a polynomial

p(x) 2 R[x1, · · · , xm] such that supx2X |f(x)� p(x)| < ✏.

Proof. Proved by checking polynomials R[x1, · · · , xm] form a unital sub-algebra separating points
in X , and equipping C(X ,R) with the distance metric d(f, h) = supx2X |f(x)� g(x)|.

We also provide the following Lemma B.4 to reveal the spectrum-domain symmetry for real-valued
signals.
Lemma B.4. Suppose f is a continuous real-valued function satisfying Dirichlet condition. Then

F [f ](w) = F [f ](�w)⇤, i.e., the spectrum of real-valued function is conjugate symmetric.

Proof. By the definition of Fourier transform (Definition B.4):

F [f ](�w) =

Z

Rm

f(x) exp(2⇡iw>x)dx =

Z

Rm

f(x)⇤ exp(�2⇡iw>x)⇤dx (18)

=

Z

Rm

f(x) exp(�2⇡iw>x)dx

�⇤
= F [f ](w)⇤, (19)

where Eq. 18 holds because f is a real-valued function.

We present Lemma B.5 as below, which reflects the effect of differential operators on the spectral
domain.
Lemma B.5. Suppose f 2 C1(Rm,R) is a smooth real-valued function satisfying Dirichlet

condition. Then F �Dn[f ](w) = (2⇡i)knk1wn · F [f ](w) for every n 2 N
m

.

Proof. We first show the case of first-order partial derivative. Suppose h 2 C(Rm,R) is L1 integrable
(then Fourier transform exists).

@

@xi
h(x) =

@

@xi

Z

Rm

F [h](w) exp(2⇡iw>x)dw (20)

=

Z

Rm

F [h](w)
@

@xi
exp(2⇡iw>x)dw (21)

= 2⇡i

Z

Rm

wiF [h](w) exp(2⇡iw>x)dw. (22)

Then we apply the Fourier transform to Eq. 20, we can obtain:

F � @

@xi
[h](w) = 2⇡iwiF [h](w). (23)

Note that f 2 W1,1(Rm,R) ensures all its partial derivatives are differentiable and absolutely
integrable. We can recursively apply @

@xi
to f for ni times for each i 2 [m], and use Eq. 23 above to

conclude the proof.

18



Below is the formal statement of our Theorem 2 and its detailed proof.
Theorem B.6. For every Tg 2 T and arbitrarily small ✏ > 0, there exists a polynomial p(x) 2
R[x1, · · · , xm] such that supx2Rm |Tg[f ](x)� p(r)[f ](x)| < ✏ for all f 2 S .

Proof. For every f 2 S and Tg 2 T , by Lemma B.1, one can rewrite:

F � Tg[f ](w) = F [f ](w) · F [g](w) := f̂(w)ĝ(w), (24)

where we use f̂ : Rm ! C and ĝ : Rm ! C to denote the Fourier transform of f and g, respectively.
We can construct an invertible mapping � by letting:

�[f̂ ](w) = <{f̂(w)}�={f̂(w)}, (25)

��1[f̃ ](w) =
f̃(w) + f̃(�w)

2
� i

f̃(w)� f̃(�w)

2
, (26)

which is also known as the Hartley transform. By Lemma B.4 (with Assumption (I) (IV)), f̃ := �[f̂ ]
and g̃ := �[ĝ] are both real-valued functions.

Since f̂ is only supported in W (by Assumption (III)), we only consider g̃ within the compact subset
W . By Lemma B.3 (with Assumption (V)), there exists a polynomial p̃(w) 2 R[w1, · · · , wm] =
ã0 + ã1wn1 + · · · + ãdwnd such that supw2W |g̃(w) � p̃(w)| < ✏/2C for every ✏ > 0, where d
is the number of monomials in p̃, ã0, ã1, · · · , ãd 2 R are corresponding coefficients, and C > 0 is
some constant.

