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Abstract

With increasing privacy concerns in artificial intelligence, regulations have man-1

dated the right to be forgotten, granting individuals the right to withdraw their2

data from models. Machine unlearning has emerged as a potential solution to3

enable selective forgetting in models, particularly in recommender systems where4

historical data contains sensitive user information. Despite recent advances in5

recommendation unlearning, evaluating unlearning methods comprehensively re-6

mains challenging due to the absence of a unified evaluation framework and7

overlooked aspects of deeper influence, e.g., fairness. To address these gaps,8

we propose CURE4Rec, the first comprehensive benchmark for recommendation9

unlearning evaluation. CURE4Rec covers four aspects, i.e., unlearning Com-10

pleteness, recommendation Utility, unleaRning efficiency, and recommendation11

fairnEss, under three data selection strategies, i.e., core data, edge data, and random12

data. Specifically, we consider the deeper influence of unlearning on recom-13

mendation fairness and robustness towards data with varying impact levels. We14

construct multiple datasets with CURE4Rec evaluation and conduct extensive15

experiments on existing recommendation unlearning methods. Our code is released16

at https://github.com/xiye7lai/CURE4Rec.17

1 Introduction18

Over the past few years, growing concerns over information abundance and data leakage have19

intensified the focus on privacy preservation within artificial intelligence. Regulations such as20

the General Data Protection Regulation (GDPR) (Union, 2018), the California Consumer Privacy21

Act (Pardau, 2018)and the Delete Act (Information, 2023) grant individuals the right to be forgotten,22

requiring the deletion of personal data used in information systems. Nowadays, the ubiquitous23

application of machine learning models in information systems poses potential risks for memorizing24

training data (Fredrikson et al., 2015). Consequently, the aforementioned regulations also require25

forgetting the associated data memory within the trained models, giving rise to the concept of26

machine unlearning. Recently, machine unlearning has gained increasing popularity in computer27

vision (Bourtoule et al., 2021; Gupta et al., 2021), natural language processing (Chen & Yang, 2023;28

Eldan & Russinovich, 2023), and recommender systems (Chen et al., 2022; Li et al., 2023a,b). As29

recommender systems typically rely on historical interaction data to extract user preferences, the30

recommendation model inherently contains sensitive user information. Therefore, there is a crucial31
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Figure 1: An illustration of CURE4Rec, a comprehensive benchmark tailored for evaluating recom-
mendation unlearning methods. CURE4Rec evaluates unlearning methods using data with varying
levels of unlearning impact on four aspects, i.e., unlearning completeness, recommendation utility,
unlearning efficiency, and recommendation fairness.

need for unlearning to preserve privacy. The task of machine unlearning in recommender systems is32

termed as recommendation unlearning.33

While machine unlearning has demonstrated significant potential in preserving user privacy, con-34

ducting a comprehensive evaluation of unlearning methods continues to pose difficulties. Various35

unlearning methods employ distinct evaluation metrics, yet a universally applicable evaluation frame-36

work remains absent. Specifically, existing evaluation methods predominantly focus on the unlearning37

completeness, unlearning efficiency, and its impact on model utility, overlooking the deeper influence38

of model properties.39

In this paper, we identify two overlooked aspects of deeper influence. Firstly, fairness is a crucial con-40

sideration for recommendations (Wang et al., 2023), but is often neglected in unlearning evaluations.41

Ensuring fair recommendation outcomes can avoid user discrimination and enrich the recommenda-42

tion platform’s understanding of user preferences. Existing studies demonstrate that unlearning can43

affect the fairness of models (Oesterling et al., 2024). Secondly, existing evaluation methods neglect44

the influence of various unlearning sets, randomly selecting data for unlearning. Distinct unlearning45

sets, however, can result in significantly different impacts on model performance (Fan et al., 2024).46

Performing comprehensive evaluations on different unlearning data contributes to understanding the47

robustness of unlearning methods.48

To address these issues, we introduce CURE4Rec, a comprehensive benchmark specifically designed49

to evaluate recommendation unlearning methods. As shown in Figure 1, CURE4Rec’s evaluation en-50

compasses four aspects, i.e., unlearning completeness, recommendation utility, unlearning efficiency,51

and recommendation fairness. Additionally, each aspect is investigated with three data selection52

strategies, i.e., core data, edge data, and random data. This triadic breakdown tests to reflect the53

robustness of recommendation unlearning methods towards different unlearning sets. The main54

contributions of this work are summarized as follows:55

• We introduce CURE4Rec, a comprehensive benchmark tailored for evaluating recommendation56

unlearning methods. CURE4Rec enables evaluation across multiple aspects, including unlearning57

completeness, recommendation utility, unlearning efficiency, and recommendation fairness.58
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• To the best of our knowledge, we are the first to investigate the impact of unlearning on recommen-59

dation fairness, introducing fairness evaluation to comprehensively grasp its impact and proposing60

additional requirements to consider for further research.61

• We further examine the impact of different unlearning sets. Based on the level of collaboration,62

we select core data, edge data, and random data to construct unlearning sets respectively, aim-63

ing to thoroughly explore the impact towards unlearning completeness, recommendation utility,64

unlearning efficiency, and recommendation fairness.65

• We offer multiple datasets tailored for evaluation using our CURE4Rec. Furthermore, we con-66

duct extensive experiments across existing recommendation unlearning methods and report their67

performance (refer to Figure 2 for an overview of our results).68

2 Related Work69

2.1 Machine Unlearning70

Machine unlearning aims to eliminate the memory of specific data, serving purposes such as privacy71

protection (Liu et al., 2022) and erasing data biases (Sattigeri et al., 2022; Chen et al., 2024).72

