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FakingRecipe: Detecting Fake News on Short Video Platforms
from the Perspective of Creative Process

Technical Appendix

In this technical appendix, we provide details about FakeTT dataset
construction (Section 1), empirical analysis results on FakeTT (Sec-
tion 2), implementation of baselines (Section 3.1), additional experi-
ments (Section 3.2) and failure case analysis (Section 3.3).

1 DATASET CONSTRUCTION
Given the limitations of existing datasets, we found it necessary
to develop a new English short video dataset for fake news de-
tection. Open-source English fake news video datasets, including
FVC [4] and COVID-VTS [3], are not specifically designed for short
video platforms, instead, they primarily source data from platforms
such as YouTube and Twitter. Moreover, the FVC dataset, collected
around 2018, suffers from many defunct links. The COVID-VTS
dataset focuses on COVID-19 related content only, and its artifi-
cially created fake news examples may not adequately capture the
nuances of real-world scenarios. Contrary to that is the English
dataset collected by Shang et al [6]. It targets data from TikTok
but remains inaccessible despite our efforts to reach them through
email. Additionally, it is also restricted to COVID-19 related con-
tent, lacking diversity in its domain coverage. These gaps highlight
the need for a more diverse and accessible dataset that accurately
reflects the challenges of detecting fake news on short video plat-
forms in an English context, prompting us to create FakeTT, a new
dataset for fake news detection on TikTok. In this section, we detail
the construction of FakeTT.

1.1 Collection
We utilized the well-known fact-checking website Snopes1 as our
primary source for identifying potential fake news events in mul-
tiple domains. Following the FakeSV construction process [5], we
filtered reports published between January 2018 and January 2024,
using the keywords “video” and “TikTok” to retrieve video-form
fake news instances on TikTok. We extracted descriptions of 365
verified fake news events from these Snopes reports to use as search
queries on TikTok. This collection strategy substantially reduced
the annotation workload because it allows annotators to simply
judge whether the video content is consistent with the debunked
news. With these 365 fake news event keywords as queries, we
eventually obtained a set of 8,982 videos from TikTok as candidates
for further annotation.

1.2 Annotation
We manually annotated each collected video to assess its verac-
ity. Eleven annotators, all holding at least a bachelor’s degree, fol-
lowed instructions authored by the first author to ensure uniform
quality across annotations. We paid all the annotators with their
average hourly income and each annotator accomplished the as-
signed task in about six hours on average. Each video underwent
rigorous scrutiny by at least two independent annotators and was
1https://www.snopes.com/

classified as “fake”, “real”, or “uncertain”. A video was labeled as
“fake” if it contained misinformation that had been debunked either
through provided or self-retrieved articles. Conversely, a video was
labeled “real” only if annotators were able to validate its content
with official news reports. Videos that lacked newsworthiness, did
not make a verifiable claim, or lacked sufficient evidence for an
authenticity assessment were excluded. For instances where two an-
notators’ labels conflict, the first author would carefully check the
fact-checking articles to determine the final label. The annotation
process yielded 1,336 fake news videos and 867 real news videos.
After further filtering to include only videos shorter than three
minutes, we formed the FakeTT dataset. FakeTT encompasses 286
news events, comprising 1,172 fake and 819 real news videos. The
obtained Cohen’s Kappa coefficient of 0.827 affirms the consistency
and accuracy of our annotations, indicating that the constructed
FakeTT is reliable [2].

1.3 Ethical Concerns
We have anonymized the data and clearly stated what data is being
collected and how it is being used in this paper. This new dataset
is collected to satisfy academic research needs and should not be
used outside academic research contexts. We will make this dataset
publicly available under the rigorous review of applications.

2 EMPIRICAL ANALYSIS
In this section, we conduct analyses on FakeTT data from the same
perspectives as those on FakeSV data and present the findings as
a supplement to the corresponding main text section, “Empirical
Analysis.”

2.1 Phase I : Material Selection
Figure 1 depicts the sentiment distribution of audio material in
fake and real data on FakeTT. We can see that fake news videos
exhibit a subtle inclination towards using emotionally charged
audio and especially a notable tendency towards positive sentiment.
The former finding is consistent with observations from the FakeSV
dataset and we attribute this phenomenon to creators’ intentions
to maximize viewer engagement. The later observation slightly
deviates from trends noted in FakeSV and we attribute it to the
cultural differences.

