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FakingRecipe: Detecting Fake News on Short Video Platforms
from the Perspective of Creative Process

Anonymous Authors

ABSTRACT
As short-form video-sharing platforms become a significant chan-
nel for news consumption, fake news in short videos has emerged
as a serious threat in the online information ecosystem, making
developing detection methods for this new scenario an urgent need.
Compared with that in text and image formats, fake news on short
video platforms contains rich but heterogeneous information in
various modalities, posing a challenge to effective feature utiliza-
tion. Unlike existing works mostly focusing on analyzing what is
presented, we introduce a novel perspective that considers how it
might be created. Through the lens of the creative process behind
news video production, our empirical analysis uncovers the unique
characteristics of fake news videos in material selection and editing.
Based on the obtained insights, we design FakingRecipe, a cre-
ative process-aware model for detecting fake news short videos. It
captures the fake news preferences in material selection from sen-
timental and semantic aspects and considers the traits of material
editing from spatial and temporal aspects. To improve evaluation
comprehensiveness, we first construct FakeTT, an English dataset
for this task, and conduct experiments on both FakeTT and the
existing Chinese FakeSV dataset. The results show FakingRecipe’s
superiority in detecting fake news on short video platforms.

CCS CONCEPTS
• Information systems → Multimedia information systems;
• Security and privacy→ Human and societal aspects of security
and privacy.

KEYWORDS
Fake News Video Detection, Multimodal Computing

1 INTRODUCTION
In recent years, short-form video-sharing platforms like TikTok
have been increasingly popular on mobile Internet and revolutioniz-
ing how people consume news [15, 30]. According to Pew Research
Center, by 2023, 33% of U.S. adults have ever used TikTok [13], with
nearly 43% of these users frequently sourcing their news from this
platform [29]. However, the prevalence of news consumption on
short video platforms also encourages the emergence and spread
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How Might A Fake News Video Be Created?

Step 2 Material Editing

😈

- Fabricate news textual description:
Confirm the news topic and keynote of
emotion

- Temporal: Arrange selected materials
considering their exposure durations and 
the order  

Text: The battle against the 
epidemic is nearing victory, 
residents in Xi’an hang national 
flags spontaneously!

(BGM: The Song I Love You, China)

Begin End

Splice

Impose

😈

- Select visual materials:
Build text-visual semantic association for
plausibleness

😈

Hanging national flag video

- Select audio materials:
Consider how to evoke viewers’ emotional
reactions

😈

😈

Step 1 Material Selection

- Spatial: Impose text on the visual content
and consider textual-visual expression

Figure 1: A fake news video about residents hanging national
flags amid the COVID-19 pandemic in China, exhibited along
with the speculated creative process. The text was translated
into English.

of fake news videos, posing new serious threats to the online infor-
mation ecosystem [4, 44]. Consequently, customizing methods for
detecting short video fake news is of urgent need.

Unlike fake news in text or image formats, fake news on short
video platforms shows unique characteristics and is increasingly
indistinguishable from real news, posing new challenges to develop-
ing effective detectors [4]. First, the easy-to-use video editing tools
largely democratize news creation and enable almost everyone to
edit a news video on par with professional journalists [31], making
the edit traces widely exist in both real and fake news videos. Sec-
ond, due to the public nature of short video platforms, even a real
news video is likely to be repurposed or re-edited for news faking.
However, existing methods for fake news video detection mostly
follow ideas from the research line of text-image-based detection
and focus on modeling what is presented via analyzing the authen-
ticity of multimodal content (e.g., detecting deepfakes [12]) and
modeling cross-modal correlation [7, 35, 41], which are more likely
to be misled by edited and repurposed contents. Faced with the
more vague boundary between the real and the fake, it is necessary
to find new perspectives and capture more effective clues for fake
news video detection.

In this paper, we propose to switch the perspective froman-
alyzing what is presented in a fake news video to considering
how it might be created. Our idea is based on a straightforward
assumption: Fake news creators on short video platforms often lack
first-hand, genuine news materials and professional editing skills
while aiming to produce fake news for specific purposes intention-
ally [42]. This might leave unique characteristics of the resulting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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video. Figure 1 provides an intuitive example of the creative pro-
cess of a fake news video about hanging national flags during the
COVID-19 pandemic. The process typically unfolds in two main
phases:material selection andmaterial editing. For selecting
the material, the creator first confirmed the news topic (i.e., resi-
dents hanging national flags during the pandemic) and the positive
sentiment keynote and crafted an attractive narrative that diverges
from the truth. Due to the lack of real visual materials (unlike real
news), the creator had to repurpose historical materials collected
from the Internet to make the fake video more convincing. Finally,
an emotionally charged song is selected to impress audiences and
achieve its underlying purpose. For the editing phase, the creator
might consider arranging materials from the temporal and spatial
views with the help of simple editing techniques. Due to the con-
straint of material sufficiency and editing skills, the collected visual
materials were arranged with simple splicing temporally, and the
text material was then spatially overlaid on the visual content for
a straightforward textual-visual expression. Through this exam-
ple, we intuitively find that the production of fake news videos
may leave the nuances different from that of real ones in terms
of material selection and editing. Therefore, modeling from the
creative process perspective may help us capture more valuable
instrumental clues for fake news video detection.