According to the level of unlearning completeness, existing machine unlearning methods can be73

categorized into two approaches, i.e., exact unlearning and approximate unlearning.74

Exact Unlearning (EU) aims to completely eliminate the influence of target data on the model. The75

most straightforward method of exact unlearning is retraining the model from scratch on the updated76

dataset (removing the target data), but this method incurs a significant computational time cost. To77

mitigate this cost, existing EU methods revamp the training process via ensemble learning, which78

limits the retraining cost to sub-datasets or sub-models (Bourtoule et al., 2021; Yan et al., 2022).79

Approximate Unlearning (AU) achieve unlearning through direct parameter manipulation, avoiding80

the significant time cost of retraining. Most AU methods utilize gradients or influence function to81

estimate the influence of target data and subsequently remove it from models (Sekhari et al., 2021;82

Wu et al., 2022; Mehta et al., 2022). Alternatively, other methods directly prune or dampen model83

parameters to achieve unlearning (Wang et al., 2022; Foster et al., 2024).84

2.2 Recommendation Unlearning85

Recommendation unlearning aims to eliminate the influence of target data within the recommender86

system. A naive approach to achieve recommendation unlearning is through the direct application87

of the classic unlearning method, i.e., SISA (Bourtoule et al., 2021). Due to the collaborative88

characteristics of recommendation data, tailored methods have been proposed to improve SISA for89

recommendation unlearning, e.g., RecEraser (Chen et al., 2022) and UltraRE (Li et al., 2023a). In90

addition to EU methods mentioned above, AU method also enters the scene, utilizing refined influence91

functions to enable recommendation unlearning (Li et al., 2023b).92

2.3 Machine Unlearning Benchmarks93

Emerging research has pioneered early investigation into unlearning benchmarks, focusing on image94

classification (Choi & Na, 2023), large language models (Maini et al., 2024; Li et al., 2024), and95

diffusion models (Zhang et al., 2024). By proposing new datasets or modifying existing ones, these96

investigations design depth evaluation metrics within their corresponding domains. However, these97

benchmarks leave unexplored deeper influence of unlearning on model properties, i.e., fairness and98

robustness. This exploration is crucial for recommender systems, as alternations in the performance99

of recommendation models immediately affect recommendation lists, eventually influencing use100

experience. To the best of our knowledge, we are the first to introduce a recommendation unlearning101

benchmark, and comprehensively explore the deeper influence of unlearning on recommendation102

fairness and robustness.103
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3 CURE4Rec104

In this section, we first recall the process of recommendation unlearning, outlining the necessary105

inputs for evaluations. Then, we introduce evaluation aspects of our proposed CURE4Rec, detailing106

specific metrics for each aspect. Finally, we present the strategy for unlearning set selection.107

3.1 Recommendation Unlearning108

The entire process of recommendation unlearning consists of four stages: I) completing learning109

process to generate the original model; II) determining the unlearning set, i.e., the unlearning target,110

which is a subset of training data; III) conducting unlearning process based on the original model to111

produce the unlearned model; and IV) evaluating the unlearned model. To ensure reliable evaluation,112

we evaluate unlearning methods using identical training and testing data, employing the same learning113

process to generate the same original model. This ensures that all unlearning methods start from the114

same baseline in stage I. To investigate unlearning robustness, we select three types of unlearning sets115

in stage II (Section 3.3). In stage IV, CURE4Rec’s evaluation includes the four aspects (Section 3.2).116

In the context of recommendation, unlearning targets may vary among users, items, and user-item117

interactions. Commonly, recommendation unlearning scenarios focus on user-wise unlearning (Li118

et al., 2023a). Thus, our benchmark primarily investigates the user-wise unlearning scenarios.119

3.2 Evaluation Aspects120

Unlearning Completeness. Unlearning completeness stands as the primary goal and fundamental121

requirement of recommendation unlearning. Exact unlearning methods inherently guarantee unlearn-122

ing completeness by retraining, which is the only authorized approach (Thudi et al., 2022). On the123

other hand, approximate unlearning methods, lacking the ability to achieve authorized unlearning,124

often require the demonstration of unlearning completeness through theoretical proofs or empirical125

studies. Therefore, following the completeness evaluation of approximate unlearning in previous126

studies (Graves et al., 2021; Ma et al., 2022; Li et al., 2023b; Kurmanji et al., 2024), we evaluate127

unlearning completeness of recommendation unlearning based on the attacking performance of128

