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ABSTRACT

Artificial intelligence (AI) has seen a tremendous surge in capabilities thanks to
the use of foundation models trained on internet-scale data. On the flip side, the
uncurated nature of internet-scale data also poses significant privacy and legal risks,
as they often contain personal information or copyrighted material that should
not be trained on without permission. In this work, we propose as a mitigation
measure a recipe to train foundation vision models via self-supervised learning
with differential privacy (DP) guarantee. We identify masked autoencoders as a
suitable learning algorithm that aligns well with DP-SGD, and train ViP—a Vision
transformer with differential Privacy—under a strict privacy budget of ϵ = 8 on
the LAION400M dataset. We evaluate the quality of representation learned by ViP
using standard downstream vision tasks; in particular, ViP achieves a (non-private)
linear probing accuracy of 55.7% on ImageNet, comparable to that of end-to-end
trained AlexNet (trained and evaluated on ImageNet). Our result suggests that
scaling to internet-scale data can be practical for private learning.

1 INTRODUCTION

Classification Detection / Segmentation

Figure 1: (left) Linear probing accuracies of TAN (Sander et al., 2022) (state-of-the-art DP training method),
AlexNet (Krizhevsky et al., 2017), SimCLR (Chen et al., 2020a) and ViP—our DP-trained model with ϵ =
8. ViP can achieve similar transfer learning result as SimCLR on iNat-2021 and Places-365, and achieves
similar accuracy on ImageNet as end-to-end trained AlexNet. (right) Average precision (AP) evaluations of
SimCLR (Chen et al., 2020a), Mask R-CNN (He et al., 2017) and ViP on MS-COCO. Our DP-trained model
outperforms both SimCLR and Mask R-CNN.

Foundation models (e.g., GPT-3, SimCLR, CLIP, etc. (Brown et al., 2020; Chen et al., 2020a; Radford
et al., 2021)) pre-trained on vast amounts of diverse unlabeled data through self-supervised learning
(SSL) have emerged as an important building block for artificial intelligence (AI) systems (Bommasani
et al., 2021). These foundation models enable downstream applications via fine-tuning, prompting,
or training a simpler model on top of the learned representations to perform more specialized tasks,
and have performed tremendously well on challenging benchmarks in both language and vision
domains (Brown et al., 2020; Radford et al., 2021; Touvron et al., 2023).

Despite the widespread deployment of foundation models, there are significant privacy and legal risks
of training these models on uncurated data that often contain personal information or copyrighted
material. Although the training data for these models are considered public in most cases, some of
the data may be sensitive; additionally, there are certain privacy and copyright laws that apply to
model training even on such public data (Henderson et al., 2023). In addition, studies have shown
that generative foundation models such as GPT-3 can sometimes regurgitate memorized information
about individuals and licensed content from its training data when prompted to do so (Carlini et al.,
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Figure 2: How to pre-train differentially private transformers (ViP) with synthetic data? In Step
1, we first pre-train a MAE model on synthetic images with standard optimizers (e.g., SGD, AdamW).
We denote this model by (Syn)-ViP. In Step 2, we use the MAE model pre-trained on synthetic
images as initialization, and then apply differential private optimizers (e.g., DP-SGD, DP-AdamW)
to train a ViP model that satisfies (ϵ, δ)-DP.

2021). More recently, Meehan et al. (2023) showed that non-generative vision SSL models can also
be probed to reveal sensitive information about individual samples in its training data when given
partial information.

Given these risks, there is an urgent need to train foundation models that can adhere to relevant
privacy and copyright laws. To this end, differential privacy (DP; Dwork et al. (2006)) seeks to limit
the influence of individual training data points on the trained model, and hence has the potential to
mitigate both privacy and copyright risks for sensitive information that is confined to a single or a few
training examples (Henderson et al., 2023). For any model that can be trained using gradient-based
optimization, DP-SGD (Song et al., 2013; Abadi et al., 2016) can be applied instead to ensure that
the trained model satisfies the rigorous definition of DP. However, there are still significant technical
challenges in DP-SGD training of large-scale foundation vision models:
1. Differentially private representation learning in general is a difficult problem. Tramer & Boneh

(2020) showed that even handcrafted features can outperform feature learned by state-of-the-art
DP-trained models, and attaining high-utility learned representations requires significantly more
training data—much more than what is provided in typical supervised/curated datasets.

2. Combining self-supervised learning (SSL) with internet-scale uncurated datasets may seem like a
natural approach to gain access to the large amount of data needed for DP training. However, most
vision SSL training algorithms are based on contrastive learning, where the objective function
depends on multiple samples in an entangled manner. This makes it difficult to perform the
per-sample gradient computation needed in DP-SGD.

3. SSL training requires a much larger number of training epochs compared to supervised learning,
which sharply increases the DP parameter ϵ, leading to meaningless privacy guarantees.

In this paper, we describe a successful recipe for training differentially private large-scale foundation
models via SSL. Firstly, we identify masked autoencoder (MAE; He et al. (2022)) as a promising SSL
training algorithm that is amenable to DP-SGD. MAE uses an instance-separable loss function and
does not require batch normalization, and hence per-sample gradients can be easily computed. We also
show that it is tolerant to the large amount of Gaussian noise added in DP-SGD. Next, we demonstrate
that MAE can effectively leverage synthetic datasets containing only programmatically-generated
synthesized textures (Baradad et al., 2022) to warm-start the DP training process, significantly
reducing the number of training epochs required to reach a high-utility model. The combination of
these two ingredients forms a powerful DP training recipe for obtaining high-utility differentially
private foundation vision models.

We implement this training recipe on the LAION400M dataset (Schuhmann et al., 2021). We show
that the resulting model, which we call ViP (Vision transformer with differential Privacy), learns
highly useful and transferable representations—rivaling that of representation learned by SimCLR on
ImageNet—while providing a strong DP guarantee with ϵ = 8. In Figure 1, we compare ViP with
other private and non-private models in terms of downstream linear probing accuracy and fine-tuning
accuracy for different image datasets:

• For iNat-2021 and Places-365 classification, ViP outperforms both TAN (Sander et al., 2022)—the
previous SOTA for DP supervised training—and AlexNet (Krizhevsky et al., 2017), while matching
or exceeding the performance of SimCLR pre-trained on ImageNet.
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• On ImageNet, the linear probing accuracy of ViP matches that of end-to-end trained AlexNet1.

