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Abstract

Early work in cybernetics and artificial intelligence (AI) was aimed as much at
developing computational models that enable mathematical understanding of key
principles in living organisms as it was at developing computing machines based on
such models. Reinforcement learning of course traces its roots back to these early
days as well, with significant development since then, both in terms of mathematical
formalization and applied success. As we gather in this workshop to examine the
conceptual foundations of RL and how these impact framing problems, we aim in
this short paper especially in the direction of building computational models to
capture and shed light on aspects of biological life. Given the generality of RL,
we argue it is an especially fruitful paradigm to bring into a novel formulation of
continual learning - one that may not immediately fit the bitter lesson’s emphasis
on scaling-above-all, but that we hope can be used to formulate cybernetics-style
questions about the rich hierarchy of learning processes found in complex living
systems. Strengthening this foundational thrust also holds promise to help make
sense of safety issues in the ongoing deployment of AI.

1 Background

The fertile two-way exchange that originally existed in the field of AI between research aimed at un-
derstanding biological intelligence and research aimed at developing intelligent machines has shifted
heavily over the years towards an emphasis on the latter, in part driven by dramatic engineering
successes. Although machine learning theory has continued to develop, this has often been directed
towards explaining and designing machines rather than elucidating biological learning. The theo-
retical underpinnings of RL—its concepts, definitions, axioms, and assumptions—have very much
followed this trend.

In this workshop, that provides the opportunity to re-examine some of the underlying framework in
RL and how it enables or impedes the framing of problems, our contribution looks specifically at how
the framing of RL could be shaped to promote learning-theoretic analysis of questions concerning
complex living systems. In particular, we propose to capitalize on the generality of RL as a learning
paradigm (i.e. the possibility to view supervised learning, active learning, semi- and un-supervised
learning as special cases of RL) and then to place such general learning units in the context of
a hierarchical formulation of continual learning. We are thus exploring a version of continual RL
that involves a possibly endless arising and vanishing of RL-units, most of which are themselves
not immortal. The immortality emerges only potentially at the top of the hierarchy, and possibly
there is no highest level. This proposed hierarchical formulation is inspired by a systems-theoretic
viewpoint as expressed in early work of mathematician Norbert Wiener (Wiener, 1948; 1950) and
we consider cybernetics-style questions that are natural to pose in this setting.
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1.1 Cybernetics

The term cybernetics was coined by Wiener in his book of the same name (Wiener, 1948) in order to
designate the science of communication and control in both living systems and machines. It derives
from the Greek verb "kubernan", which means to steer and which is also, for example, at the root of
the English word "govern". Wiener was interested in mathematically studying the phenomenon of
steering. In particular, he argued that feedback mechanisms were central to all intelligent behaviour.
In this and subsequent books of his aimed at general readers, Wiener considered a wide variety of
questions in society, technology and biology, highlighting the role of feedback in each, as an organism
or organization. There was significant overlap with systems theory, though he did not specifically
use the terminology complex (living) system. The defining property of such a system is that it be
composed of many components, together with a self-regulation mechanism to maintain a certain
global pattern among these components, each of which may in turn be a complex system of its own.
This sets up hierarchy as a key property of life. We return to this notion again in Section 2.

1.2 Reinforcement learning as a general paradigm

Reinforcement learning (RL) is most commonly formulated in terms of a Markov decision process
(MDP), namely, a tuple M = ⟨S, A, P, R⟩, where S and A are spaces of states and actions re-
spectively, P is the transition probability kernel, and R the reward function; see (Sutton & Barto,
1998; Puterman, 1994, 2005). The agent knows S and A. It sees a current state—revealed by the
environment—and, upon taking an action a from A, sees the effect of P and R as they generate
respectively the next state s′ ∼ Pa,s and the associated reward Ra(s, s′). The agent’s goal is to
find a policy π : S → A (or to distributions on A) that maximizes the expectation of some form
of cumulative reward, which could be the average reward over an infinite horizon, discounted total
reward with fixed discount factor γ ∈ (0, 1), or un-discounted total over a finite horizon. Since
P, R are not known1 to the agent, this challenge is a learning problem, referred to as RL. We focus
especially on the interaction this sets up between the agent and environment, defining an RL agent
as in Figure 1a. Supervised learning can be seen as a special case where the only actions are request-
ing new samples and predicting labels, neither of which changes the state of the environment. An
active-learning variant of this could offer more tailored sample-requesting actions, and so on. We
may thus view the basic RL agent in Figure 1a as a general learning unit.