Membership Inference Oracle (MIO).129

MIO follows the standard membership inference procedure to evaluate unlearning completeness in130

image classification task (Graves et al., 2021; Ma et al., 2022). In the context of recommendation,131

we concatenate user embeddings with the average item embeddings of their respective interacted132

items as the data features, and the probability of being in the training set as the data label. Please133

refer to Section A.2 for more training details. To evaluate unlearning completeness, we query MIO134

with the unlearned data points. Ideally, MIO outputs 1 (indicating presence in the training set) for135

the original model and 0 (indicating absence from the training set) for the unlearned model. Since136

exact unlearning methods guarantee complete unlearning, we only evaluate the completeness of137

approximate unlearning methods.138

Recommendation Utility. Recommendation unlearning aims to erase the memory of target data139

within recommender systems without causing harm to the knowledge acquired from the remaining140

data. Thus, preserving the recommendation utility of the remaining data is another important goal of141

unlearning. To investigate the impact of unlearning on model utility, we employ two widely used142

metrics, i.e., Normalized Discounted Cumulative Gain (NDCG) and Hit Ratio (HR), to evaluate the143

recommendation performance of the unlearned model on the testing set. For both metrics, we truncate144

the ranked list to 20 items.145

Unlearning Efficiency. Retraining from scratch represents the gold standard in unlearning, but146

its practical implementation carries a prohibitive computational overhead. Recommender systems147

encompass hundreds of thousands of users, generating a large amount of unlearning requests. There-148

fore, improving unlearning efficiency is a crucial goal of recommendation unlearning. We measure149
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unlearning efficiency by the total runtime of the entire unlearning process, i.e., stage III. Note that we150

enable parallel training for exact unlearning.151

Recommendation Fairness. Previous research has demonstrated that unlearning affects deeper152

model properties such as fairness (Oesterling et al., 2024). Mitigating the negative impact of153

unlearning is also an important requirement of unlearning. In this paper, we evaluate the group154

fairness of recommendation unlearning from the following two perspectives: i) the fairness between155

active and inactive groups (A-IGF), and ii) the fairness among different shards (shardGF), as exact156

unlearning methods divide the datasets into multiple shards.157

For A-IGF, we follow the representative user-oriented group fairness research in recommendation (Li158

et al., 2021). Based on the number of interactions, we classify the top 5% of users as the active group159

and the remaining 95% users as the inactive group. Active and inactive users are selected outside the160

unlearning set, because we aim to investigate the impact on the remainder users. Then we compute161

the difference of the average recommendation utility, i.e., NDCG@20, between active and inactive162

groups to represent A-IGF. For shardGF, we report the variance of recommendation utility among all163

shards to compare the shard-level fairness (Rastegarpanah et al., 2019). Note that we do not compute164

shardGF for approximate unlearning, because these methods do not involve sharding.165

3.3 Unlearning Set Selection166

Existing evaluation methods typically select data randomly for the unlearning set. However, previous167

studies have shown that i) poisoned data can be constructed to make it hard to unlearn (Marchant168

et al., 2022), and ii) different data points have varying difficulty of unlearning (Fan et al., 2024).169

Motivated by these findings, in this paper, we explore the impact of using varying unlearning sets,170

which can also reflect the robustness of unlearning.171

To significantly demonstrate this impact, we adopt a model-agnostic selection strategy to create172

three types of unlearning sets: core data (which impacts many other data points), edge data (with173

minimal impact on others), and random data. Specifically, we regard the user-item interactions as a174

non-weighted bipartite graph, where users and items are represented as nodes, and an edge connects175

them if there is an interaction. Existing research suggests that a node’s importance correlates strongly176

with its centrality in a graph (Haveliwala, 2002; Li et al., 2012; Park et al., 2019). In the context of177

recommendation, centrality is associated with collaborations, manifested as neighbors in a graph.178

Thus, we define the importance of a node x as follows:179

I(x) = c(x) ·
∑

y∈N(x) c(y)

|N(x)|
, (1)

where c(x) denotes the centrality of node x, and N(x) denotes the number of neighbors of node x.180

Due to the collaborative characteristic of recommendation data, we use the degree of node, i.e., the181

number of first-order neighbors, to compute centrality. Finally, we rank all nodes based on I(x) to182

select the core data and edge data.183

4 Experimental Setup184

4.1 Datasets185

We conduct experiments on three real-world datasets widely used in recommendation. ML-100K1:186

The MovieLens dataset is one of the most extensively utilized datasets in recommender system187

research. MovieLens 100k contains 100 thousand individual ratings. ML-1M: MovieLens 1M188

contains 1 million ratings. ADM2: The Amazon dataset comprises multiple subsets categorized189

according to different types of Amazon products. One of these subsets, known as the Amazon Digital190

Music (ADM) dataset, includes ratings of digital music. Following the widely used pre-processing191

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/
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procedure (He et al., 2017; Wang et al., 2019; He et al., 2020), we convert ratings into implicit192

feedback. The statistical details of these datasets are summarized in Table 4. To avoid extreme193

sparsity, we filter out the users and items that have less than 5 interactions. For each dataset, we194

randomly select 80% ratings as the training set, 10% ratings as the validation set, and the remaining195

as the test set. The unlearning ratio, i.e., the percentage of unlearning set within the training set, is196

initially set as 5%. We also explore this ratio within a range of (5%, 10%, 15%, 20%) in Appendix B.4.197