• On MS-COCO detection and segmentation, ViP outperforms both SimCLR pre-trained on ImageNet
and Mask R-CNN.

Our experiments demonstrate that by scaling DP-SGD training to vast amounts of unlabeled data and
using synthetic data to warm-start the model, we can attain high-utility foundation vision models
under stringent privacy guarantees. Consequently, we hope that future work can continue to build on
our successful recipe and further push the performance boundary of large-scale DP training.

2 BACKGROUND

Differential privacy (Dwork et al., 2014) is a mathematical framework for formal reasoning about
information leakage through a private mechanism. A learning algorithm A is said to be (ϵ, δ)-
differentially private (denoted (ϵ, δ)-DP) if for all training datasets D,D′ that differ2 in a single
training sample, we have:

P (A(D) ∈ S) ≤ eϵP (A(D′) ∈ S) + δ (1)

for all outcome sets S. More generally, equation 1 can be expressed as a statistical divergence
D(A(D)||A(D′)) between the distribution of models trained on D vs. D′, with (ϵ, δ)-DP corre-
sponding to the “hockey-stick” divergence (Sharma & Warsi, 2013). Another useful variant is Rényi
differential privacy (RDP; (Mironov, 2017)), which uses the Rényi divergence Dα (Rényi et al.,
1961): A is said to be (α, ϵ)-RDP if Dα(A(D)||A(D′)) ≤ ϵ. Moreover, RDP can be converted to
DP via the following (Balle et al., 2020): if A is (α, ϵα)-RDP then it is also (ϵ, δ)-DP with

ϵ = ϵα + log

(
α− 1

α

)
− log δ + logα

α− 1
. (2)

DP-SGD training. Abadi et al. (2016) showed that stochastic gradient descent (SGD)—the
quintessential learning algorithm—can be made differentially private by perturbing the per-iteration
gradient with Gaussian noise. The modified SGD update with gradient perturbation (often referred to
as DP-SGD) is given by:

θt+1 = θt −
ηt
|Bt|

(∑
x∈Bt

clipC(∇θℓ(x;θ)|θ=θt) +N (0, σ2C2I)

)
, (3)

where ηt is the learning rate, Bt is the sampled batch, σ > 0 is the noise multiplier, and clipC is the
operation that clips the per-sample gradient norm to at most C > 0. It can be shown that this update
procedure is (α, ϵα)-RDP for some computable ϵα (Mironov et al., 2019). The end-to-end learning
algorithm by running T iterations of SGD is thus (α, Tϵα)-RDP via composition (Mironov, 2017),
and a conversion to (ϵ, δ)-DP can be obtained using equation 2. Such privatization mechanism—per-
sample clipping and injecting noise—can be easily integrated with other first-order optimization
algorithms such as Adam (Kingma & Ba, 2014) and AdamW (Loshchilov & Hutter, 2017).

Self-supervised learning (SSL) has emerged as a prominent approach for scaling up the training
of machine learning models to large-scale unlabeled datasets. Restricting our attention to the vision
domain, SSL pre-trained models generalize effectively across a wide range of transfer learning
downstream tasks such as classification, instance segmentation and object detection (Chen et al.,
2020b; Bommasani et al., 2021), especially under the scenario of limited downstream training
data. Vision SSL methods can be broadly categorized as either joint embedding-based learning
(JE) (Chen et al., 2020a; He et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Chen & He, 2021) or
reconstruction-based learning (REC) (Bao et al., 2021; Xie et al., 2022; He et al., 2022). JE-based
approaches design objective functions so that all views (or image augmentations) of the same sample
have similar embeddings, while views of different samples have different embeddings. As a result,
most JE-based approaches require a batch containing multiple samples in order to define the objective
function. On the other hand, REC-based approaches aim to optimize models to reconstruct image
inputs in the pixel space based on partially masked inputs, which promotes the model to learn
compressed representations that can generalize well.

1The model is sourced from the PyTorch website and is end-to-end trained with supervised learning.
2We adopt the removal notion of adjacency, i.e., D′ = D ∪ z for some z and vice versa.
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Related work. Recently, an expanding body of literature has emerged on scaling DP training to
large-scale datasets and models in both NLP and vision domains. In NLP, a series of works (Anil et al.,
2021; Yu et al., 2021; Li et al., 2022a) showed that by combining public pre-training and scaling up
the training batch size, it is possible to fine-tune the pre-trained language model to achieve reasonable
downstream performance. In computer vision, Kurakin et al. (2022) first attempted to scale DP
training of convolutional neural networks (ResNets) to ImageNet. De et al. (2022) further improved
the performance of Kurakin et al. (2022) with a Normalizer-Free ResNet architecture and an improved
training recipe. More recently, Sander et al. (2022) proposed a more efficient hyperparameter tuning
method for DP training that led to state-of-the-art performance on ImageNet. It is worth noting that
all these works on DP-trained computer vision models focus on training supervised models.

3 RECIPE FOR TRAINING DP FOUNDATION VISION MODELS

In this work, we identify a successful recipe for training differentially private foundation vision
models. Training DP foundation models, or in general any deep learning model with a large number
of parameters, poses a significant challenge due to the large amount of injected noise—N (0, σ2C2I)
in equation 3. Indeed, current state-of-the-art differentially private deep learning models even under-
perform linear models with handcrafted features when ϵ is small (De et al., 2022; Tramer & Boneh,
2020). We propose two effective techniques that reduce the magnitude of noise injected during
training while attaining strong (ϵ, δ)-DP guarantees: 1. Scaling up the number of training samples via
self-supervised learning with masked autoencoder; and 2. Facilitating faster training by warm-starting
the model with weights pre-trained on synthetic samples.

