
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Learning to Transfer Heterogeneous Translucent Materials from a
2D Image to 3D Models

Supplementary Material

Anonymous Authors

1 INTRODUCTION
This supplemental material contains five parts:

• Sec. 2 gives the details of the Efficient Viewpoints Selection
algorithm.
• Sec. 3 gives more supplementary ablation experiments
• Sec. 4 provides additional results of our method.

2 EFFICIENT VIEWPOINTS SELECTION
In existing methods for generating geometric and material prop-
erties based on diffusion models, viewpoints selection typically
falls into two categories: a large range of random viewpoints (e.g.,
DreamFusion [3], Fantasia3D [1]) and fixed viewpoints (e.g., TEX-
Ture [4], Instruct-Nerf2Nerf [2]). Random viewpoints often demand
a substantial number of samples to ensure thorough coverage, prov-
ing effective for geometry generation and optimization. However,
for our translucent material generation, random viewpoints intro-
duce excessive redundancy, significantly diminishing efficiency. On
the other hand, fixed perspectives, though manually set for dis-
tribution control, lack adaptability for batch 3D model material
generation and may lack reliability.

To effectively minimize redundant viewpoints and achieve max-
imum coverage of the model during the editing of translucent ma-
terial on 3D models, we proposed an efficient viewpoint selection
method termed Efficient Viewpoints Selection (EVS). The primary
goal of EVS is to select optimal viewpoints, minimizing the required
number of viewpoints while achieving comprehensive model cov-
erage.

Viewpoints sampling. Given a sampled point 𝑝𝑠 on the 3D
model’s surface, we first obtain the corresponding surface normal
𝑛. Using this sampled surface point as the origin and it’s normal
as the ray direction, we calculate the intersection point 𝑝𝑖 of this
ray with a sphere of radius 𝑟 . The camera position is located at
the intersection 𝑝𝑖 , and the camera orientation is aligned with the
direction from the intersection 𝑝𝑖 to the sampled surface point 𝑝𝑠 .
This process generates multiple viewpoints 𝑣𝑖 ∈ {𝑣0, · · · , 𝑣𝑛} for
subsequent use. The approach of sampling using the normals of
sampled surface points demonstrates enhanced model adaptabil-
ity compared to random viewpoint sampling within the boundary
sphere. This technique is particularly effective in addressing occlu-
sion issues in various complex models.

Efficient viewpoints selection. We adopt an "efficient viewpoints
selection" strategy to select the most suitable sampled viewpoints
𝑣𝑖 . Our algorithm is detailed in Algorithm 1. The algorithm itera-
tively selects the best viewpoint 𝑣𝑖 from the sampled viewpoints
𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , rendering the scene from each viewpoint. The algorithm

Figure 1: UV Mapping. Transforming the UV feature map of
each viewpoint from UV coordinates to pixel coordinates on
the texture map, we generate a UV color map corresponding
to each viewpoint 𝑉𝑖 . For a UV color map𝑈𝑉𝑖 , distinct colors
denote different indications.

then divides the surface into two parts: 𝑆𝑛𝑒𝑤 , the surface area visi-
ble from the current viewpoint, and 𝑆𝑜𝑡ℎ𝑒𝑟𝑠 , the remaining surface
area. The algorithm calculates the pixel values of the two parts
and evaluates the viewpoint score based on the ratio of the sum of
pixel values to the total surface area of 𝑆𝑛𝑒𝑤 . The algorithm selects
the viewpoint with the highest score and adds it to the selected
viewpoints 𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . The algorithm repeats this process until con-
vergence, ensuring efficient viewpoint selection for comprehensive
model coverage.

To validate the effectiveness of our algorithm, we designed a UV
color map through UV mapping to verify the effectiveness of the
viewpoint coverage. Initially, we obtain the sampled viewpoints
and render the scene for each viewpoint. In each viewpoint, we
obtain rasterized UV features ranging from 0 to 1, forming a UV
feature map with two channels. Subsequently, we convert the UV
feature maps of each viewpoint from UV coordinates to pixel coor-
dinates of the texture map. This transformation ensures that each
pixel in the UV feature map has a corresponding mapping to the
texture map’s pixels. This conversion yields a UV color map 𝑈𝑉𝑖
of each viewpoint.For a UV color map 𝑈𝑉𝑖 , distinct colors denote
different indications: The "black" area indicates regions without UV
mapping.The "gray" area represents regions with UV mapping but
is not projected by the current viewpoint. The "green" area indicates
regions covered by projections from previously selected viewpoints.
The "red" area shows regions not previously covered but projected
by the current viewpoint.