Inspired by the observation, in this paper, we first quantitatively
examine how effective the clues from the creative process perspec-
tive are in distinguishing fake and real news videos via an empirical
analysis (Section 2). The results validate that statistical discrepan-
cies exist between real and fake news videos in material selection
and editing. For instance, we find that compared with real ones,
fake news videos exhibit a propensity for selecting more emotion-
ally charged music, using a limited palette of colors, and adopting
a less dynamic on-screen text presentation. Based on the empiri-
cal analysis, we design FakingRecipe, a creative process-aware
model for detecting fake news short videos.1 FakingRecipe is a
dual-branch network that models the characteristics of material
selection and editing. In the two branches, the Material Selection-
Aware Modeling (MSAM) module extracts multimodal features via
attention to capture the sentiment resonance between audio and
text and the semantic relevance between text and visual frames.
The Material Editing-Aware Modeling (MEAM) module models
typical spatial and temporal editing behaviors, via 1) analyzing the
visual area and on-screen texts for the spatial editing; and 2) build-
ing hierarchical temporal structure that considers both intra- and
inter-segment fusion for temporal editing. Ultimately, predictions
from both branches are integrated through a late fusion function
for the final prediction. Experiments on two real-world datasets
demonstrate the superiority of the proposed FakingRecipe over
seven baseline methods. Our main contributions are as follows:
• Idea: We for the first time consider the creative process as a
pivotal aspect for detecting fake news on short video platforms
and demonstrate the feasibility of this perspective through
empirical analysis.

• Method:We propose FakingRecipe, a novel dual-branch model
for fake news video detection that captures useful clues from

1The creative process of faking a news video is metaphorically similar to cooking a
dish following a recipe, so we use FakingRecipe to highlight the model’s uniqueness.

0% 20% 40% 60% 80% 100%

Fake

Real

Neutral Happy Sad Angry

0% 20% 40% 60% 80% 100%
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Real

Neutral Happy Sad Angry
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Real
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Figure 2: Sentiment analysis
of audio material.
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Figure 3: JS divergence be-
tween textual and visual ma-
terials.

the perspective of the creative process, i.e., material selection
and editing phases.

• Resource & Effectiveness:We construct FakeTT, an English
short video dataset for fake news detection. Extensive experi-
ments on both FakeTT and the public Chinese FakeSV dataset
show the superiority of FakingRecipe over existing methods
in fake news video detection. We will publicly release the new
dataset to facilitate further research.

2 EMPIRICAL ANALYSIS
We exhibit themanifestation differences between real and fake news
videos in different phases of news video creation by conducting
empirical analysis on real-world datasets, including the publicly
available Chinese dataset FakeSV [35] and the newly constructed
English dataset FakeTT. We identify the discrepancies between
real and fake news production processes and provide plausible
explanations for these phenomena, highlighting the nuances in the
creative process to evaluate the news video veracity. Considering
that consistent results were observed across both datasets, we only
present findings from FakeSV here due to space limitations and
attach results on FakeTT in the appendix.

2.1 Phase I : Material Selection
Observation 1. When selecting audio materials, fake news tends
to opt for more emotionally charged audio.

Considering background music (BGM) is a predominant option
for short video news creators and the nature of BGM it serves
primarily to evoke emotional responses, our analysis of audio se-
lection behaviors focuses on the emotional aspect. We leverage
the pre-trained wav2vec model [39] that has been fine-tuned for
audio emotion classification. Depicted in Figure 2, we can see that
fake news videos exhibit an inclination towards using emotionally
charged audio. Given that prior work [9] has indicated emotionality
significantly boosts content sharing, we attribute this bias in audio
selection to creators’ intentions to maximize viewer engagement.

Observation 2. When selecting visual materials, fake news often
employs clips that exhibit a relatively lower semantic consistency
with the accompanying text.

We analyze creators’ visual selection behaviors from the perspec-
tive of consistency between selected video materials and accom-
panying text. Specifically, we leverage the pre-trained text-image
representationmodel CLIP [38] to extract textual and visual features.
By normalizing these features and calculating the Jensen-Shannon
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on-screen text.
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Figure 5: On-screen Text Dy-
namics.

(JS) Divergence between the attached text and each frame’s visual
content, we derive an average JS Divergence score across multiple
frames as an indicator of text-visual consistency for the entire video.
A lower indicator value signifies a higher semantic consistency be-
tween the video’s textual and visual content. Figure 3 illustrates
the distinct distributions of JS Divergence between textual and vi-
sual materials for fake and real news. The discrepancies have been
statistically confirmed through the Kolmogorov-Smirnov (KS) test,
with a p-value of less than 0.05. We find that fake news tends to
utilize visual clips with noticeably lower semantic consistency with
the accompanying text. We attribute the observed biases in video
material selection to the nature that fabricated news inherently
lacks access to a rich array of related video materials.

2.2 Phase II : Material Editing
We investigate two fundamental editing operations in video cre-
ation: spatial editing behaviors and temporal editing behaviors.

Observation 3. When spatially imposing text, fake news tends to
display relatively plain textual visuals.

Spatial editing behaviors involve overlaying additional layers
on top of the original visual materials. This can include adding
animated stickers, text, and other elements. Among them, text
imposition is a widely used operation in short news videos (85% in
the FakeSV dataset), with variations reflected in decisions regarding
the text’s placement, color, typeface, and font. Here we quantified
the color characteristics of the text visual areas in real and fake
news videos respectively to explore the differences in color choice
behaviors during text imposition. Figure 4 illustrates that real news
videos tend to use a richer color palette for text presentation. We
attribute this preference to that real news creators often follow
conventional editorial norms and invest more effort to improve the
presentation quality. Conversely, fake news creators often employ
a monochromatic color scheme when imposing text, likely due to a
lack of expertise in news production, leaving them unaware of the
potential impact these details can have on viewers.