3.1 DIFFERENTIAL PRIVATE SSL WITH MASK AUTOENCODER

Most existing works on differentially private training (De et al., 2022; Sander et al., 2022; Bu et al.,
2022) focus on supervised learning, which inherently restricts the quantity of training samples that
can be utilized. In contrast, self-supervised learning approaches unlock the use of (albeit uncurated)
internet-scale training data that can be on the order of billions of samples, which can potentially
satisfy the amount of data needed for DP training of high-utility models (Tramer & Boneh, 2020).

On the other hand, most existing SSL training approaches do not align with requirements in DP-SGD
training. For example, SimCLR (Chen et al., 2020a) requires a mini-batch of samples in order to
compute the contrastive loss; BYOL (Grill et al., 2020) computes per-sample loss but it utilizes
batch normalization (BN) (Ioffe & Szegedy, 2015) in the model architecture, resulting in each loss
depending on a mini-batch of training samples.3 Therefore, it is challenging to perform the per-sample
gradient clipping as described in equation 3. Among various types of SSL methods, we identify
reconstruction-base learning with masked autoencoders (MAE) (He et al., 2022) as one of the most
suitable SSL approaches for training DP foundation vision models. The training objective LMAE(θ)
in MAE is defined as:

LMAE(θ) :=
1

n

n∑
i=1

ℓMSE(g ◦ ψ(mask(xi);θ),xi) =
1

n

n∑
i=1

ℓ(xi;θ), (4)

where n is the number of training samples, xi ∈ RC×H×W is the input of the i-th training image
(C-number of channels, H-height, W -width), mask(·) is a function that mask out a fraction of the
image, ψ : RC×H×W → Rd is the encoder and g : Rd → RC×H×W is the decoder. We use θ to
denote the trainable parameters of the ψ and g, and use ℓMSE to denote the mean squared error (MSE)
loss defined on the pixel space, i.e., ℓMSE(x1,x2) = ∥x1 − x2∥2F . Similar to He et al. (2022), we
apply vision transformers (Dosovitskiy et al., 2020) to instantiate the encoder and decoder maps. As
shown in equation 4, the training objective can be decomposed into n individual losses, and each
individual loss ℓ(xi;θ) only depends on the i-th training sample xi and does not require the label
of xi. Therefore, we can compute per-sample gradient ∇θℓ(xi;θ) and perform per-sample gradient
clipping without modifying the MAE training.

3Subsequent work by Richemond et al. (2020) demonstrated that BN can be substituted with group nor-
malization by carefully modifying the model architecture. However, we have observed that the design of
exponential moving averaged online network in BYOL can result in dynamic instability during training, which
poses challenges in the context of DP training.
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(b) Effectiveness of synthetic pre-training.

Figure 3: (a). We vary the number of training samples n with the (ϵ, δn)-DP guarantee (δn =
1/2n), and compare the training losses of MAE-DP. By scaling up the training dataset size, we can
consistently improve the ViP training under the same ϵ-DP budget. (b). Compared to ViP training
from random initialization, we can significantly speed up the ViP training by leveraging the synthetic
pre-trained MAE model as initialization.

By leveraging the self-supervised MAE training paradigm, we can now significantly scale up the
training data size for DP SSL pre-training. Dataset scaling can effectively reduce the magnitude of
noise in DP-SGD while maintaining the same (ϵ, δn)-DP guarantee, where δn = 1/2n. As shown
in Figure 3a, we investigate the impact of injected noise in ViP training by keeping all training
hyperparameters the same except for the number of training samples4. With more training samples,
the magnitude of the injected noise σ becomes smaller. We find that when the noise magnitude is
large, the training loss cannot be further optimized after certain number of training steps. In contrast,
smaller magnitude of noise (as a result of larger training dataset) facilitates faster optimization of the
training loss in comparison to larger noise scenarios. Importantly, the optimization trajectory is stable
despite the presence of noise, allowing the MAE model to learn useful features.

3.2 SYNTHETIC PRE-TRAINING ENABLES FASTER DP TRAINING FOR VIP

Non-private training of SSL models often require a significant number of training epochs, much larger
than what is required in supervised learning (Chen et al., 2020a; He et al., 2022; Balestriero et al.,
2023). This creates an additional challenge for DP training since the number of training iterations T
directly impacts the privacy guarantee. Indeed, as mentioned in Section 2, DP-SGD with T iterations
is (α, Tϵα)-RDP. Consequently, naively applying DP-SGD to MAE training results in an unfavorable
privacy-utility trade-off.

Fortunately, He et al. (2019) demonstrated that using pre-trained initialization enables much faster
model convergence compared to random initialization. However, in light of our discussion in
Section 1, it is critical that the pre-training data does not contain any private information, even if the
data is deemed “public”. One promising alternative is pre-training on programmatically-generated
synthetic images (Kataoka et al., 2020; Baradad et al., 2022), which was shown to achieve competitive
downstream performance compared to pre-training on natural images. Doing so allows the MAE to
learn spatial structure in the transformer modules (Jelassi et al., 2022) without expending any privacy
budget for the natural image data. More importantly, synthetic pre-training does not carry any privacy
risk, and legal risk is limited to obtaining proper license for the synthetic image generation code.

Thus, to accelerate ViP training, we pre-train the model on synthetic images generated using the
Shaders21k tool developed in Baradad et al. (2022). Figure 2 shows samples of synthetic images
generated by the tool. In Figure 3b, we compare the ViP training with and without synthetic pre-
trained initialization. Notably, training ViP with synthetic pre-trained weights converges significantly
faster than those with random initialized weights. Increasing the synthetic pre-training from 20 to
900 epochs further improves convergence for ViP training. Interestingly, as shown in Figure 1, MAE
trained on the synthetic dataset already outperforms existing state-of-the-art DP-trained models (De
et al., 2022; Sander et al., 2022) under our transfer learning evaluation, which shows that DP training
on datasets even as large as ImageNet does not learn sufficiently expressive features (see Table 1).