Applying ��1 to p̃, we will obtain a new (complex-valued) polynomial p̂ := ��1[p̃] 2
C[w1, · · · , wm] such that:

<{p̂(w)} =
p̃(w) + p̃(�w)

2
, ={p̂(w)} =

p̃(w)� p̃(�w)

2
. (27)

We observe that the coefficients of p̂ satisfy: âk = ãk if knkk1 is even and âk = iãk if knkk1 is odd.
Then we bound the difference between ĝ and p̂ for every w 2W:

|ĝ(w)� p̂(w)| =

�����

 
f̃(w) + f̃(�w)

2
� p̃(w) + p̃(�w)

2

!
(28)

� i

 
f̃(w)� f̃(�w)

2
� p̃(w)� p̃(�w)

2

!����� (29)

 1

2

⇣���f̃(w)� p̃(w)
���+
���f̃(�w)� p̃(�w)

���
⌘

(30)

+
1

2

⇣���p̃(w)� f̃(w)
���+
���p̃(�w)� f̃(�w)

���
⌘

(31)

 ✏

C
. (32)

In the meanwhile, by Lemma B.5 (with Assumption (I), (II)), F � Dn[f ](w) = (2⇡i)knk1wn ·
F [f ](w) for every n 2 N

m. Define a sequence qn(w) = (2⇡i)knk1wn, then partial derivatives of
f in terms of n 2 N

m can be written as:

F �Dn[f ](w) = qn(w) · F [f ](w). (33)

Next we decompose polynomial p̂ in terms of qn. Let ak = âk/(2⇡i)knkk1 , then p̂(w) = a0 +
a1qn1(w) + · · · + adqnd(w). We note that {ak, 8k 2 [d]} must be real numbers since âk is
real/imaginary when knkk1 is even/odd, which coincides with (2⇡i)knkk1 .

By linearity of inverse Fourier transform and Eq. 33, element-wisely multiplying
Pd

k=0 akqnk to f̂
will lead to a transform on the spatial domain:

F�1

"
dX

k=0

akqnk · F [f ]

#
=

dX

k=0

akDnkf := p(r)[f ], (34)
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Algorithm 1 Forward pass of INSP-ConvNet

1: Input: An INR network �(x) : Rm ! R, convolutional operator weights ✓(l) 2 R
M and an

input coordinate x.
2: Output: Value at x of INR ConvNet[�] processed by INSP-ConvNet.
3: y(0)  �(x)
4: for l = 1, · · · , L do

5: ŷ(l)  
h
y(l�1) @y(l�1)

@x

>
@2y(l�1)

@x2

>
· · · @Ky(l�1)

@xK

>
i
✓(l) . Convolutional layer

6: y(l)  ReLU(InstanceNorm1D(ŷ(l))) . Non-linearity and normalization
7: end for

8: return y(L).

where we define polynomial p(r) := a0 + a1Dn1 + · · · + adDnd 2 R

h
@

@x1
, · · · , @

@xm

i
over the

ring of partial differential operators (Definition B.3). Now we bound the difference between Tg[f ]
and p(r)[f ] for every f 2 S and x 2 R

m:

|Tg[f ](x)� p(r)[f ](x)| =

�����

Z

W
exp(2⇡iw>x)f̂(w)

 
ĝ(w)�

dX

k=0

akqnk(w)

!
dw

����� (35)


Z

W

�����f̂(w)

 
ĝ(w)�

dX

k=0

akqnk(w)

!����� dw (36)


 

sup
w2W

�����ĝ(w)�
dX

k=0

akqnk(w)

�����

!✓Z

W

���f̂(w)
��� dw

◆
(37)

 ✏, (38)

where Eq. 37 follows from Hölder’s inequality, and Eq. 38 is obtained by substituting the upper
bound of difference |ĝ(w) �

Pd
k=0 akqnk(w)| and letting C equal to the L1 norm of f̂(w) (by

Assumption (III)).

C Implementation Details of INSP-ConvNet

We have formulated exact convolution form and INSP-Conv in Sec. 3.3. We provide a pseudocode
to illustrate the forward pass of INSP-ConvNet in Algorithm 1. Below we elaborate each main
component:

Convolutional Layer. Each A(l) represents an implicit convolution layer. We follow the closed-
form solution in Eq. 5 to parameterize A(l) with ✓(l). We point out that ConvNet[�] also corresponds
to a computational graph, which can continuously map coordinates to the output features. To construct
this computational graph, we recursively call for gradient networks of the previous layer until the first
layer. For example, A(l) will request the gradient network of A(l�1) ·��· · ·�A(1) ·�, and then A(l�1)

will request the gradient network of the rest part. This procedure will proceed until the first layer,
which directly returns the derivative network of �. Kernels in CNNs typically perform multi-channel
convolution. However, this is not memory friendly to gradient computing in our framework. To this
end, we run channel-wise convolution first and then employ a linear layer to mix channels [90].