4.2 Recommendation Models198

Aligning with existing studies on recommendation unlearning (Chen et al., 2022; Li et al., 2023b,a),199

we use three representative recommendation models based on collaborative filtering for evaluation:200

• WMF: Weighted Matrix Factorization(WMF) (Chen et al., 2020) is a non-sampling recommen-201

dation model that treats all missing interactions as negative interactions and assigns them with202

uniform weights.203

• BPR: Bayesian Personalized Ranking (Rendle et al., 2012) is a widely used recommendation model204

that uses a Bayesian personalized ranking objective function to optimize matrix factorization.205

• LightGCN: LightGCN (He et al., 2020) is the state-of-the-art collaborative filtering model, which206

improves recommendation performance by simplifying graph neural networks.207

4.3 Unlearning Methods208

We consider the following recommendation unlearning methods, including both EU and AU ap-209

proaches (note that we set the number of shards to 10 for EU and explore other values in Section 5.5):210

• Retrain: Retraining from scratch is the goal standard unlearning method.211

• SISA: SISA (Bourtoule et al., 2021) stands as the classic algorithm for machine unlearning,212

adaptable to various scenarios, including recommender systems.213

• RecEraser: RecEraser (Chen et al., 2022) is specifically designed for recommendation unlearning,214

which modifies SISA to boost performance in recommendation tasks.215

• UltraRE: UltraRE (Li et al., 2023a) enhances RecEraser for recommendation tasks by modifying216

two key stages, i.e., division and aggregation.217

• SCIF: SCIF (Li et al., 2023b) is the first approximate unlearning method in recommendation218

systems, employing influence functions tailored for recommendation tasks.219

4.4 Parameters Settings220

Unlearning 
 Efficiency

Recommendation 
 Utility

Unlearning
Completeness

Recommendation
Fairness

SISA
RecEraser
UltraRE
SCIF

Figure 2: A visualized evaluation overview of rec-
ommendation unlearning methods in four aspects
(↑), where the result is the normalized average
outcome obtained across all models and datasets,
using random data as the unlearning set. The rec-
ommendation fairness is measured by A-IGF (fair-
ness between active and inactive users).

In the training phase of original models, we221

randomly sample 4 negative items for each ob-222

served interaction following (He et al., 2017).223

In the case of model-specific hyper-parameters,224

we tune them in the ranges suggested by their225

original papers. In detail, the batch size is set to226

512, the learning rate is set to 0.01, the embed-227

ding size is set to 32. The maximum number of228

epochs is set to 500. The early stopping strategy229

is adopted in our experiments, which terminates230

the training when NDCG@20 on the validation231

set does not increase for 5 successive epochs.232

5 Results and Discussion233

In this section, we report and analyze the results234

regarding four evaluation aspects under three selections of unlearning sets. We present a visualized235

overview of compared recommendation unlearning methods in Figure 2. We observe that apart236
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Table 1: Results in terms of unlearning completeness (MIO accuracy - approaching 0.5), recommen-
dation utility (NDCG and HR ↑), and recommendation fairness (A-IGF - approaching Retrain) for the
approximate recommendation unlearning method, where Learn denotes the results before unlearning.
Core, random, and edge respectively refer to the selection of the unlearning sets as core data, random
data, and edge data.

ML-100K ML-1M ADM

NDCG@20 HR@20 MIO A-IGF NDCG@20 HR@20 MIO A-IGF NDCG@20 HR@20 MIO A-IGF

Learn 0.3215 0.3415 0.722 -0.0450 0.2144 0.2112 0.741 -0.042 0.0277 0.0578 0.756 0.0167

Retrain
Core 0.3187 0.3295 0.540 -0.0184 0.2196 0.2174 0.544 -0.0188 0.0221 0.0446 0.555 0.0053
Random 0.2872 0.3353 0.538 -0.0403 0.2124 0.2108 0.547 -0.0507 0.0252 0.0519 0.556 0.0141
Edge 0.3091 0.3140 0.536 -0.0430 0.2148 0.2051 0.546 -0.0518 0.0272 0.0554 0.556 0.0164

SCIF
Core 0.2483 0.2382 0.561 -0.0322 0.1865 0.1629 0.569 -0.0213 0.0194 0.0398 0.571 0.0094
Random 0.2699 0.2617 0.563 -0.0268 0.1922 0.1785 0.571 -0.0311 0.0227 0.0461 0.575 0.0106
Edge 0.2894 0.3012 0.601 -0.0375 0.2031 0.1811 0.623 -0.0191 0.0245 0.0502 0.579 0.0103

Table 2: Results in terms of recommendation utility for exact recommendation unlearning methods.