4We maintain the same batch size across various data size settings while modifying the noise multiplier σ.
Consequently, as the data size increases, the corresponding σ values decrease.
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3.3 OUR PROPOSED APPROACH

We now summarize our approach for DP foundation vision model training (also see Figure 2):

DP-MAES – DP Masked Autoencoder with Synthetic Pre-training

• Step 1: Synthetic pre-training for initialization. Pre-train mask autoencoder on the synthetic
dataset with non-private optimizers.

• Step 2: DP training with synthetic initialization. Apply the synthetic pre-trained model
as initialization and train mask autoencoder on a large-scale natural image dataset (e.g.,
LAION400M) with DP-SGD. The DP guarantee then applies to the natural image dataset.

It is worth mentioning that our proposed approach offers flexibility in the selection of both SSL
training methods and synthetic datasets. For example, developing better synthetic datasets or more
effective SSL learning method can further push the performance of the final DP foundation model.

4 EVALUATION

We evaluate the effectiveness of our training recipe by applying it to the LAION400M dataset to
train our private foundation vision model: ViP. We consider various downstream tasks in order to
demonstrate the quality and transferability of its learned representation. Furthermore, we compare
ViP to previous state-of-the-art DP-trained models as well as widely adopted non-privately trained
models, and find that ViP significantly improves SOTA for DP training on downstream transfer
tasks (Section 4.2) and even outperforms non-private models on several challenging datasets. In
addition to assessing the performance of ViP on non-private downstream tasks, in Section B.3, we
also evaluate the ViP model via DP fine-tuning on ImageNet-1K, which shows a notable improvement
of 10%+ absolute top-1 accuracy compared to previous SOTA (Sander et al., 2022). For additional
experimental results on ViP, see Appendix B.

4.1 EVALUATION SETUP

Our implementation uses PyTorch, along with the functorch package (Horace He, 2021) for computa-
tion of per-sample gradients and the opacus package (Yousefpour et al., 2021) for privacy accounting.
See Appendix A for additional implementation details.

Datasets. We use 1.05 million samples generated using the Shader21k (Baradad et al., 2022) tool
as our synthetic pre-training dataset, and the LAION400M (Schuhmann et al., 2021) as our private
pre-training dataset for the ViP model5. We evaluate ViP and baseline models via non-private linear
probing and fine-tuning on the following downstream classification datasets: ImageNet-1K (Deng
et al., 2009), Places-365 and Places-205 (Zhou et al., 2014), iNaturalist-2021 (Van Horn et al.,
2021), CIFAR-100 (Krizhevsky et al., 2009), Caltech101 (Fei-Fei et al., 2006), and Aircraft (Maji
et al., 2013). The input images are resized and center-cropped to 224×224 resolution. We also
evaluate using MS-COCO instance segmentation and object detection (Lin et al., 2014), and semantic
segmentation with the ADE20K dataset (Zhou et al., 2019) (in Appendix B.1).

Model architecture. Following He et al. (2022), we use vision transformer (ViT) (Dosovitskiy et al.,
2020) to instantiate the masked autoencoder models. The default MAE-encoder has 12 transformer
blocks and width 768, and the default MAE-decoder has 4 transformer blocks and width 512. We
denote this MAE model as MAE-base. We also consider MAE models with different model sizes,
including MAE-Nano, MAE-Tiny, MAE-Small and MAE-Large in Section 4.3.

Optimization and hyperparameters for (DP-)MAE training. We use AdamW (Loshchilov &
Hutter, 2017) for training MAE – both for synthetic pre-training and differentially private MAE
pre-training. When evaluating pre-trained models in downstream tasks, we apply LARS (You et al.,
2017) for linear probing and AdamW for fine-tuning. For MAE training, we set the masking ratio to
75%. In terms of DP training, we set ϵ = 8.0 and δ = 1/2n by default for training (ϵ, δ)-DP model.
We set the clipping parameter C = 0.1, sampling ratio q = 81920/n, and noise parameter σ = 0.5.

5Some of the links in LAION400M are now broken since its initial release, and the version we use contains
∼233 million real images. We use LAION233M to denote this subsampled version of LAION400M.
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Table 1: Linear probing evaluation on downstream classification. We compare ViP with both private
pre-training (DP-NFNet and TAN) and non-private pre-training (AlexNet and SimCLR) baselines,
as well as the synthetically pre-trained MAE model: (Syn)-ViP. ViP consistently outperforms all
private baselines, and has similar transfer learning performance as non-private SimCLR pre-trained
on ImageNet-1K. (‡All models except for (Syn)-ViP and ViP are pre-trained on ImageNet-1K, giving
them an unfair advantage for the linear probing evaluation on ImageNet-1K.)

Model DP? SSL? Pre-train dataset # pre-train samples ImageNet-1K‡ Places-365 Places-205 iNat-2021

DP-NFNet ✓ ✗ ImageNet-1k ∼1 million 45.3% 40.1% 39.2% 28.2%

TAN ✓ ✗ ImageNet-1k ∼1 million 49.0% 40.5% 38.2% 31.7%

AlexNet ✗ ✗ ImageNet-1k ∼1 million 56.5% 39.8% 35.1% 23.7%

SimCLR ✗ ✓ ImageNet-1k ∼1 million 67.5% 46.8% 49.3% 34.8%

(Syn)-ViP ✓ ✓ Shaders21k ∼1 million 49.8% 43.2% 45.8% 32.4%

ViP-LAION ✓ ✓ LAION ∼233 million 55.7% 46.1% 48.5% 38.1%

ViP-ImageNet ✓ ✓ ImageNet-1k ∼1 million 52.6% 44.3% 46.5% 34.2%

Table 2: Fine-tuning evaluation on few-shot downstream classification. ViP consistently outperforms
both TAN (private) and AlexNet (non-private), as well as (Syn)-ViP by a large margin. Performance
does fall short compared to non-private SimCLR pre-trained on ImageNet-1K despite having access to
more than 100× more data, suggesting that there is much room for improvement for private learning.