1.3 Continual learning

Continual learning (also called incremental or lifelong learning) has been formulated in various
ways (see for example surveys in Wang et al. (2024); van de Ven & Tolias (2019) and in the RL
setting Abel et al. (2023)). The basic idea is that training samples (or observations), generated by
a distribution (environment) that may shift in time, will be observed in sequence and the learning
agent should retain relevant information learned from the past to carry out a sequence of learning
tasks. Concretely, for a supervised learning example, the t’th task might be to predict the mean of
Y given X under the distribution Dt on X × Y , where t is a possibly infinite-horizon time variable
(t ∈ {0, ..., T} or t ∈ N) such that the training set St is sampled from the distribution Dt. A key
difficulty of continual learning is maintaining plasticity, i.e. the ability to adapt quickly to new
tasks, while avoiding the phenomenon called catastrophic forgetting where adaptation to new tasks
has reduced the performance on previous tasks. In continual RL, first explored in the thesis of
Ring (1994), recent work (Abel et al., 2023) addresses the prospect of considering the continual RL
problem as one of endless adaptation rather than finding a solution.

2 Framing continual learning in terms of RL - a first sketch

In this section we sketch an RL-based and multi-scale form of continual learning. This is a pre-
liminary sketch only, intended to stimulate discussion about how one might capture some of these

1If they were, one could use dynamic programming.
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aspects in the simplest way possible. What we are aiming to achieve with such a framework is to
be able to address questions such as those in Section 3 in a learning-theoretic manner, and thereby
to strengthen (mathematical) intuition about the corresponding properties of complex learning sys-
tems. There is inherently a wide gap between the messy, infinitely complex phenomena of living
systems in the real world and the simplicity needed in a mathematical model in which one can carry
out sound analysis. Our proposal is an attempted middle ground. We look forward to stimulating
discussion in the workshop to improve the formulation.

EnvironmentAgent

Stimulus

Action

Reward

Update
internal
state

(a) RL agent
(b) Hierarchy of complex agents
composed of simpler ones

Figure 1: Ingredients of the proposed framework: RL agents of varying scales, with more complex
agents being composed of simpler ones.

The basic ingredients of the proposed framework are as follows. We suppose an environment that
produces stimuli at varying time- and space-scales, where the generating distribution is specified by
the environment’s multi-scale “state”, and moreover, we assume this state can be altered by actions
of agents (at respective scales). Each agent (at a specific scale) is an RL agent in the sense that it
can not only sense the stimuli being emitted by the environment (at respective scale) but can also
act upon the environment, thereby possibly altering the environment’s state (at respective scale),
and there is some form of reward signal communicated to the agent for each state-action-state triple
it carries out. This signal is produced by an oracle that is either part of the (inductive bias of the)
agent, or part of the environment. So far, there is nothing novel about this proposal except for the
multiscale aspect. The setup has, moreover, been kept intentionally vague to allow for various more
precise instantiations. We illustrate this simplistic form of RL agent in Figure 1a, where the updates
that an agent may make to its internal state, e.g. under Q-learning, are also shown explicitly. Not
shown are the other RL agents that might be interacting with the environment at other scales.
Note: interaction between agents in this framework proceeds only via the environment; this may
turn out to be inconvenient but has been postulated for now so each RL agent is close to the original
single-agent, single-environment setup.

We now add several additional twists. First, we assume the environment evolves for all time but
agents are generally mortal: every agent begins at its specific birth time tBIRTH, and has a terminal
internal state sDEAD after which it ceases to exist as an agent. (Its sub-agents may continue to exist.)

Second, as an optional richness for this framework (in the list below, this is only relevant for questions
1, 2, 4), it may be of interest to suppose an agent can arise either as a copy of an existing agent, or as
a hybrid of two (or more?) existing agents. These modalities correspond somewhat to asexual and
sexual reproduction respectively. Many details would need to be specified in an actual instantiation
of such a framework, in particular, the cost of an agent producing offspring.

Finally, we add a hierarchical aspect. The goal of this is to capture the observation that complex
living systems are composed in hierarchical fashion of simpler components. Components may come
and go but a form of homeostasis maintains at least some global pattern among components (Wiener,
1948); this “pattern” is in a sense the identity of the large complex system. Our simple version of this
is the following. We assume agents may contain sub-agents, always of smaller scale; see Figure 1b. To
avoid specifying the global pattern that may define a “complex” agent of this kind, we simply assume
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that there is an additional “integrative” signal passed from the large agent to its sub-agents whenever
they take an action or update their internal parameters, i.e. whenever they change in any way. This
signal - to keep things simple - will take values in [−1, 1] with larger positive value indicating the
extent to which the change reinforces the global pattern, and smaller negative values indicating
the extent to which the change disrupts the pattern. The smaller agents should include such a
signal (possibly heavily attenuated) as part of the total reward they maximize. The larger system is
thus rewarding its components for acting in ways that maintain the integrity of the larger system.
Admittedly, this formulation flies in the face of the (revolutionary but now generally accepted) view
proposed by Kauffman (1993) that the larger system’s pattern arises emergently by a process of self-
organization of components and their interactions; it is in this sense not directed by the larger system
but rather a spontaneously arising form of order. In our case, much as evolutionary pressures are
simplistically represented as in the preceding paragraph, we have adopted in the present paragraph
a simplistic version of homeostasis. These first choices may need to be revised if the framework does
not allow realistic analysis of the questions we now pose.