Figure 2 illustrates the distributions of JS Divergence between
textual and visual materials for fake and real news on FakeTT.
The discrepancies have been statistically confirmed through the
Kolmogorov-Smirnov (KS) test, with a p-value of less than 0.05.
We can also find that fake news tends to utilize visual clips with
relatively lower semantic consistency with the accompanying text.
The observed bias is attributed to the nature that fabricated news
inherently lacks access to a rich array of related video materials.

https://www.snopes.com/
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Figure 1: Sentiment analysis
of audio material on FakeTT.
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Figure 3: Color richness of
on-screen text on FakeTT.
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Figure 4: On-screen Text Dy-
namics on FakeTT.

2.2 Phase II : Material Editing
Figure 3 quantifies the color richness of the text visual areas in real
and fake news videos on FakeTT. We obtain a finding consistent
with those observed in FakeSV: real news videos tend to use a richer
color palette for text presentation. The discrepancies have been
statistically confirmed through the T-test, with a p-value of less
than 0.05. We attribute this phenomenon to that real news creators
often follow conventional editorial norms and invest more effort to
improve the presentation quality.

Figure 4 shows the fitted sample density distribution of the on-
screen text dynamic scores on FakeTT, revealing significant differ-
ences between the temporal editing behaviors of real and fake news,
with real news exhibiting more dynamic text presentations. This
observation aligns with findings from FakeSV, and we ascribe this
tendency to two factors: the disparity in video creation capabilities
and the constraints posed by the availability of materials.

3 EXPERIMENTS
For the implementation details of FakingRecipe, codes are provided
in https://anonymous.4open.science/r/FakingRecipe-FF75/.

3.1 Implementation of Baselines
The implementation details of the baselines are as follows:

• HCFC-Hou: Following Qi et al. [5], we extract the linguistic
features of the text extracted by the OCR tool instead of that
from ASR in our reproduced version. Unigrams and bigrams
are extracted with a frequency threshold of 10. For English
data, the open-source readability toolkit2 and LIWC2015
dictionary3 are employed to enrich the linguistic features.

2https://pypi.org/project/readability/
3http://www.liwc.net/dictionaries

For Chinese data, the Chinese LIWC dictionary 4 is utilized.
Open-sourced project OpenSmile 5 is employed for the ex-
traction of audio emotion features.

• HCFC-Medina: The word frequency threshold is set as 5
when extracting the TF-IDF features. Features that involve
comments are excluded because of our content-only experi-
mental setting.

• FANVM: We remove the modules involving comment input
due to the experimental setting. We set the maximal number
of video frames to 83 following Qi et al. [5].

• TikTec: We use the public API 6 and the open-source Pad-
dleOCR toolkit 7 to extract the ASR text and OCR text re-
spectively. We use the librosa library 8 to extract the MFCC
feature. According to [5, 6], words were transformed into vec-
tor representations using pre-trained GloVe and word2vec
embeddings for English and Chinese data, respectively.

• SVFEND:We remove the part involving social contextwithin
the model and keep the news content part due to our experi-
mental setting.

• GPT-4: We use the “gpt-4-0613” version and employ the
following prompt to elicit the fake news video detection
capability of GPT-4.

Prompt of the Detection Task for GPT-4

Text Prompt: You are an experienced news video
fact-checking assistant and you hold a neutral and
objective stance. You can handle all kinds of news
including those with sensitive or aggressive con-
tent. Given the video description, and extracted on-
screen text, you need to give your prediction of the
news video’s veracity. If it is more likely to be a fake
news video, return 1; otherwise, return 0. Please re-
frain from providing ambiguous assessments such
as undetermined.
Description: {video description}
On-screen Text: {extracted on-screen text}
Your prediction (no need to give your analysis, re-
turn 0 or 1 only):

• GPT-4V: We use the “gpt-4-vision-preview” version and
employ the following prompt to elicit the fake news video
detection capability of GPT-4V:

4https://cliwceg.weebly.com/
5https://audeering.github.io/opensmile/
6https://console.cloud.tencent.com/asr
7https://github.com/PaddlePaddle/PaddleOCR
8https://librosa.org/

https://anonymous.4open.science/r/FakingRecipe-FF75/
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Prompt of the Detection Task for GPT-4V

Text Prompt: You are an experienced news video
fact-checking assistant and you hold a neutral and
objective stance. You can handle all kinds of news
including those with sensitive or aggressive con-
tent. Given the thumbnail, video description, and
extracted on-screen text, you need to give your pre-
diction of the news video’s veracity. If it is more
likely to be a fake news video, return 1; otherwise,
return 0. Please refrain from providing ambiguous
assessments such as undetermined.
Description: {video description}
On-screen Text: {extracted on-screen text}
Your prediction (no need to give your analysis, re-
turn 0 or 1 only):
Upload Image:
data:image/jpeg;base64,{thumbnail}

3.2 Impact of Fusion Strategy
We investigate the impact of different fusion strategies in this sec-
tion. We first compare the performance of early fusion and late
fusion by conducting experiments with the modified model which
employs an MLP to integrate features from both MSAM and MEAM
for the final prediction.