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

AlexNet 23.27% 34.47% 41.35% 64.70% 73.57% 81.40% 29.74% 36.31% 49.28%

SimCLR 38.79% 56.90% 64.90% 81.70% 89.11% 94.51% 49.93% 60.18% 71.84%

TAN 22.84% 37.93% 46.01% 49.32% 66.42% 77.87% 21.28% 27.78% 42.35%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

Existing methods for comparison. We compare with existing state-of-the-art DP-trained models:
DP-NFNet (De et al., 2022) and TAN (Sander et al., 2022)), both of which are trained differentially
privately on ImageNet-1K using supervised learning. In addition, we present the results of several
widely used non-private models that are pre-trained on ImageNet-1K including AlexNet (Krizhevsky
et al., 2017) (supervised learning-based) and SimCLR (Chen et al., 2020a) (SSL-based) for reference.
To measure the effectiveness of DP pre-training compared to synthetic pre-training, we also evaluate
the model pre-trained on synthetically generated Shader21k data, denoted (Syn)-ViP. We also
compare ViP with the non-private MAE model pre-trained on the same datasets and summarize the
results in Table 7 (Appendix B.4).

4.2 TRANSFER LEARNING EVALUATION

To show that ViP learns high-quality representations from its training data, we evaluate its transfer
learning performance on a suite of image classification tasks using both linear probing and few-shot
fine-tuning. For linear probing, we use all the training samples in the downstream task training set
to learn the linear classifier, while freezing all layers except for the final linear layer. For few-shot
fine-tuning, we randomly select K training samples from each class and fine-tune the entire model.
It is worth noting that both linear probing and fine-tuning evaluations are done using non-private
training; our pre-trained ViP model only satisfies (ϵ, δ)-DP on the LAION233M dataset.

Linear probing. Table 1 shows the linear probing results on four large-scale image classification
datasets: ImageNet-1K, Places-365/205 and iNat-2021. The most suitable baselines in this setting
are DP-NFNet and TAN, both of which are DP-trained on ImageNet-1K with ϵ = 8 and represent
previous state-of-the-art in large-scale DP pre-training. First of all, we find that MAE pre-training
only on synthetic images (i.e., (Syn)-ViP) is already comparable or even outperforms SOTA DP pre-
trained models. After differentially privately pre-training on LAION233M, ViP effectively improves
the performance of (Syn)-ViP on all datasets by a large margin.

Importantly, ViP even outperforms non-private SimCLR pre-trained on ImageNet-1K on all datasets
(except ImageNet-1k itself because SimCLR does not need to transfer), and achieves similar perfor-
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Figure 4: (Left) Effect of scaling up model size on MAE training loss. Larger models attain lower
training loss despite the larger magnitude of noise added during DP-SGD. (Right) Effect of batch
size on MAE training loss while fixing ϵ. A large batch size is necessary for convergence.
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Figure 5: Effect of scaling up model size on downstream performance. ViP with synthetic pre-training
(blue line) benefits substantially from larger model size. In comparison, ViP with random initialization
(gray line) does not benefit as much from model scaling, as the difference in performance between
MAE-Large and MAE-Nano is considerably smaller.

mance as end-to-end non-privately trained AlexNet. To the best of our knowledge, this is the first
time a DP-trained model can achieve similar performance on vision benchmark datasets as that of a
mainstream (albeit older) model, which demonstrates the potential of our training recipe.

Few-shot fine-tuning. Table 2 shows the few-shot fine-tuning results on Aircraft, Caltech-101 and
CIFAR-100. Similar to the linear probing result, (Syn)-ViP already outperforms TAN—the previous
SOTA DP-trained model—across all evaluation settings except for 10-shot classification on Aircraft.
Next, we find that ViP can largely improve upon (Syn)-ViP when the number of samples per class is
small, attaining SOTA performance in all evaluation settings. ViP also achieves better performance
than non-privately pre-trained AlexNet by a large margin, but falls short against non-private SimCLR
despite having access to more than 100× training data. Thus, our result can be viewed as both a
positive and a negative result, showing that there is still a long way to go for private learning before
matching the performance of mainstream vision models across the board.

4.3 SCALING PROPERTIES

We now study scaling properties of our training recipe, including scaling up (1) the model size, (2)
the training set size, and (3) the previously known successful recipe of scaling up batch size.

Scaling up model size. DP-SGD training is generally unfavorable to large models because the noise
magnitude increases with model size. Interestingly, we show that model performance in fact improves
by scaling up model size using our training recipe. Specifically, we change the MAE-encoder size
while fixing the MAE-decoder size, resulting in five different model sizes from MAE-Nano to MAE-
Large; Table 4 in Appendix A.1) gives architecture details including number of parameters. All
models are trained to satisfy the same (ϵ, δ)-DP guarantee with ϵ = 8.

Figure 4a plots the training curve for the different-sized models. At the beginning of DP training,
due to synthetic pre-training, a larger MAE model can learn more expressive features and hence the
MAE training loss on LAION233M decreases as model size increases. Intriguingly, the training
losses of MAE-Small/Base/Large are similar at the beginning, but larger ViT models achieve faster
convergence despite the large amount of DP noise. Although similar observations on larger models
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Table 3: Ablation studies on the effect of dataset size and batch size. The first row shows the result of
(Syn)-ViP, which is the common starting point for all models in the subsequent rows. Difference in
performance compared to (Syn)-ViP is shown in parentheses. See text for details. (‡ represents linear
probing evaluation and ⋄ represents 10-shot fine-tuning evaluation.)

Model Batch Size # Train data Noise σ ImageNet-1K ‡ Places-365 ‡ iNat-2021‡ Aircraft⋄ CIFAR-100⋄

(Syn)-ViP - - - 49.8% 43.2% 32.4% 21.8% 39.0%

ViP 98,304 2M 2.50 52.6% (+2.8%) 44.8% (+1.6%) 37.0% (+4.6%) 29.1% (+7.3%) 39.9% (+0.9%)

ViP 98,304 23M 0.66 53.7% (+3.9%) 45.2% (+2.0%) 37.6% (+5.2%) 31.5% (+9.7%) 40.5% (+1.5%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

ViP 8,192 233M 0.41 43.9% (- 5.9%) 41.0% (- 2.2%) 27.6% (- 4.8%) 15.0% (- 6.8%) 39.2% (+0.2%)

ViP 32,768 233M 0.45 53.0% (+3.2%) 45.1% (+1.9%) 36.2% (+3.8%) 30.0% (+8.2%) 40.3% (+1.3%)

ViP 98,304 233M 0.48 55.7% (+5.9%) 46.1% (+2.9%) 38.1% (+5.7%) 31.6% (+9.8%) 41.0% (+2.0%)

converge faster have also been described in the context of non-private learning (Li et al., 2020), the
fact that we observe the same phenomenon in Figure 4a suggests that model scaling can be effective
even for private learning under our training recipe.