ML-100K
Retrain SISA RecEraser UltraRE

Core Random Edge Core Random Edge Core Random Edge Core Random Edge

WMF
NDCG@20 0.3187 0.2872 0.3091 0.2096 0.2092 0.2041 0.2285 0.2208 0.2109 0.2303 0.2354 0.2149
HR@20 0.3295 0.3353 0.3140 0.2094 0.2049 0.1892 0.2218 0.2142 0.1979 0.2267 0.2282 0.2027

BPR
NDCG@20 0.3111 0.3003 0.3043 0.2244 0.2324 0.2298 0.2614 0.2615 0.2694 0.2708 0.2764 0.2743
HR@20 0.3151 0.3028 0.2987 0.2203 0.2259 0.2179 0.2724 0.2658 0.2620 0.2851 0.2813 0.2695

LightGCN
NDCG@20 0.3175 0.3121 0.3101 0.1802 0.1932 0.1964 0.2856 0.2905 0.2886 0.2952 0.3069 0.3063
HR@20 0.3250 0.3253 0.3244 0.1724 0.1907 0.1911 0.3053 0.3099 0.3121 0.3123 0.3201 0.3185

ML-1M
Retrain SISA RecEraser UltraRE

Core Random Edge Core Random Edge Core Random Edge Core Random Edge

WMF
NDCG@20 0.2196 0.2124 0.2148 0.1780 0.1639 0.1714 0.1894 0.1796 0.1838 0.1926 0.1891 0.1970
HR@20 0.2174 0.2108 0.2051 0.1612 0.1485 0.1493 0.1731 0.1592 0.1596 0.1747 0.1680 0.1717

BPR
NDCG@20 0.2462 0.2319 0.2336 0.1545 0.1530 0.1628 0.1826 0.1660 0.1860 0.1828 0.1856 0.1913
HR@20 0.2279 0.2162 0.2118 0.1353 0.1329 0.1367 0.1627 0.1450 0.1624 0.1652 0.1632 0.1651

LightGCN
NDCG@20 0.2177 0.2108 0.2147 0.1504 0.1533 0.1642 0.1864 0.1863 0.1814 0.1969 0.1867 0.1806
HR@20 0.2138 0.2045 0.2186 0.1365 0.1323 0.1581 0.1825 0.1804 0.1818 0.1907 0.1855 0.1798

ADM
Retrain SISA RecEraser UltraRE

Core Random Edge Core Random Edge Core Random Edge Core Random Edge

WMF
NDCG@20 0.3691 0.3566 0.3556 0.2720 0.2589 0.2515 0.3373 0.3256 0.3185 0.3420 0.3334 0.3347
HR@20 0.4071 0.3822 0.3848 0.2617 0.2492 0.2471 0.3527 0.3467 0.3203 0.3689 0.3595 0.3501

BPR
NDCG@20 0.3566 0.3453 0.3499 0.2806 0.2708 0.2757 0.3286 0.3295 0.3212 0.3325 0.3301 0.3314
HR@20 0.3821 0.3628 0.3718 0.2745 0.2638 0.2611 0.3486 0.3406 0.3483 0.3541 0.3569 0.3608

LightGCN
NDCG@20 0.0105 0.0106 0.0096 0.0075 0.0054 0.0048 0.0084 0.0085 0.0079 0.0097 0.0088 0.0086
HR@20 0.0221 0.0234 0.0208 0.0157 0.0112 0.0103 0.0171 0.0176 0.0154 0.0191 0.0185 0.0183

from unlearning completeness, the AU method (SCIF) demonstrates a significant advantage over237

EU methods (SISA, RecEraser, and UltraRE), particularly in terms of unlearning efficiency and238

recommendation fairness. However, it is essential to highlight that unlearning completeness is239

the primary goal of unlearning. EU methods inherently achieve the highest level of completeness,240

whereas SCIF can only achieve weak unlearning.241

5.1 Unlearning Completeness242

To evaluate the completeness of AU methods, we report the accuracy of MIO in Table 1, where the243

recommendation model is WMF. Due to the space limit, we report the results of other models in244

Appendix B.2. Compared the result of SCIF with the performance before unlearning and Retrain245

after unlearning, we observe that i) both SCIF and Retrain significantly decrease the MIO accuracy,246

indicating their effectiveness in unlearning; ii) although not significant, there is still a marginal gap247

between SCIF and Retrain (ground truth), i.e., 4.1% higher accuracy than Retrain on average; and iii)248

SCIF particularly performance worse on edge data compared to other data types. This discrepancy249

may be attributed to imprecise influence estimation for this specific data category.250
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Table 3: Results in terms of unlearning efficiency (running time in seconds ↓).

Time (s)
ML-100K ML-1M ADM

WMF BPR LightGCN WMF BPR LightGCN WMF BPR LightGCN

Retrain
Core 4296 5238 4734 7748 9113 8645 3682 6998 5225
Random 4526 5494 5044 8693 9461 10324 3972 7127 5354
Edge 4687 5527 5274 8006 9748 10497 4127 7351 6359

SISA
Core 402 488 437 1160 1160 1523 669 1750 1009
Random 467 586 528 1256 1265 1605 717 1842 1246
Edge 442 504 515 1280 1292 1659 751 1902 1077

RecEraser
Core 463 582 561 1533 1568 1846 865 1892 1106
Random 476 693 656 1654 1660 1952 912 1945 1490
Edge 489 659 617 1736 1819 1964 965 2032 1190

UltraRE
Core 457 591 559 1507 1493 1667 819 1810 1057
Random 482 618 645 1595 1550 1834 901 1862 1283
Edge 466 518 666 1781 1791 1955 923 1904 1368

SCIF
Core 289 336 316 784 784 1034 453 1186 682
Random 325 403 368 862 860 1083 497 1242 841
Edge 316 358 359 887 877 1126 520 1282 733

Retrain SISA RecEraser UltraRE
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Figure 3: Results in terms of recommendation fairness for exact recommendation unlearning methods
on WMF, where A-IGF (approaching Retrain) and shardGF (↓) evaluate the fairness of group-level
and shard-level, respectively.