Observation 4. When temporally splicing materials, fake news
tends to adopt a relatively simple arrangement.

Temporal editing behaviors, on the other hand, refer to the reor-
ganization and splicing of multiple material segments. The duration
and positioning of different segments can subtly influence view-
ers’ perceptions of the news video. Here we examine the temporal
editing behaviors related to text exposure, analyzing differences in
the temporal arrangement of text segments between real and fake

news. Specifically, we developed an indicator, 𝐼𝐷 , to measure the
dynamism of text presentation. By calculating the mean (𝜇) and
standard deviation (𝜎) of exposure durations (𝑑1, 𝑑2, ...) for different
text phrases within a video, 𝐼𝐷 is defined as 𝜎 (1 − 𝜇), based on the
principle that shorter exposure times and greater variance among
text exposure durations indicate stronger text temporal editing dy-
namism. Figure 5 shows the fitted sample density distribution of
the on-screen text dynamic scores in the FakeSV dataset, revealing
significant differences between the temporal editing behaviors of
real and fake news, with real news exhibiting more dynamic text
presentations. We ascribe this tendency to two factors: First, the
disparity in video creation capabilities, wherein most creators of
authentic news, endowed with professional media training, possess
a nuanced understanding of effectively integrating text with visual
elements. Second, the constraints posed by the availability of ma-
terials. Fabricated news, inherently characterized by its scant and
biased content, often lacks the robust information necessary for
dynamic presentations. This deficiency compels creators to resort
to the static placement of limited information in specific areas of
the screen.

3 METHOD
3.1 Overview
Drawing on the insights from our empirical analysis, we present
FakingRecipe (Figure 6), a creative process-aware fake news video
detection model. The model observes the given news video from
the two pivotal phases of the creative process to unearth veracity
indicating clues. Treating the feature from two phases as indepen-
dent viewpoints, FakingRecipe is structured with dual branches
operating separately and employs a late fusion strategy to integrate
predictions from these independent perspectives.

3.2 Material Selection-Aware Modeling (MSAM)
Based on prior analysis, we examine the creators’ material selec-
tion behavior from two aspects (i.e., sentiment and semantic). The
dominant role of different modalities varies in conveying informa-
tion: Audio primarily expresses emotion, text renders emotional
tones while conveying semantic information, and visuals generally
complement the text to communicate semantic content. Therefore,
we strategically select combinations of modalities for multifaceted
feature extraction, subsequently fusing multimodal features from
multiple viewpoints.

Specifically, for the sentimental aspect, we consider audio and
textual content as the primary sources. We utilize fine-tuned ver-
sions of HuBERT [17] and XLM-RoBERTA [8] as encoders to extract
audio sentimental features H𝑆𝐸𝑁−𝐴 and textual sentimental fea-
turesH𝑆𝐸𝑁−𝑇 , respectively. These sentimental features from differ-
ent modalities are then concatenated and fed into a standard Trans-
former layer [46]. By leveraging self-attention, the transformer
layer fuses multimodal sentimental features to produce a unified
sentimental feature representation H𝑆𝐸𝑁 .

In the semantic aspect, visual and textual contents take prece-
dence, while the audio mainly serves as background music, playing
a minimal role. Keyframes are extracted from videos, serving as the
basis for visual analysis. Utilizing CLIP [38], we encode text and
keyframes to token/frame-level text semantic featuresH𝑆𝐸𝑀−𝑇 and



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Material Editing-
Aware Modeling
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Aware Modeling
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The battle against the epidemic is 
nearing victory, residents in Xi’an 
hang national flags spontaneously! 

Title & TranscriptAudio Key Frames

A-Emotion 
Encoder

T-Emotion
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Encoder

Co-Attention
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(c) Material Editing-Aware Modeling

Spatial Editing Behavior
Text-rich Frame

Temporal Editing Behavior

MLP

Text 
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Image 
Encoder

Two-Way Attention Block

The battle against the
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Hierarchical Temporal Structure Extractor (HTSE)

Frames Intra-seg
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Inter-seg
Fusion

+ Duration Emb

+ Position Emb

TransformerSentiment Semantic

T-Semantic
Encoder

TransformerTransformer

Prompt 
Encoder

Downsampling Network

Material Segments

(b) Material Selection-Aware Modeling

(a) Framework of FakingRecipe

Single-Branch
Predictions

Final
Prediction

(♫ BGM: The Song I Love You, China)

Figure 6: Overview of the proposed FakingRecipe model. (a) Overall framework: The news video is processed through dual
perspectives, with a late fusion strategy employed to integrate clues for final prediction. (b) Material Selection-Aware Model-
ing (MSAM) module: Extracts clues from both sentimental and semantic aspects. (c) Material Editing-Aware Modeling (MEAM)
module: Extracts clues based on spatial and temporal aspects. F (·, ·) denotes the fusion function. The parameters in the
modules in blue are frozen and others are trainable. The overall model is trained under the supervision of the loss functions
L𝐹𝑁𝐷 ,L𝑆 , andL𝐸 . The text in this case is translated into English.

visual semantic features H𝑆𝐸𝑀−𝑉 . Interaction between text and
visual content is facilitated through a co-attention transformer [27],
resulting in visually enhanced textual features H’𝑆𝐸𝑀−𝑇 and tex-
tually enhanced visual features H’𝑆𝐸𝑀−𝑉 . These features are then
averaged, concatenated, and input into a transformer layer mir-
roring the structure used in the sentimental analysis. This process
integrates semantic features from various modalities into a singular
semantic feature representation H𝑆𝐸𝑀 .