Figure 5 shows the effect of model scaling on downstream linear probing and fine-tuning performance.
In particular, the effective reduction in training loss shown in Figure 4a indeed translates to better
downstream performance, with larger ViP model consistently achieving better accuracy without
modifications to the training process. Moreover, comparing ViP with synthetic pre-training (blue
line) vs. random initialization (gray line) shows that synthetic pre-training is crucial for unlocking
this scaling behavior: the difference in performance between MAE-Large and MAE-Nano is much
smaller when the model is randomly initialized.

Scaling up dataset size. Next, we investigate the effect of scaling up the number of training samples
in ViP training. We vary the training dataset size from 2M to 23M to 233M while choosing the
magnitude of injected noise σ so that models trained on different dataset sizes satisfy (ϵ, δn)-DP
guarantee with ϵ = 8 and δn = 1/2n, where n is the number of training samples. Table 3 shows
downstream evaluation results. The first row corresponds to the synthetically pre-trained ViP model
and rows 2-4 correspond to DP-trained ViP models with different dataset sizes. As expected, a larger
pre-training dataset size results in a higher-utility ViP model. For example, scaling from 2M to 233M
gives 3.1% linear probing accuracy gain on ImageNet-1K (from 52.6% to 55.7%). Given that the
collection of large labeled datasets is very costly in practice, these results highlight the significance
of self-supervised learning in DP training.

Scaling up batch size. Scaling up the training batch size is a known effective way to achieve
strong performance in DP supervised learning (Li et al., 2022a). We analyze the effect of batch size
in training ViP models and show that the same observation holds for DP self-supervised learning.
We consider three different batch size B ∈ {8192, 32768, 98304}, and keep the computational
budget—number of per-sample gradient computation—the same for all batch sizes. We then select
the noise σ such that models trained with different batch size satisfy the same (ϵ, δ)-DP. As shown
in Figure 4b, we find that larger batch size leads to better stability in the training process as well
as faster convergence under the same computational budget. Rows 5-7 in Table 3 demonstrate that
larger batch size also translates to a substantial improvement in ViP’s transfer learning performance.

5 DISCUSSION AND FUTURE WORK

We developed a recipe for DP self-supervised learning of foundation vision models, and showed
that the resulting model—ViP—can achieve downstream performance matching or exceeding that
of mainstream non-private models such as SimCLR (with ImageNet-1K pre-training). Our work
shows the potential of scaling DP training to internet-scale unlabeled datasets and presents several
opportunities for future work. 1. Our recipe adapted MAE to DP-SGD training with minimal
modifications. It may be possible to design more specialized SSL training algorithms that conform to
the requirements of DP-SGD and are more effective at learning useful representations. 2. Multi-modal
SSL is generally more effective than single-modality pre-training due to the additional supervision
from cross-modal alignment (Mu et al., 2022). However, existing multi-modal SSL methods are
mostly based on contrastive learning (e.g., CLIP (Radford et al., 2021), SLIP (Mu et al., 2022) and
FLIP (Li et al., 2022b)) and do not admit per-sample gradient computation. Recent work (Huang et al.,
2023) investigated how to fine-tune CLIP on vision-language tasks with DP guarantee. Additional
work may be needed to adapt these methods to DP-SGD training.
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A IMPLEMENTATION AND EVALUATION DETAILS

In this section, we provide implementation details for training and evaluating (Syn)-ViP, ViP, as well
as other existing methods.

A.1 DETAILS FOR MAE MODEL

In Table 4, we provide details for backbones of MAE model with different model sizes. Both
MAE-Large and MAE-Base encoders are constructed following the identical setup described in He
et al. (2022).

Table 4: Details of MAE backbone variants used in ViP.

ViP model MAE Backbone Encoder depth Encoder width Decoder depth Decoder width # parameters

ViP-Nano MAE-Nano 12 192 4 512 18.6M

ViP-Tiny MAE-Tiny 12 384 4 512 34.8M

ViP-Small MAE-Small 12 576 4 512 61.6M

ViP-Base MAE-Base 12 768 4 512 99.0M

ViP-Large MAE-Large 24 1024 4 512 233.3M

A.2 DETAILS FOR VIP PRE-TRAINING

For (Syn)-ViP pre-training, we follow the training setup outlined in (He et al., 2022): we apply the
training parameters specified in Table 8 of He et al. (2022) and pre-train pre-train (Syn)-ViP on the
S21k dataset developed in Baradad et al. (2022), which comprises of 1,300,000 training samples,
for a total of 1,000 epochs. Our (Syn)-ViP pre-training applies the self-supervised MAE training
methodology and does not use the label information available in the S21k dataset.

We now present details for differentially private ViP pre-training. As mentioned in Section 3, we first
initialize the model weights with (Syn)-ViP pre-trained on S21k dataset. Then we apply DP-AdamW6.
See the table below for training hyperparameters.

Model lr (η) warmup iterations wd (λ) (β1, β2) epsilon (ϵ) lr decay

ViP-Base 3.84 · 10−4 1,000 0.005 (0.9, 0.95) 10−8 cosine

For masking in the MAE training, we follow the random masking strategy and masking ratio of 75%
in He et al. (2022) for both (Syn)-ViP pre-training and ViP pre-training. The process of executing
each iteration of DP-AdamW for training the ViP-Base model takes approximately 25 seconds when
utilizing 48 A100 (40GB) GPUs. Each epoch of the (Syn)-ViP-Base model’s training process takes
roughly 90 seconds to complete with 48 A100 (40GB) GPUs.