5.2 Recommendation Utility251

We report the results in terms of recommendation utility for AU and EU in Tables 1 and 2, respectively.252

In general, the AU method (SCIF) outperforms the EU methods (SISA, RecEraser, and UltraRE).253

Employing the same unlearning set, RecEraser and UltraRE consistently outperform SISA across all254

datasets and models, with UltraRE generally surpassing RecEraser, aligning with previous research (Li255

et al., 2023a).256

For all EU methods, the recommendation utility of unlearning core users is generally higher than257

that of unlearning random-select or edge users. This is likely due to the removal of data from more258

interactive users, which typically contains a large amount of ratings. This enables the model to259

learn more effectively from the smaller amount of remaining training data. Compared with these260

EU methods, SCIF exhibits the highest recommendation utility, closely resembling that of Retrain.261

However, SCIF suffers the most substantial performance decline when unlearning core users. This262

can be attributed to the increased number of interactions involved in calculating the influence function,263

leading to inaccurate influence estimation that negatively impacts the model utility.264

5.3 Unlearning Efficiency265

We report the unlearning times in Table 3. In general, SCIF is more efficient than EU methods.266

Among the EU methods, SISA saves more time compared to RecEraser and UltraRE, because it267

does not have the complex division and aggregation stage specific to the recommendation scenarios.268

Due to its design, UltraRE is slightly more efficient than RecEraser. Additionally, EU methods take269

less time to unlearn core users since they have a larger amount of interaction data. This reduces the270
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Figure 4: Effect of shard number in terms of multiple aspects, i.e., recommendation utility (↑),
unlearning efficiency (↓), group-level fairness (approaching Retrain), and shard-level fairness (↓).

amount of data left for retraining. On the contrary, SCIF requires more computations for influence271

estimation on core users, resulting in higher time costs compared to unlearning random or edge users.272

5.4 Recommendation Fairness273

We also report the recommendation fairness of AU and EU methods in Table 1 and Figure 3,274

respectively. For the group-level fairness (A-IGF), compared to the AU method (SCIF), EU methods275

notably worsen unfairness, tending to favor active users. This is primarily attributed to the division276

stage of EU methods, with this effect becoming more pronounced on larger datasets, i.e., ML-1M and277

ADM. Moreover, RecEraser and UltraRE, which group active users together instead of randomly, as278

done by SISA, exacerbate unfairness even further. For the shard-level fairness (shardGF), although to279

a lesser extent compared to group-level fairness, RecEraser and UltraRE also exacerbate unfairness.280

5.5 Effects of Shard Number281

We report the effect of shard number in terms of multiple aspects in Figure 4, using WMF on282

ML-100K. Firstly, as the number of shards increases, the unlearning efficiency improves, but the283

recommendation utility deteriorates, as confirmed by several previous studies (Chen et al., 2022;284

Li et al., 2023a). Secondly, the increased shard number further groups the active users into smaller285

shards, exacerbating the group-level fairness. At the same time, it reduces the discrepancy among all286

shards, diminishing the shard-level fairness.287

6 Conclusion288

In this paper, we present a comprehensive benchmark, CURE4Rec, for recommendation unlearning289

methods, aiming to analyze and inspire further exploration into the deeper influence of recom-290

mendation unlearning. Specifically, CURE4Rec covers four evaluation aspects, i.e., unlearning291

completeness, recommendation utility, unlearning efficiency, and recommendation fairness. Ad-292

ditionally, we investigate unlearning robustness across three unlearning sets, i.e., core data, edge293

data, and random data. Through extensive experiments, we compare the performance of various294

recommendation unlearning methods using our proposed benchmark. Our experiments reveal that i)295

the division-aggregation design of the EU approach has dual implications. On one hand, it inherently296

achieves unlearning completeness. On the other hand, it compromises other evaluation aspects. and297

ii) The AU approach, which directly manipulates model parameters, outperforms the EU approach in298

all aspects except completeness, with less negative influence on model properties, e.g., fairness.299

Limitation and Boarder Impact. This paper proposes a benchmark for recommendation un-300

learning, comprising four evaluation aspects. This design also offers insights for other unlearning301

scenarios. Simultaneously, there is considerable room for improvement in the specific evaluation302

metrics within each aspect. For example, concerning unlearning completeness, a recent study suggests303

a game-theoretic view to expand completeness evaluation to the EU approach. Additionally, the AU304

approach appears to outperform the EU approach in all aspects except completeness. The trade-off305

between completeness and other aspects is an intriguing direction that is not discussed in this paper.306
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A Experimental Setup450

A.1 Datasets451

We provide a statistics summary of our used datasets in Table 4.452

Table 4: Summary of datasets.