𝑐𝑜𝑙𝑜𝑟 (𝑈𝑉𝑖 ) =


"black", Non-UV mapping area
"gray", Uncovered UV map area
"green", Covered UV map area
"red", Covered area by current view



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Algorithm 1: Efficient Viewpoints Selection
input :3D mesh
output :𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

1 𝑚𝑒𝑠ℎ← Normalize(mesh);
2 samplePoints, normals← SampleSurfacePoints(𝑚𝑒𝑠ℎ);
3 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 ← ∅;
4 foreach 𝑝𝑠 , 𝑛 ∈ samplePoints, normals do
5 𝑝𝑖 ← BoundingSphereIntersection(𝑝𝑠 , 𝑛, 𝑟 = 2);
6 𝑣𝑖 ← SetViewOrientation(𝑝𝑖 → 𝑝𝑠);
7 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 .append(𝑣𝑖 );
8 end
9 𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← ∅;

10 while not converged do
11 foreach 𝑣𝑖 ∈ 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 do
12 𝑆𝑛𝑒𝑤 , 𝑆𝑜𝑡ℎ𝑒𝑟𝑠 ←

DivideSurface(𝑚𝑒𝑠ℎ, 𝑣𝑖 ,𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑);
13 𝑝𝑖𝑥𝑒𝑙 (𝑆𝑛𝑒𝑤 = 1, 𝑆𝑜𝑡ℎ𝑒𝑟𝑠 = 0) ← RenderSetting;
14 𝑖𝑚𝑎𝑔𝑒 ← Render(𝑚𝑒𝑠ℎ, 𝑣𝑖);
15

∑
𝑃𝑣𝑎𝑙𝑢𝑒=1← Sum(𝑖𝑚𝑎𝑔𝑒 [𝑣𝑎𝑙𝑢𝑒 = 1]);

16 𝐴(𝑆𝑛𝑒𝑤) ← TotalSurfaceArea(𝑆𝑛𝑒𝑤);
17 Score(𝑣𝑖 ) ←

∑
𝑃𝑣𝑎𝑙𝑢𝑒=1

𝐴(𝑆𝑛𝑒𝑤 ) ;
18 end
19 𝑣𝑏𝑒𝑠𝑡 ← SelectBestScore(𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 , Score(𝑣𝑖 ));
20 𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .append(𝑣𝑏𝑒𝑠𝑡 );
21 𝑉𝑠𝑎𝑚𝑝𝑙𝑒𝑑 .remove(𝑣𝑏𝑒𝑠𝑡 );
22 end
23 return 𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ;

3 ABLATION EXPERIMENTS
Ablation of viewpoints selection. Figure 2 shows the results of
transferring different materials to the 3D chair model using two
different viewpoint selection methods. The results show that the
selection of viewpoints greatly influences experiment outcomes. As
shown in 2, a Dense viewpoint results in excessive overlap, leading
to over-averaged results. On the other hand, dynamic viewpoint se-
lection ensures efficient surface coverage, minimizing the required
number of viewpoints and yielding more detailed results.

Consistency Constraint on Editing Results. We validated the
effectiveness of our iterative editing-optimization strategy in en-
suring consistency in the editing results. As shown in Figure 3,
we compared the outcomes of only one-time editing results with
those resulting from iterative editing using our iterative editing-
optimization strategy. The results reveal significant color discrep-
ancies in the one-time edit outcomes across different viewpoints,
directly impacting the overall quality of the 3D model editing, as
shown in the one-time update results in the figure "Comparison
with other 3D scene editing methods" in the main text. In contrast,
our iterative editing-optimization strategy substantially enhances
the consistency of the editing results.

Figure 2: Ablation of viewpoint selection.We compare our
results with those of editing using a dense uniform viewpoint
sampling approach.

Figure 3: Ablation study for only edited results.We conducted
an ablation study on the editing outcomes from multiple
viewpoints, comparing the results of one-time editing with
those obtained through iterative editing using our iterative
editing-optimization strategy.

4 ADDITIONAL RESULTS
In this section, we show the results of editing experiments on
additional models andmaterial images, along with their re-rendered
outcomes from different viewpoints.

Figure 4 shows the editing results of different 3D models includ-
ing a bunny, armadillo, skull, chair, Samoyed, and girl, using the
amethyst material. We validate the robustness of our method in 3D
model editing by transferring the same single material across vari-
ous models. Simultaneously, examining the editing outcomes from
different viewpoints verifies that our iterative editing-optimization
strategy effectively ensures consistency of material editing for het-
erogeneous translucent materials across multiple viewpoints.

Figure 5 shows the editing results of a 3D chair model using
five different materials: amethyst, apophyllite, calcite, jade, and
prehnite, demonstrating the effects from various viewpoints. In
Figures 5, we demonstrate the editing results of a single 3D model
with different materials, validating the robustness of our approach
to 2D translucent material images.



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Learning to Transfer Heterogeneous Translucent Materials from a 2D Image to 3D Models ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 4: Different models with amethyst.

REFERENCES
[1] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. 2023. Fantasia3d: Disentangling

geometry and appearance for high-quality text-to-3d content creation. arXiv
preprint arXiv:2303.13873 (2023).

[2] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo
Kanazawa. 2023. Instruct-nerf2nerf: Editing 3d scenes with instructions. arXiv
preprint arXiv:2303.12789 (2023).

[3] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. 2022. Dreamfusion:
Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988 (2022).

[4] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, and Daniel Cohen-Or.
2023. Texture: Text-guided texturing of 3d shapes. arXiv preprint arXiv:2302.01721
(2023).



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 5: chair with different material images.


	1 Introduction
	2 Efficient Viewpoints Selection
	3 Ablation experiments
	4 Additional results
	References