3 Some questions to approach within this framing

The following are examples of questions one might address within an RL-based hierarchical continual
learning framework as sketched above. In each case, by working on this type of question one may
come up with reasons to alter the sketched framework. Our aim in this paper is for the sketch in
the previous section to provoke thought and conversation, and to use questions like the ones listed
below to further refine the framework and/or to define variants of the framework so that ultimately,
progress can be made answering such questions.

1. Can we prove learning-theoretic benefits for acquiring inductive bias from a single ancestor vs
multiple ancestors? (This question can be seen as studying asexual vs sexual reproduction
through a learning-theoretic lens.) Presumably the relative advantages will depend on a
tradeoff among different specifications such as computational capacity, memory, cost of
fatality etc.. Is the proposed set-up suited to this type of study or should it be modified to
better answer the question?

2. Phylogenetic learning (Wiener, 1948) is the negative feedback mechanism whereby traits that
reduce the expected number of offspring (during lifetime) are less likely to appear in the
inductive bias of individuals in subsequent generations. Can we already study this within
the above framework or is there a need to incorporate more elaborate genetic-algorithm
and/or multi-agent ideas explicitly?

3. Wiener refers to the feedback mechanism whereby behaviour is modified during a lifetime in
response to experience as ontogenetic learning (Wiener, 1948). This can be basic supervised
learning or RL. It can be formulated in an active-inference rephrasing (Friston et al., 2009)
as reducing free energy between the agent’s internal model and the environment; it has the
effect of aligning the predictive capabilities of the agent with the dynamics of the environ-
ment. In this sense it involves a negative feedback loop between agent and environment, but
where only the agent carries out planning/control, while the environment is sensed by the
agent and also possibly modified by the agent. (Here we are viewing the sensor, controller,
and effector of the feedback loop as belonging to the agent.)

• Can we extend PAC-style learning theory to at least supervised learning in the above
framework? This would mean a special case of the framework where the only actions
an agent can take are requesting new samples and predicting labels, neither of which
change the state of the environment.

• If we adopt an extension of PAC-style learning-theoretic tools to RL, for example as
formulated in (Fraser & Létourneau, 2022), can we further extend this to the above
continual learning framework?
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• Can we additionally give the environment learning capabilities? In fact we could sup-
pose that the only distribution shift in time is due to the environment’s adaptation
to the agent’s actions. Would this special case yield any conclusions that might not
be available for general distribution shift, e.g. assuming a certain fixed learning “algo-
rithm” and learning rate in the environment? Note: in the special case being considered,
not only would the environment not shift independently of the agent, but the agent can
potentially alter the distribution shift in the environment, something that is not possible
in the traditional continual learning formulation.

4. If we view a continual learning super-agent as above being made up of a hierarchical “com-
position” of sub-agents whose acquired abilities they at least partially transfer forward to
offspring, can we establish by learning-theoretic arguments a potential tradeoff so that a
sweet spot between catastrophic forgetting and non-plasticity requires such a hierarchy,
perhaps a deep one? This may be related to fascinating connections that have been dis-
covered between such a sweet spot in continual learning on the one hand, and multi-scale
aspects, resp. meta-learning, on the other (Kaplanis et al., 2018; Javed & White, 2019).

5. In similar spirit, is there some fundamental reason that hierarchical RL does not benefit from
depth as much as neural networks do, or is this phenomenon observed in practice (where
rarely more than two layers are effective) more due to engineering/algorithmic limitations?

6. Is there a notion of compositional sparsity similar to that for supervised learning (see Poggio
& Fraser (2024) for a definition and discussion) that applies to hierarchical RL agents? or
that can be formulated in some other way for the framework above?

Conclusion

We hope to gather further questions in conversation with workshop participants, as well as in our
ongoing work on this framework. We have sketched here only a first draft of a possible framing of RL
in the context of continual learning, inspired by cybernetics and offering perhaps the opportunity to
use learning theoretic methods to answer cybernetics-style questions. As the presence of the human
species on earth becomes ever more impactful on our biosphere, and AI risks intensifying some of
this effect by boosting technological reach, it will also become increasingly important to consider not
only the AI models we train but their interaction with an environment that itself adapts. Perhaps
some version of the above framing and questions can play a role in highlighting this interaction.
This perspective also raises the possibility that the bitter lesson noted by Sutton may only truly
hold when resources are infinite, and one can then ask if there is an inherent tension between that
so-far highly successful principle in machine learning and long-term sustainability on a finite planet.
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