Dataset User # Item # Interactions # Sparsity

ML-100K 943 1,349 99,287 92.195%
ML-1M 6,040 3,416 999,611 95.155%
ADM 478,235 266,414 836,006 99.999%

A.2 MIO Training Details453

Following (Li et al., 2023b), we adopt an ideal concept, i.e., Membership Inference Oracle (MIO),454

to evaluate unlearning completeness. Specifically, We implement an approximated MIO via a basic455

three-layer (64, 16, 4) neural network with ReLu and Softmax as activation functions for hidden456

layers and the output layer respectively. We train the MIO via stochastic gradient descent with 100457

epochs and a learning rate of 0.001. The MIO outputs the probability of the queried data point being458

in the training set. To evaluate the unlearning completeness, we query MIO with the unlearned data459

points. Ideally, MIO outputs 1 (being in the training set) for the original model while outputs 0 (not460

being in the training set) for the unlearned model.461

A.3 Hardware Information462

We run all experiments on the same Ubuntu 20.04 LTS System server with 48-core CPU, 256GB463

RAM and NVIDIA GeForce RTX 3090 GPU.464

B More Results465

B.1 Performance Overview466

We report a visualized overview of compared recommendation unlearning methods on each dataset in467

Figure 5. The results are generally consistent with Figure 2.468

Unlearning 
 Efficiency

Recommendation 
 Utility

Unlearning
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Figure 5: A visualized evaluation overview of recommendation unlearning methods in four aspects
(↑), where the result is the normalized average outcome obtained across all models, using random
data as the unlearning set. The recommendation fairness is measured by A-IGF (fairness between
active and inactive users).

B.2 Unlearning Completeness469

We report the accuracy of MIO in Table 5, where the recommendation model is BPR. We omit the470

results for LightGCN as we encountered difficulties accurately computing the influence function of471

SCIF on ML-1M and ADM based on current hardware.472
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Table 5: Results in terms of unlearning completeness (MIO accuracy - approaching 0.5), recommen-
dation utility (NDCG and HR ↑), and recommendation fairness (A-IGF - approaching Retrain) for the
approximate recommendation unlearning method, where Learn denotes the results before unlearning.
Core, random, and edge respectively refer to the selection of the unlearning sets as core data, random
data, and edge data.

ML-100K ML-1M ADM

NDCG@20 HR@20 MIO A-IGF NDCG@20 HR@20 MIO A-IGF NDCG@20 HR@20 MIO A-IGF

Learn 0.3195 0.3030 0.724 -0.0246 0.2517 0.2306 0.744 -0.0651 0.0251 0.0510 0.759 0.0194

Retrain
Core 0.3111 0.3151 0.536 -0.0217 0.2462 0.2279 0.549 -0.0374 0.0246 0.0504 0.558 0.0066
Random 0.3003 0.3028 0.535 -0.0153 0.2319 0.2162 0.550 -0.0605 0.0203 0.0421 0.561 0.0187
Edge 0.3043 0.2987 0.537 -0.0175 0.2336 0.2118 0.552 -0.0633 0.0203 0.0439 0.555 0.0191

SCIF
Core 0.2392 0.2182 0.565 -0.0116 0.1898 0.1636 0.572 -0.0284 0.0171 0.0336 0.573 0.0096
Random 0.2768 0.2824 0.566 -0.0144 0.2159 0.1886 0.576 -0.0372 0.0189 0.0357 0.573 0.0110
Edge 0.2871 0.2905 0.612 -0.0167 0.2231 0.1942 0.635 -0.0481 0.0200 0.0417 0.588 0.0132
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Figure 6: Results in terms of recommendation fairness for exact recommendation unlearning methods
on BPR, where A-IGF (approaching Retrain) and shardGF (↓) evaluate the fairness of group-level
and shard-level, respectively.

B.3 Recommendation Fairness473

We report the recommendation fairness of exact unlearning methods on each dataset using BPR and474

LightGCN recommendation models in Figures 6 and 7, respectively.475

We also report the grouping results of active and inactive users after applying three exact unlearning476

methods, i.e., SISA, RecEraser, UltraRE, on different datasets in Tables 6, 7, and 8. On the one477

hand, SISA randomly distributes both types of users evenly across groups. On the other hand,478

RecEraser and UltraRE tend to cluster active users into the same groups, which results in certain479

groups containing numerous active users while others have almost none. This clustering result480

explains why RecEraser and UltraRE tend to favor active users, as the concentration of active users481

in certain groups significantly increases their proportion compared to random distribution, leading to482

more effective learning but also more severe unfairness.483
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Figure 7: Results in terms of recommendation fairness for exact recommendation unlearning methods
on LightGCN, where A-IGF (approaching Retrain) and shardGF (↓) evaluate the fairness of group-
level and shard-level, respectively.