Nonlinear Activation and Normalization. Nonlinear activation and normalization are naturally
element-wise functions. They are point-wisely applied to the output of an INSP-Net and participate
the computational graph construction process. This corresponds to the line 6 of Algorithm 1.

Training Recipe. Given a dataset D = {(�i, yi)} with a set of pre-trained INRs �i and their
corresponding labels yi, our goal is to learn a ConvNet[·] that can process each example. In contrast
to standard ConvNets that are designed for grid-based images, the computational graph of INSP-
ConvNet contains parameters of both the input INR �i and learnable kernels A(l). During the
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training stage, we randomly sample a mini-batch (�i, yi) from D to optimize INSP-ConvNet. The
corresponding loss will be evaluated according to the network output, and then back-propagate
the calculated gradients to the learnable parameters in A(l), using the stochastic gradient descent
optimization. Along the whole process, the parameters of �i is fixed and only the parameters in A(l)

is optimized. Standard data augmentations are included by default, including rotation, zoom in/out,
etc. In practice, we implement these augmentations by using affine transformation on the coordinates
of INRs.

D Connection with PDE based Signal Processing

Partial Differential Equation (PDE) has been successfully applied to image processing domain as
we discussed in Sec. 4.3. In this section, we focus on their connection with our INSP-Net. We
summarize the methods of this line of works [61, 40, 66] in the following formulation:

@ (x, t)

@t
= Mt

⇥
 (x, t),rx (x, t),r2

x (x, t), · · ·
⇤
, (39)

where Mt(·) is a time-variant function that remaps the direct output and high-order derivatives of
function  . For heat diffusion, Mt boils down to be an stationary isotropic combination of second-
order derivatives. In [61], Mt is chosen to be a gradient magnitude aware diffusion operator running
on divergence operators. [40, 66] degenerate Mt to a time-dependent linear mapping of pre-defined
invariants of the maximal order two. We note that Eq. 39 can be naturally solved with INRs, as
INRs are amenable to solving complicated differential equation shown by [28]. One straightforward
solution is to parameterize Mt by another time-dependent coordinate network [27] and enforce the
boundary condition  (x, 0) = �(x) and minimize the difference between the two hands of the Eq.
39. However, foreseeable problem falls in sampling inefficiency over the time axis. Suppose we
discretize the time axis into small intervals 0 = t0 < t1 < · · · < tN , then Eq. 39 has a closed-form
solution given Mt by Euler method:

 (x, tn+1) =

Z tn+1

tn

Mt

⇥
 (x, t),rx (x, t),r2

x (x, t), · · ·
⇤
dt+ (x, tn) (40)

⇡Mtn

⇥
 (x, tn),rx (x, tn),r2

x (x, tn), · · ·
⇤
(tn+1 � tn) + (x, tn). (41)

One can see Eq. 41 can be regarded as a special case of our model Eq. 3, where we absorb Mtn , time
interval tn+1 � tn, and the residual term  (x, tn) into one ⇧. Considering our multi-layer model
INSP-ConvNet (see Sec. 3.3), we can analogize tn to the layer number, and then solving Eq. 39 at
time tN is approximately equal to forward passing an N -layer INSP-ConvNet.

E More Experiment Details

We implement our INSP framework using PyTorch. The gradients are obtained directly using the
autograd package from PyTorch. All learnable parameters are trained with AdamW optimizer and
a learning rate of 1e-4. For low-level image processing kernels, images are obtained from Set5
dataset [75], Set14 dataset [76], and DIV-2k dataset [77]. These datasets are original collected for
super-resolution task, so the images are diverse in style and content. In our experiments, we construct
SIREN [28] on each image. For efficiency, we resized the images to 256⇥ 256. We use 90 images to
construct the INRs used for training, and use the other images for evaluation.