The sentimental feature H𝑆𝐸𝑁 and semantic feature H𝑆𝐸𝑁 are
then concatenated and fed into a two-layer MLP to derive the
fake news predicted score 𝑌𝑆 from the material selection analysis
perspective:

𝑌𝑆 = MLP( [H𝑆𝐸𝑁 ;H𝑆𝐸𝑀 ]). (1)

3.3 Material Editing-Aware Modeling (MEAM)
In mining detecting clues from the perspective of creator editing
behaviors, we focus on spatial and temporal aspects, identified as
critical in our empirical analysis.

Spatially, we examine the prevalent practice of imposing text.
Given a video𝑉 , we select a representative text-rich frame 𝐹𝑇 , iden-
tified based on the size of the text presence area, as our starting
point. We first employ an OCR spotting model, CRAFT [1], to de-
lineate text regions 𝑇𝑅 = {box1, box2, ...} within 𝐹𝑇 . These regions
are subsequently transformed into prompt embeddings H𝑃𝑀𝑇 em-
ploying a methodology inspired by the prompt encoder in Segment
Anything Model (SAM) [23]. In parallel, 𝐹𝑇 undergoes processing

by a pre-trained Vision Transformer (ViT) [10] to produce initial
encodings H𝐼𝑀𝐺 . Both H𝐼𝑀𝐺 and H𝑃𝑀𝑇 are then fed into a Two-
Way Attention block, mirroring the structure used by the SAM’s
mask decoder. The block leverages both prompt self-attention and
cross-attention mechanisms, functioning in two directions (prompt-
to-image and image-to-prompt). This dual attention strategy is
employed to refine the initial visual encoding H𝐼𝑀𝐺 , ensuring it
focuses more accurately on text regions within the frame. Following
attention processing, the updatedH’𝐼𝑀𝐺 undergoes downsampling
via two convolutional layers and then flattened to derive the spatial
pattern feature H𝑆𝑃𝐴 . Figure 7 provides a detailed depiction of the
Two-Way Attention block and the downsampling network.

Temporally, we examine the splicing practice of text segment
and video segment. The audio track is omitted due to the observa-
tion that most audio tracks consist of continuous background music.
For a Video 𝑉 , preprocessing extracts a sequence of text content
T = {(𝑡1, 𝑑1), (𝑡2, 𝑑2), ...(𝑡𝑛, 𝑑𝑛)} and a sequence of visual content
V = {(𝑣1, 𝑑1), (𝑣2, 𝑑2), ...(𝑣𝑚, 𝑑𝑚)}, with 𝑛 and 𝑚 indicating the
counts of text and video segments respectively. 𝑡𝑖 represents the
𝑖-th textual segment, 𝑣𝑖 denotes the middle frame of the 𝑖-th video
clip, and 𝑑𝑖 = [FrameIdx𝑏𝑒𝑔𝑖𝑛

𝑖
, FrameIdx𝑒𝑛𝑑𝑖 ] marks the time inter-

val of the 𝑖-th segment’s appearance. The input also incorporates
frame rate (fps) and the total frame count (vframes) of the video
to contextualize duration. Each modality’s temporal structure is
initially modeled separately, followed by an interaction phase to
derive overall temporal editing features. Specifically, we design a



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FakingRecipe: Detecting Fake News on Short Video Platforms from the Perspective of Creative Process ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Self Attn

Prompt to Image Attn

MLP

Image to Prompt Attn
Image 

Embedding

Prompt 

Embedding

x2
Conv 3x3

LayerNorm

GeLU

Conv 3x3

GeLU

Two-Way Attention Block Downsampling Network

Figure 7: Details of the Two-Way Attention Block and the
Downsampling Network.

Hierarchical Temporal Structure Extractor (HTSE) for extracting
temporal structure features applicable to both modalities. HTSE
first performs intra-segment fusion for content occurring in the
same time span to derive segment content features Seg𝑖 . For text,
Seg𝑇

𝑖
is obtained by concatenating multiple segments and encoding

them collectively, while for visuals, it applies the self-attention (𝑆𝐴)
mechanism for integration:

Seg𝑉𝑖 = MEAN(SA( [𝑣1, 𝑣2, ..., 𝑣𝑘 ])), (2)

where k is the frame count within segment 𝑖 , and MEAN(·) denotes
the mean pooling. To model the subtle influences of the duration
and temporal position of different segments, we introduce each seg-
ment’s temporal position and exposure duration information. Posi-
tional encoding (PE) is generated using sine and cosine functions
to reflect each segment’s temporal position, akin to that leveraged
by Transformer [46]:

PE(𝑒𝑖 )
𝑖

=

{
sin (𝑤𝑘𝑖) , if 𝑒𝑖 = 2𝑘
cos (𝑤𝑘𝑖) , if 𝑒𝑖 = 2𝑘 + 1, (3)

where 𝑤𝑘 = 1/(100002𝑘/dim𝑃𝐸 ) represents the frequency of the
sinusoid for each dimension and PE𝑖 is the 𝑖-th segment’s posi-
tional embedding. For duration encoding (DE), we employ an equi-
frequency binning approach, determining duration groups through
empirical analysis and assigning a learnable embedding to each
group. Considering the audience’s perception of exposure time in
reality, both absolute and relative durations are evaluated:

Dura𝑎𝑏𝑠𝑖 = (FrameIdx𝑏𝑒𝑔𝑖𝑛
𝑖

− FrameIdx𝑒𝑛𝑑𝑖 )/fps,

Dura𝑟𝑒𝑙𝑖 = (FrameIdx𝑏𝑒𝑔𝑖𝑛
𝑖

− FrameIdx𝑒𝑛𝑑𝑖 )/vframes.

Here Dura𝑎𝑏𝑠
𝑖

and Dura𝑟𝑒𝑙
𝑖

denote the absolute (in seconds) and
relative (the proportion of the total duration) durations of segment
𝑖 , respectively. The 𝑖-th segment’s duration embedding is:

DE𝑖 = [Emb(Group(Dura𝑎𝑏𝑠𝑖 ));Emb(Group(Dura𝑟𝑒𝑙𝑖 ))], (4)

where Group(·) maps a duration to its designated group and Emb(·)
retrieves the corresponding embedding for that group.

Integrating positional and duration encodings, the segment fea-
tures are updated to SEG𝑖 , serving as the input for inter-segment
fusion, which captures the relationships between different segments

Table 1: Statistics of two datasets for evaluation.

Dataset Time Range Avg Duration (s) #Fake #Real #All

FakeSV 2017/10-2022/02 39.88 1,810 1,814 3,624
FakeTT 2019/05-2024/03 47.69 1,172 819 1,991

using a similar self-attention mechanism, generating temporal pat-
tern features for each modality:

SEG𝑖 = Seg𝑖 + PE𝑖 + DE𝑖 , (5)

H𝑇𝐸𝑀−𝑀 = MEAN(SA( [SEG𝑀
1 , SEG𝑀

2 , ...])) . (6)

Utilizing HTSE, we derive temporal editing features for both text
(H𝑇𝐸𝑀−𝑇 ) and visual (H𝑇𝐸𝑀−𝑉 ) modalities, and they are subse-
quently processed by a standard Transformer layer to produce the
consolidated temporal editing feature H𝑇𝐸𝑀 . The spatial editing
featureH𝑆𝑃𝐴 and the temporal editing featureH𝑇𝐸𝑀 are then con-
catenated and fed into a two-layer MLP to compute the fake news
predicted score 𝑌𝐸 from the material editing analysis perspective:

𝑌𝐸 = MLP( [H𝑆𝑃𝐴;H𝑇𝐸𝑀 ] . (7)

3.4 Predication and Optimization
3.4.1 Prediction. Building on the predicted scores𝑌𝑆 frommaterial
selectionmodeling and𝑌𝐸 frommaterial editingmodeling, we adopt
a late fusion strategy to get the final score 𝑌𝐹𝑁𝐷 :

𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 ∗ tanh(𝑌𝐸 ), (8)

where F (·, ·) is the fusion function. Inspired by previous works [6,
49], we adopt the tanh(·) function, which introduces non-linearity
to enhance the fusion strategy’s representational capacity.

3.4.2 Optimization. Following previous works [7, 35, 41], we uti-
lize cross-entropy loss to optimize our model:

L𝐹𝑁𝐷 = Cross-Entropy(𝑌𝐹𝑁𝐷 , 𝑌 ), (9)

where 𝑌 is the ground-truth label for each short video news.
To further supervise the material selection and material editing

modeling, the final loss L incorporates the loss for 𝑌𝑆 and 𝑌𝐸 :

L = L𝐹𝑁𝐷 + 𝛼L𝑆 + 𝛽L𝐸 , (10)

where 𝛼 and 𝛽 are hyperparameters that balance the impacts on
the back-propagation of the three branches. L𝑆 and L𝐸 denote the
Cross-Entropy(𝑌𝑆 , 𝑌 ) and Cross-Entropy(𝑌𝐸 , 𝑌 ), respectively.

4 EXPERIMENTS
In this section, we conduct extensive experiments on two real-world
datasets to verify the effectiveness of FakingRecipe by comparing it
with seven representative baselines and the FakingRecipe variants.

4.1 Datasets
To validate the generalizability of the proposed FakingRecipe, we
conduct experiments on two datasets of different languages:

FakeSV2: The largest publicly available Chinese dataset for fake
news detection on short video platforms, featuring samples from
Douyin and Kuaishou, two popular Chinese short video platforms.
Each sample in FakeSV contains the video itself, its title, comments,
2https://github.com/ICTMCG/FakeSV

https://github.com/ICTMCG/FakeSV
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Table 2: Performance comparison between FakingRecipe and baselines on the FakeSV and FakeTTdatasets. The best performance
in each column is bolded and the relative improvement of FakingRecipe over the best baseline is in the brackets.