15



B.4 Unlearning Ratio484

We report the effect of unlearning data ratio in terms of multiple aspects in Figure 8, using WMF on485

ML-100K. We observe consistent results with previous studies (Bourtoule et al., 2021; Chen et al.,486

2022; Li et al., 2023a). In general, as the ratio of unlearning data increases, the recommendation487

utility gradually decreases, along with a reduction in the unlearning time. Additionally, a larger488

unlearning ratio tends to lead to greater fairness.489

Table 6: Results of user distribution (active vs. inactive) in each shard on dataset ML-100K. The
unlearning data ratio is set to 5%.

ML-100K
Group 1 Group 2 Group 3 Group 4 Group 5

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 4 86 4 86 3 87 7 83 8 82
Random 4 86 8 82 2 88 3 87 6 84
Edge 3 87 6 84 3 87 6 84 6 84

RecEraser
Core 0 90 10 80 0 90 0 90 0 86
Random 0 90 1 89 1 89 0 90 0 90
Edge 0 90 6 84 0 90 0 86 1 89

UltraRE
Core 0 89 11 78 0 90 6 83 0 90
Random 0 90 3 86 3 87 1 89 0 89
Edge 0 89 15 75 1 88 2 87 7 83

ML-100K
Group 6 Group 7 Group 8 Group 9 Group 10

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 1 89 3 86 3 86 6 83 5 84
Random 5 85 4 85 1 88 5 84 6 83
Edge 8 82 2 87 1 88 7 82 2 87

RecEraser
Core 0 90 0 90 28 62 0 90 6 84
Random 6 84 9 81 0 90 27 63 0 86
Edge 0 90 9 81 0 90 27 63 1 89

UltraRE
Core 7 83 10 80 1 89 0 89 9 81
Random 3 87 1 88 0 89 18 72 15 75
Edge 0 90 1 89 0 90 7 82 11 79

Table 7: Results of user distribution (active vs. inactive) in each shard on dataset ML-1M. The
unlearning data ratio is set to 5%.

ML-1M
Group 1 Group 2 Group 3 Group 4 Group 5

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 28 546 31 543 26 548 30 544 32 542
Random 25 549 34 540 30 544 23 551 35 539
Edge 36 538 20 554 24 550 32 542 27 547

RecEraser
Core 44 530 52 522 0 572 20 554 5 569
Random 2 570 79 495 44 530 40 534 5 569
Edge 10 564 41 533 74 500 31 543 0 574

UltraRE
Core 0 573 5 569 11 563 12 562 33 541
Random 44 530 6 567 7 567 5 569 13 561
Edge 8 566 9 564 11 563 4 569 23 550

ML-1M
group6 Group 7 Group 8 Group 9 Group 10

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 23 551 25 549 33 541 28 545 30 543
Random 28 546 38 536 22 552 30 543 21 552
Edge 27 547 39 535 33 541 26 547 22 551

RecEraser
Core 64 510 1 573 38 536 35 539 27 547
Random 32 542 1 573 61 513 2 572 20 554
Edge 24 550 2 572 91 483 4 568 9 565

UltraRE
Core 44 530 27 547 18 556 32 541 104 470
Random 3 571 0 574 14 559 7 567 187 387
Edge 0 575 49 525 26 548 155 419 1 573
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Table 8: Results of user distribution (active vs inactive) in each shard on dataset ADM. The unlearning
data ratio is set to 5%.

ADM
Group 1 Group 2 Group 3 Group 4 Group 5

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 96 2078 113 2061 126 2048 117 2057 106 2068
Random 108 2066 112 2062 95 2079 110 2064 84 2090
Edge 112 2062 105 2069 100 2074 120 2054 106 2068

RecEraser
Core 429 1745 0 2174 8 2166 0 2174 0 2169
Random 0 2169 0 2174 453 1721 159 2015 84 2090
Edge 149 2025 84 2090 379 1795 7 2167 0 2169

UltraRE
Core 91 2083 160 2013 65 2108 65 2109 88 2086
Random 41 2132 80 2094 361 1813 81 2093 56 2117
Edge 82 2092 11 2162 201 1972 53 2120 330 1844

ADM
Group 6 Group 7 Group 8 Group 9 Group 10

Active Inactive Active Inactive Active Inactive Active Inactive Active Inactive

SISA
Core 98 2075 112 2061 99 2074 115 2058 104 2069
Random 119 2054 114 2059 135 2038 116 2057 93 2080
Edge 109 2064 106 2067 111 2062 102 2071 115 2058

RecEraser
Core 1 2173 97 2077 388 1786 121 2053 42 2132
Random 9 2165 0 2174 0 2174 4 2170 377 1797
Edge 456 1718 0 2174 0 2174 10 2164 1 2173

UltraRE
Core 65 2109 173 2001 147 2026 123 2051 109 2063
Random 200 1973 50 2124 137 2036 48 2125 32 2142
Edge 82 2091 58 2116 121 2052 55 2119 93 2081
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Figure 8: Effect of unlearning ratio in terms of multiple aspects, i.e., recommendation utility (↑),
unlearning efficiency (↓), group-level fairness (approaching Retrain), and shard-level fairness (↓).
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