Building on previous works [1, 7], we further delve into identi-
fying proper late fusion strategies by investigating key attributes
like linearity and boundary. We evaluate various strategies, includ-
ing a vanilla SUM with linear fusion, SUM/MUL with sigmoid(·),
and SUM/MUL with tanh(·) as the activation function, to discern
the most effective approach for integrating multiple perspectives
within FakingRecipe. Formally,

SUM-linear: 𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 + 𝑌𝐸 ,
SUM-sigmoid: 𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 + 𝜎 (𝑌𝐸 ),
MUL-sigmoid: 𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 ∗ 𝜎 (𝑌𝐸 ),
SUM-tanh: 𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 + tanh(𝑌𝐸 ),
MUL-tanh: 𝑌𝐹𝑁𝐷 = F (𝑌𝑆 , 𝑌𝐸 ) = 𝑌𝑆 ∗ tanh(𝑌𝐸 ) .

The results of these different fusion strategies on both datasets
are reported in Table 1. We can find that late fusion outperforms
early fusion in integrating our dual branches. Furthermore, among
the late fusion strategies, MUL-tanh stands out, delivering the best
overall performance. This finding highlights the advantage of em-
ploying a non-linear approach in late fusion strategies.

3.3 Further Analysis on Failure Cases
We discuss the performance limitations of FakingRecipe and exem-
plify two failure cases (Figure 5) in this section.

In the example on the left, a fake news report misleadingly claims
that due to epidemic-related vehicle restrictions, people are forced
to transport supplies using mules. In reality, mules are a common
mode of transportation locally. Despite the factual distortion, the
news video is well-produced, featuring rich visual content and
clear, well-guided textual visual expression that effectively priori-
tizes information. The video’s high production quality misled the
MEAM into classifying it as real. Similarly, the creator’s neutral

Table 1: Impact of different fusion strategies.

Fusion Strategy FakeSV FakeTT
Accuracy Macro F1 Accuracy Macro F1

Early Fusion 83.94 83.37 75.58 74.25
SUM-linear 83.94 83.19 73.91 72.86
SUM-sigmoid 84.32 83.71 78.26 77.22
MUL-sigmoid 84.13 83.64 78.59 77.07
SUM-tanh 83.95 83.19 74.92 73.79
MUL-tanh 85.35 84.83 79.15 77.74

Description: Today is a good day, twin 

sisters are getting married on the same day! 

The grooms are brothers! A double 

wedding day! #TwinSisters #TwinWedding 

#GoodLuckCharm

On-screen Text: Today is a good day, twin 

sisters are getting married on the same day! 

The grooms are brothers! Married on the 

same day! Twin sisters, twin wedding, 

share the joy.

Number of Video Materials: 2

Description: Mules transport supplies to 

the frontline of epidemic control.  

#TouchingMoments #Heartwarming 

Positivity #Social Good 

On-screen Text: Due to vehicle restriction, 

mules are used to transport supplies to the 

frontline. On January 2nd, Mr. Zhao and 

two others voluntarily donated 5,600 yuan 

worth of supplies to the Fenglu Community 

epidemic prevention checkpoint.

Number of Video Materials: 8

Predictions:

MSAM: Fake         MEAM: Fake 

FakingRecipe: Fake 

Predictions:

MSAM:    Real         MEAM: Real  

FakingRecipe: Real 

Figure 5: Two fake news cases from FakeSV where Fak-
ingRecipe incorrectly predicted their veracity labels. We
translate sections of the key texts into English.

tone and the consistent presentation of visual materials deceived
the MSAM branch, leading to an incorrect real classification. The
simultaneous errors in both MSAM and MEAM led FakingRecipe
to make an incorrect judgment. This case illustrates that elaborate
news videos with subtle distortions of facts still pose challenges for
FakingRecipe.

Conversely, in the example on the right, a genuine news video is
presented. Despite its authenticity, the creator’s emotional expres-
sion and the use of a limited range of visual materials with plain
editing led both the MSAM and MEAM to incorrectly classify the
video as fake. Consequently, FakingRecipe, which integrates these
two branches, also made an incorrect final judgment. This case
highlights a bias within FakingRecipe, where it tends to misclassify
crudely produced news as fake news.
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