Dataset Method Accuracy Macro F1 Fake Real
Precision Recall F1 Precision Recall F1

FakeSV

GPT-4 67.43 67.34 83.71 53.99 65.64 57.81 85.71 69.05
GPT-4V 69.15 69.14 82.35 58.78 68.60 60.00 83.08 69.68

HCFC-Hou 74.91 73.61 73.46 86.51 79.46 77.72 60.08 67.77
HCFC-Medina 76.38 75.83 77.50 81.58 79.49 74.77 69.75 72.17

FANVM 79.52 78.81 78.64 87.17 82.68 80.98 69.75 74.94
TikTec 73.43 73.26 78.37 72.70 75.43 68.08 74.37 71.08
SVFEND 80.88 80.54 85.82 77.63 81.52 74.53 83.61 78.81

FakingRecipe (Ours) 85.35(+5.53%) 84.83(+5.33%) 83.33 92.11 87.50 88.35 76.47 81.98

FakeTT

GPT-4 61.45 60.66 43.36 75.61 55.11 83.19 55.00 66.22
GPT-4V 58.69 58.69 44.52 88.46 59.23 88.00 43.42 58.15

HCFC-Hou 73.24 72.00 56.93 78.79 66.10 87.04 70.50 77.90
HCFC-Medina 62.54 62.23 46.24 80.81 58.82 84.92 53.50 65.64

FANVM 71.57 70.21 55.15 75.76 63.83 85.28 69.50 76.58
TikTec 66.22 65.08 49.32 72.73 58.78 82.35 63.00 71.39
SVFEND 77.14 75.63 62.33 78.79 69.57 87.91 76.33 81.69

FakingRecipe (Ours) 79.15(+2.61%) 77.74(+2.79%) 64.75 81.82 72.18 89.74 77.83 83.30

metadata, and publisher profiles. We do not use the last three values
to focus on understanding the content itself.

FakeTT: Our newly constructed English dataset for a compre-
hensive evaluation in English-speaking contexts.3 Curated from
TikTok, this dataset follows a similar collection process to [35],
focusing on videos related to events reported by the fact-checking
website Snopes4. Each videowas rigorously annotated for authentic-
ity by at least two independent annotators, resulting in a collection
of 1,172 fake news videos and 819 real news ones from May 2019 to
March 2024, with video, audio, and text description (title) available.
See more details in the appendix.

Table 1 shows the statistics of the two datasets. To simulate
real-world scenarios, we adopt a temporal split strategy for our
experiments, dividing the data chronologically into training, valida-
tion, and testing sets with ratios of 70%, 15%, and 15%, respectively.
Such a data split reflects the potential of applying compared meth-
ods in reality.

4.2 Experimental Setup
4.2.1 Baselines. We compare the proposed FakingRecipe with a
range of state-of-the-art baselines, including handcrafted features-
based baselines, neural networks-based baselines, and (multimodal)
large language model ((M)LLMs) baselines:

Handcraft Feature-based Baselines: (1) HCFC-Hou [16] uti-
lizes linguistic features from speech, acoustic emotion features, and
user engagement statistics with a linear kernel SVM for classifica-
tion. (2) HCFC-Medina [40] extracts TF-IDF vectors from video
titles and the first hundred comments, applying SVM for detection.

Neural Network-based Baselines: (1) FANVM [7] harnesses
visual features from keyframes and textual features from titles and
comments, using an adversarial network to extract topic-agnostic
multimodal features for classification. (2) TikTec [41] employs
3Shang et al. [41] did collect an English TikTok dataset but did not release it. We did
not receive any reply to our email for the dataset inquiry.
4https://www.snopes.com/

speech text-guided visual object features and MFCC-guided speech
textual features, using a co-attention mechanism for fusion and
classification. (3) SVFEND [35] leverages cross-modal transformers
to boost interaction between modalities and integrates content with
social context features via a self-attention mechanism.

(M)LLM Baselines: (1) GPT-4 [32] is one of the most powerful
LLMs currently and is used to make predictions based on video
news titles and extracted on-screen text. We use a zero-shot prompt
template inspired by Hu et al. [18]. (2)GPT-4V [52] is the variant of
GPT-4 that supports visual inputs. We include the video’s thumbnail
in the inputs to explore the capabilities of (M)LLMs in this task.

Given that we focus on content-only detection at the early news
spreading stage, all baselines are adapted to rely solely on content.

4.2.2 Implementation Details. For data preprocessing, we select the
framewith the largest text region for spatial editing feature learning
and segment video frames using TransNetv2 [43] for temporal
behavior modeling. All the MLPs in our experiments consist of
three layers with a ReLU activation and a dropout rate of 0.1. The co-
attention mechanism features four heads, and convolutional layers
in the downsampling network are configured with a stride of 2 and
padding of 1. Training parameters include setting hyperparameters
𝛼 and 𝛽 at 0.1 and 2.0, respectively, learning rates of 5e-5 for FakeSV
and 1e-3 for FakeTT, and a batch size of 128. The model undergoes
training for 30 epochs, incorporating early stopping to mitigate
overfitting, and employs the Adam [22] for optimization. We report
the average results of multiple runs.

4.2.3 Metrics. We report Accuracy and macro F1 as primary evalu-
ation metrics, which are widely used in existing works [35, 37]. To
account for imbalanced label distributions, we additionally report
the F1-score, Precision, and Recall for each label (i.e., Fake or Real).

4.3 Overall Performance
Table 2 presents the performance of FakingRecipe and the compared
baselines. The results reveal several key observations:

https://www.snopes.com/
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Table 3: Ablation study of multiple model components.