For image classification, we construct a 2-layer INSP-ConvNet framework. Each INSP layer con-
structs the derivative computational graphs of the former layers and combines them with learnable
⇧. The INSP-layer is capable of approximating a convolution filter. For a fair comparison, we build
another 2-layer depthwise convolutional network running on image pixels as the baseline. Both our
INSP-ConvNet and the ConvNet running on pixels are trained with the same hyper-parameters. Both
experiments take 1000 training epochs, with a learning rate of 1e� 4 using AdamW optimizer.

F More Experimental Results

Additional Visualization. In this section, we provide more experimental results. Fig. 9 provides
comparisons on edge detection task. Fig. 10 shows image denoising results. Fig. 11 demonstrates
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PSNR SSIM LPIPS
Input (decoded from INR) 20.51 0.47 0.40

MPRNet [81] 23.95 0.72 0.36
MAXIM [91] 24.64 0.74 0.33
Mean Filter 22.57 0.60 0.43
INSP-Net 23.86 0.65 0.38

Table 2: Quantitative result of image denoising on 100 testing images from DIV-2k dataset [77],
where the synthetic noise is rgb gaussian noise. The noise is similar to the ones seen during the
training of MPRNet and MAXIM, so they obtain better performance with the help of a much wider
training set.

image deblurring results. Fig. 12 shows image blurring results. Fig. 13 shows image inpainting
results. Fig. 14 presents additional results on geometry smoothening.

Additional Quantitative Results. We also provide quantitative comparisons on the test set in
Tab. 2. The test set consists of 100 INRs fitted from 100 images in DIV-2k dataset [77]. In Tab. 2,
their performance is better when the synthetic noise becomes three-channel Gaussian noise. The
synthetic noise is similar to those seen during the training process of MPRNet [81] and MAXIM [91],
so they benefit from their much wider training set.

Audio Signal Processing. We additionally validate the ability of our INSP framework by processing
audio signals. We add synthetic Gaussian noise onto the audio and use it to fit a SIREN. The noisy
audio decoded from the INR is shown in Fig. 15(b). Then we use our INSP-Net to implicitly process
it to a new INR that can be further decoded into denoised audio. It’s decoded result is shown in
Fig. 15(c). We also provide visualization of the denoising effect in Fig. 15(f).
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Input Image Sobel Filter Canny Filter Prewitt Filter INSP-Net

Figure 9: Edge detection. We fit the natural images with SIREN and use our INSP-Net to process
implicitly into a new INR that can be decoded into edge maps.
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Noisy Image Mean Filter MPRNet INSP-Net Target Image

Figure 10: Image denoising. We fit the noisy images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural clear images.
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Blur Image Wiener Filter MPRNet INSP-Net Target Image

Figure 11: Image deblurring. We fit the blurred images with SIREN and train our INSP-Net to
process implicitly into a new INR that can be decoded into clear natural images.
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Original Image Box Filter Gaussian Filter INSP-Net

Figure 12: Image blurring. We fit the natural images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into blurred images.
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Input Image Mean Filter LaMa INSP-Net Target Image

Figure 13: Image inpainting. We fit the input images with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into natural images. Note that LaMa requires explicit
masks to select the regions for inpainting and the masks are roughly provided. The first two rows
contain input images with random pixels erased. The last two rows contain input images with text
contamination.

INR Fitted SDF SDF Smoothened by INSP-Net

Figure 14: Additional results on geometry smoothening via INSP-Net. Left: unprocessed geometry
decoded from an unprocessed INR. Right: smoothened geometry decoded from the output INR of
our INSP-Net. Best view in a zoomable electronic copy.
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(a) Ground truth clear audio. (b) Input noisy audio (decoded from
INR).

(c) Output audio of INSP-Net.

(d) Difference between input and
ground truth.

(e) Difference between output and
ground truth.

(f) Contrast between input (blue)
and output (red) differences.

Figure 15: Audio denoising. We fit the noisy audio with SIREN and train our INSP-Net to process
implicitly into a new INR that can be decoded into denoised audio.
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