A.3 DETAILS FOR DOWNSTREAM CLASSIFICATION TASK

Linear probing. We follow the training setup in He et al. (2022): we apply BatchNorm (Ioffe &
Szegedy, 2015) before the last linear layer, and use the LARS (You et al., 2017) optimizer. We choose
the base learning rate blr ∈ {0.1, 0.05, 0.01}, batch size B = 16, 384, weight decay λ = 0.0. We
set warmup epoch as 10, and total training epoch as 90. We use the RandomResizedCrop and
RandomHorizontalFlip augmentations.

Few-shot fine-tuning. For vision transformer based architectures, we apply the AdamW optimizer
with learning rate of lr ∈ {3 ·10−3, 3 ·10−4, 3 ·10−5} and set weight decay as 0.05. For convolutional
neural networks (AlexNet, ResNet used in SimCLR), we apply the SGD optimizer because it
consistently outperforms AdamW. We select learning rate lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4}, while
setting the momentum as 0.9 and the weight decay as 0.0. For all models we apply the cosine

6A variant of the standard DP-SGD — we first compute the noisy clipped stochastic gradient described in
equation 3, then apply one step update of AdamW (Loshchilov & Hutter, 2017) using the estimated gradient.
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learning rate decay, and use 10 warm-up epochs and fine-tine with 200 total epochs. We apply
AutoAugment (Cubuk et al., 2018) for data augmentation.

A.4 DETAILS FOR DOWNSTREAM SEGMENTATION AND DETECTION TASKS

COCO object detection and segmentation. We fine-tune the pre-trained (Syn)-ViP and ViP on
COCO with the Detectron2 package (Wu et al., 2019). We apply the pre-trained (Syn)-ViP-Base
and ViP-Base as the ViT initializations for the detection and segmentation tasks, and apply the default
hyperparameter config in Detectron2 for ViTDet-Base.

ADE20K semantic segmentation. We follow the setup described in He et al. (2022) on evaluating
pre-trained MAE models for semantic segmentation. We apply the UPerNet (Xiao et al., 2018) and
perform fine-tuning for 100 epochs with a batch size of 16.

A.5 DETAILS FOR DIFFERENTIALLY PRIVATE FINE-TUNING ON IMAGENET

We use the pre-trained encoders of (Syn)-ViP and ViP and apply DP-AdamW for DP end-to-end
fine-tuning. The details for parameters in DP-AdamW can found in the following table.

Model sampling ratio q noise σ iterations T lr wd

ViP-Base / (Syn)-ViP-Base 262, 144/n 5.6 1,500 1.02 · 10−3 0.005

We use 50 iterations for learning rate warm-up, and then keep the learning rate constant afterwards.
For selecting parameters not presented in the aforementioned table, we adopt the default configuration
of AdamW in PyTorch (Paszke et al., 2017). The fine-tuned model satisfies (8, 8 · 10−7)-DP on the
ImageNet-1K dataset in addition to the LAION233M dataset.

A.6 DETAILS FOR FIGURE 1

For the linear probing results, we present the performance of the ViP-Large model, with the summa-
rized results shown in the last row of Table 4. Regarding the detection and segmentation results, we
utilize the ViP-Base model as the ViT backbone, and the corresponding outcomes can be found in
Table 5.
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B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results on evaluating (Syn)-ViP, ViP, as well as
other existing methods.

B.1 SEGMENTATION AND DETECTION EVALUATIONS OF (SYN)-VIP/VIP

We summarize the results for object detection and segmentation in Table 5. Training details can be
found in Appendix A.4.

Table 5: Evaluation of our DP models ((Syn)-ViP, ViP) as well as existing non-private baselines on
COCO object detection/segmentation and ADE20K semantic segmentation.

Model DP? COCO ADE20K
APbox APmask mIoU

SimCLR (Chen et al., 2020a) ✗ 37.9 33.3 -

Mask R-CNN (He et al., 2017) ✗ 40.0 37.1 -

RefineNet (Lin et al., 2017) ✗ - - 40.7

MAE (He et al., 2022) ✗ 50.3 44.9 48.1

(Syn)-ViP ✓ 45.0 40.1 38.8

ViP ✓ 45.2 40.4 40.1

B.2 ADDITIONAL EXPERIMENTS ON VIP PRE-TRAINING

In Figure 6, we plot the training loss v.s. number of training steps for ViP training without (Syn)-ViP
initialization. Compared to the results in Figure 4a, when pre-training from scracth with DP-AdamW,
larger models do not converge faster than smaller ones. These results further demonstrate the
effectiveness of synthetic pre-training for unlocking DP-SGD training of larger vision models.
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Figure 6: Training loss of different model sizes. (with random initialization).

B.3 DP FINE-TUNING VIP ON IMAGENET-1K

Thus far, our main emphasis has been on evaluating DP pre-trained ViP through non-private linear
probing or fine-tuning on downstream tasks. For certain use cases, the downstream task training set
may be privacy-sensitive as well and DP fine-tuning is required. We simulate such a scenario by fine-
tuning the privately pre-trained ViP model7 on ImageNet-1K with DP-SGD. As a result, the fine-tuned
model satisfies (8, 8 · 10−7)-DP on the ImageNet-1K dataset in addition to the LAION233M dataset.
We compare against prior works on training DP ImageNet models without pre-training (Kurakin
et al., 2022; De et al., 2022; Sander et al., 2022); results are summarized in Table 6.

By utilizing our pre-trained ViP as an initialization, we observe an improvement in top-1 accuracy of
more than 10% compared to the previous SOTA (Sander et al., 2022), demonstrating the efficacy of
our DP pre-training recipe.

7ViP-Base pre-trained on LAION233 shown in the last row of Table 1.
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Table 6: DP fine-tuning evaluation on ImageNet-1K. We compare (Syn)-ViP and ViP with existing
DP training methods (DP-ResNet-18, DP-NFNet, and TAN) on ImageNet-1K.