Module Dataset
MSAM MEAM FakeSV FakeTT

SEN SEM SPA TEM Acc F1 Acc F1
85.35 84.83 79.15 77.74
83.94 83.56 77.92 76.61
82.47 81.96 71.24 69.81
83.58 83.10 76.92 75.95
84.31 83.92 74.91 73.71
84.87 84.42 78.76 77.39
84.14 83.81 78.59 77.53

First, the zero-shot (M)LLM-based methods, namely GPT-4(V),
underperform the methods specifically tailored for fake news video
detection, which indicates the complexity of the task and the neces-
sity of specialized models for this task currently. Notably, GPT-4(V)
exhibits biases in authenticity judgments, tending to classify videos
as real in the FakeSV dataset and as fake in the FakeTT dataset,
possibly due to different knowledge accumulation in the tested
large models.

Second, neural network-based baselines generally outperform
handcraft feature-based baselines, demonstrating the superiority of
automated neural network models in handling complex fake news
detection tasks. However, in some instances, the handcraft feature-
based baselines surpass certain neural network models, particularly
TikTec. This suggests that integrating human-guided knowledge
into the models may bring additional advantages in specific cases.

Finally, FakingRecipe outperforms all competing methods in
Accuracy and macro F1 on both datasets, validating its effectiveness
in detecting fake news videos. Notably, the improvements are more
pronounced on the FakeSV dataset (5.53% increase in accuracy and
5.33% in macro F1) compared to that on FakeTT (2.61% in accuracy
and 2.79% in macro F1), possibly reflecting the moderate pattern
differences of the creative process in different cultural background.

4.4 Ablation Study
To rigorously evaluate the individual contributions of each compo-
nent within FakingRecipe, we conduct extensive ablation studies,
the results of which are detailed in Table 3. We first focus on the
performances of the two core modules: Material Selection-Aware
Modeling (MSAM) and Material Editing-Aware Modeling (MEAM).
It is observed that MSAM generally outperforms MEAM, with a
more notable performance gap observed on the FakeTT dataset
compared to FakeSV. While MEAM showed relatively lower per-
formance on its own, it provides crucial complementary insights
that significantly enhance the overall effectiveness of the combined
model beyond what is achieved by MSAM alone.

Further exploration into each specific aspect within these mod-
ules: sentimental and semantic for MSAM, and spatial and temporal
for MEAM. By systematically removing each aspect and comparing
the altered model’s performance to the original, the results confirm
that each component plays a vital role in the model’s overall effec-
tiveness. Among these aspects, while the spatial component shows
the smallest improvement in performance, the sentimental aspect is
most impactful for FakeSV, and the semantic aspect is particularly
effective for FakeTT. This detailed analysis not only demonstrates

Accuracy Macro F1
78

80

82

84

86

88
SVFEND
MSAM (vanilla)
MSAM

(a) FakeSV

Accuracy Macro F1
70
72
74
76
78
80
82

SVFEND
MSAM (vanilla)
MSAM

(b) FakeTT

Figure 8: Performance comparison of the proposed MSAM
module and the best baseline SVFEND on the FakeSV and
FakeTT datasets.

the essential contribution of each aspect but also underscores the
synergy that their integration brings to the effectiveness of Fak-
ingRecipe in detecting fake news videos.

4.5 Further Analysis
The performance improvements in FakingRecipe are attributed to
the enhancements by the MSAM and MEAM modules. Specifically,
MSAM facilitates multimodal content understanding and MEAM
introduces a novel perspective on mining content utilization. In this
section, we conduct a deeper investigation into these two modules
and present two additional findings:

The synergy of creative process-aware encoding and fusion
strategy deepens understanding of video materials, leading
to better detection performance. We implement a simplified
version of MSAM, termed MSAM (vanilla), which directly concate-
nates features from multiple encoders for classification. As depicted
in Figure 8, MSAM (vanilla) performs better than SVFEND which
employs universal encoders for multimodal content understanding,
confirming the efficacy of our material selection-aware multimodal
content encoding strategy. However, its performance still falls be-
hind the full MSAM configuration, emphasizing the crucial role of
the advanced fusion structure in performance improvement. This
exploration underscores the individual effectiveness of both the
encoding and fusion strategy and their synergy within MSAM.5

Creative process-aware modeling introduces new effective
clues that can even bring improvements to other existing
models.We assess the generalizability of MEAM, which introduces
a novel perspective in modeling multimodal content utilization. We
directly integrate MEAM into TikTec and SVFEND using the same
late fusion strategy as FakingRecipe. The results on two datasets are
shown in Table 4. We see that incorporating MEAM resulted in per-
formance gains on both baselines, with TikTec showing significant
improvements, affirming MEAM’s capacity to elevate performance
under effective fusion.

4.6 Case Study
We further demonstrate the complementary capabilities of MSAM
and MEAM in detecting fake news videos through two real exam-
ples from the FakeSV dataset in Figure 9. In the left example, a
video with high-quality production and visually rich materials is
evaluated. Influenced by the video’s polished appearance, MEAM

5The analysis of different fusion strategies is in the appendix.
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Table 4: Performance comparison of different models en-
hanced by our proposed MEAN module on two datasets.

Method FakeSV FakeTT
Accuracy Macro F1 Accuracy Macro F1

TikTec 73.43 73.26 66.22 65.08
(+MEAM) 83.95 83.52 71.57 70.61
SVFEND 80.88 80.54 77.14 75.63
(+MEAM) 83.03 82.37 78.76 77.15

classifies it as real. However, MSAM assesses the situation from
a different angle, detecting emotionally charged language in the
video’s title, such as “what a heinous act,” which identifies as a
potential indicator of misinformation. This nuanced analysis by
MSAM accurately flags the video as fake, showcasing its ability
to probe deeper than superficial qualities. Conversely, the right
example presents a video with a neutral expression, which initially
leads MSAM to classify it as authentic. Here, MEAM provides crit-
ical complementary information. It scrutinizes the video’s sparse
visual content and simplistic textual presentation, cues that suggest
a lack of authenticity. This focused evaluation by MEAM correctly
identifies the video as fake, highlighting its essential role in the
overall analysis. These case studies underscore the complementary
nature of MSAM and MEAM in FakingRecipe, enabling a layered
and comprehensive assessment of news videos. We provide the
failure case analysis in the appendix.

5 RELATEDWORK
Fake News Video Detection. The early work closely related to
fake news video detection traces its roots to multimedia forensics
research. Forensics-based works follow a basic idea about verac-
ity that misinformation videos are often produced using forgery
techniques [4, 12]. However, with the prevalence of user-friendly
editing tools, manipulating visual content has become a common
practice across social media platforms, significantly limiting the
applicability of this detection approach. Thus, recent investiga-
tions have shifted their methodology towards mining detection
clues from multimodal content. Handcraft features tailored for fake
news video detection [16, 33, 34, 40] like linguistic patterns, acous-
tic emotion, and user engagement statistics are designed. Further
studies incorporate visual expression and leverage deep neural net-
works [7, 19, 24, 26, 35, 41] for falsehood identification. Building on
the foundation of multimodal content clues within individual sam-
ples, some researchers propose to incorporate the neighborhood
relationship in an event for fake news video detection, exemplified
by the NEED framework [37]. Though effective, its dependency on
existing data accumulations limits its applicability in real-world
scenarios. Instead, our method is suitable for detection at the early
stage as it only requires the video content as the input.
Narrative-aware Fake News Detection. News reporting has long
been seen as involving a form of storytelling [2, 45, 47]. From
this perspective, applying narrative theory, a discipline focusing
on how stories are depicted persuasively [3], to characterize fake
news emerges as an intuitive idea. Narrative theory emphasizes
analyzing the “what” (the content of the story) and the “how” (the
strategy of storytelling) as its two pivotal aspects [11], echoing
the perspective of the creative process. The potential of applying

Description: #Shaanxi Shangluo residents 

transport anti-epidemic supplies with mules: 

A publicity stunt or full of sincerity? 

#TopVQuickComment

On-screen Text: Shaanxi Shangluo locals 

use mules to deliver pandemic supplies: 

seeking attention or full of compassion? 

Someone question the efficiency. That’s a 

mutual aid from all sides in times of trouble. 

Truly Touching.

Number of Video Materials: 1

Description: In Qinzhou, Guangxi, the 

wife was brutally beaten in the street for 

refusing to pay off her husband's gambling 

debts...What a heinous act!

On-screen Text: A man demands money 

from his wife to pay off gambling debts. 

Upon refusal, he assaults her, dragging 

and then body-slamming her on the road.

Family violence again! Urgent need for

intervention!

Number of Video Materials: 4

Predictions:

MSAM:    Real       MEAM: Fake 

FakingRecipe: Fake  

Predictions:

MSAM:    Fake          MEAM: Real  

FakingRecipe: Fake  

Figure 9: Two fake news cases from FakeSV demonstrat-
ing the complementary roles of MSAM and MEAM in Fak-
ingRecipe. We translate the texts into English and blur the
faces to respect user privacy.

narrative theory for detecting fake news has been demonstrated by
studies on news articles [14, 20, 48]. However, within the realm of
multimodal news, related research remains limited. Current studies
in multimodal fake news detection [5, 21, 36, 50, 51, 53] typically
concentrate solely on the analysis of presented content, neglecting
the broader narrative structures. Tseng et al. [45] make the first
foray into understanding narratives of disinformation in TV news
videos. A multimodal discourse analysis scheme is proposed to
uncover narrative strategies [2]. However, their focus is to assist
manual statistical analysis using web-based tools [25] and thus is
inapplicable to automatic detection. Our study takes the first step
to detect fake news on short video platforms from the perspective
of the creative process, which can be seen as a practical solution of
the narrative theory for this task.

6 CONCLUSION
We proposed to detect fake news on short video platforms from
the perspective of the creative process and designed the creative
process-aware detector, FakingRecipe. It observes the given video
from material selection and editing perspectives to capture the
unique production characteristics of fake news videos. We con-
ducted experiments on the English FakeTT dataset newly con-
structed by us and the popular Chinese FakeSV dataset and vali-
dated the effectiveness of FakingRecipe.
Limitations and Future Work. Though bringing a new perspec-
tive and experimentally shown effective, our model design mainly
relies on empirical analysis, and thus may not fully correspond
to the existing theoretical knowledge in the analysis of fake news
creation. Since spreading and combating fake news is constantly
adversarial, the model may require periodic updates in real applica-
tions. In the future, we plan to draw inspiration from journalism and
communication literature to make the creative process modeling
more intrinsic. Also, it is still worthwhile exploring how to equip
(M)LLMs with our method, possibly via advanced techniques [28].
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