Model (ϵ, δ)-DP Top-1 Accuracy

DP-ResNet-18 (Kurakin et al., 2022) (13.2, 10−6) 6.2%

DP-NFNet (De et al., 2022) (8, 8 · 10−7) 32.4%

TAN (Sander et al., 2022) (8, 8 · 10−7) 39.2%

(Syn)-ViP (8, 8 · 10−7) 48.9% ± 0.2

ViP (8, 8 · 10−7) 50.3% ± 0.3

B.4 ADDITIONAL EXPERIMENTS ON THE CLASSIFICATION TASK

Comparison with non-private MAE. To gain a better understanding of the gap between non-
private training and private training, we use the same synthetic pre-trained model as initialization
and perform DP-AdamW training on LAION233M with σ = 0.08. We keep most of the training
parameters the same except for setting the sampling ratio to q = 4096/n and the number of iterations
T = 60, 0009. We then evaluate the linear probing (few-shot fine-tuning) performance of the trained
model and provide the results in Table 7 (Table 8).

For linear probing, our ViP model closes more than half the gap between the (Syn)-ViP model and
the non-private MAE model. With a more refined training recipe, it is plausible that the gap can be
reduced even further, allowing DP-trained foundation vision models to rival non-privately trained
ones on certain downstream tasks. In the context of few-shot fine-tuning, a comparison between
private learning and the non-private MAE model reveals considerable potential for improvement in
the private learning approach.

Comparison with ViP trained on de-duplicated LAION-2B. Recent work has demonstrated that
there exist duplicated samples in the LAION dataset, which poses copyright and privacy challenges
for foundation models trained on LAION. Therefore, we also pre-train our proposed ViP model on
a de-duplicated subset of LAION-2B (Schuhmann et al., 2022), denoted by Dedup-LAION-245M,
which consists of a similar number of training samples (245 million) as the one we mainly consider
in this work. We summarize the linear probing performance of the ViP pre-trained on Dedup-LAION-
245M in Table 7. We find the ViP model pre-trained on the de-duplicated LAION achieves similar
performance as the one trained on LAION-400M (Schuhmann et al., 2021).

Table 7: Linear probing evaluation on downstream classification. We compare ViP and (Syn)-ViP
with (non-private) MAE (He et al., 2022).

Model Pre-train dataset DP? SSL? ImageNet-1K‡ Places-365 Places-205 iNat-2021

(non-private) MAE LAION-233M ✗ ✓ 60.5% 48.3% 51.8% 38.5%

(Syn)-ViP LAION-233M ✓ ✓ 49.8% 43.2% 45.8% 32.4%

ViP LAION-233M ✓ ✓ 55.7% 46.1% 48.5% 38.1%

ViP Dedup-LAION-245M ✓ ✓ 55.5% 46.3% 48.1% 38.0%

Table 8: Fine-tuning evaluation on few-shot downstream classification. We compare ViP and
(Syn)-ViP with (non-private) MAE (He et al., 2022).

Model Aircraft Caltech-101 CIFAR-100
10-shot 20-shot 30-shot 5-shot 10-shot 30-shot 5-shot 10-shot 30-shot

(non-private) MAE 36.78% 56.82% 66.20% 72.93% 84.50% 92.78% 34.38% 47.98% 62.88%

(Syn)-ViP 21.79% 46.85% 58.45% 60.51% 76.21% 88.48% 27.62% 38.96% 55.84%

ViP 31.62% 53.05% 64.26% 68.05% 79.03% 88.90% 30.73% 40.95% 57.52%

8In this case, the ϵ = +∞ for the (ϵ, δ)-DP.
9While the trained model may not necessarily achieve optimal performance, our main purpose is to present

a non-private model that follows a similar training setup, with the exception of setting the noise to zero. This
allows us to compare its performance to the private model.
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Linear probing evaluation of ViP with different model sizes. We study the scaling behavior of
ViP and (Syn)-ViP through linear probing. As shown in Table 10, we compare the performance of
ViP and (Syn)-ViP with different model sizes. The performance of ViP consistently improves across
all datasets as the model size increases. In contrast, increasing the model size from MAE-Base to
MAE-Large results in less than 1% improvement in top-1 accuracy for (Syn)-ViP. These findings
further underscore the effectiveness of our proposed ViP training recipe for scaling up model size in
private pre-training.

Table 9: Linear probing evaluation of ViP-LAION with different privacy budget on ImageNet-1k
classification. We vary the privacy budget epsilon (ϵ) from 2.0 to +∞, where our default privacy
budget is ϵ = 8.0 and we use ϵ = +∞ to denote the non-private MAE model.

Model Downstream dataset ϵ = 2.0 ϵ = 4.0 ϵ = 8.0 ϵ = +∞

ViP-LAION ImageNet-1k 51.4% 53.8% 55.7% 60.5%

Table 10: Additional linear probing evaluation on downstream classification (ViP with different
model sizes).

Model # parameters Backbone ImageNet-1K Places-365 Places-205 iNat-2021

(Syn)-ViP-S 61.6M MAE-Small 46.0% 40.9% 43.2% 28.3%

(Syn)-ViP-B 99.0M MAE-Base 49.8% 43.2% 45.8% 32.4%

(Syn)-ViP-L 233.3M MAE-Large 50.2% 43.3% 46.5% 32.7%

ViP-S 61.6M MAE-Small 49.6% 42.4% 44.7% 30.0%

ViP-B 99.0M MAE-Base 55.7% 46.1% 48.5% 38.1%

ViP-L 233.3M MAE-Large 58.0% 48.5% 50.8% 40.6%

B.5 VIP ABLATION EXPERIMENTS

We study the effect of MAE-decoder depth and MAE-masking ratio in ViP pre-training, and evaluate
different models with linear probing on ImageNet-1K. We consider the ViP-Base setting and the
results are summarized in Table 11.

Table 11: Ablation studies on the effect of decoder depth and masking ratio in MAE.

Model decoder depth masking ratio ImageNet-1K

ViP (default) 4 0.75 55.7%

ViP 1 0.75 43.4%

ViP 2 0.75 51.7%

ViP 8 0.75 50.1%

ViP 4 0.25 53.5%

ViP 4 0.5 54.7%
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