
Under review as a conference paper at ICLR 2024

A APPENDIX

B CLASSIC CONTROL EXPERIMENT DETAILS

For the classic control experiments we use the OpenAI gym (Brockman et al., 2016). To train all
policies we use the DDPG algorithm, where the policies are parameterized by three layer MLPs
with 256 hidden units per layer. We use the Adam optimizer, and search for a learning rate in
[1⇥ 10�5, 1⇥ 10�3].

For mountain car we train for a total of 15000 timesteps and begin training after 5000 timesteps. For
pendulum, we train for a total of 50000 timesteps and begin learning after 25000 timesteps.

C BASELINES

Beyond the ground-truth reward, we compare the HERON algorithm with two ensemble baselines
inspired by Brys et al. (2017). These ensemble baselines train a separate policy on each reward fac-
tor, and then combine the policies’ outputs in a given state to select an action. In every environment
we train each policy in the ensemble with the similar parameters as used for the reward engineering
baseline and we again tune the learning rate in [1⇥ 10�5, 1⇥ 10�3].

As described in the main text, we consider two variants of this ensemble based algorithm: one where
the action is selected according to an average over each policy (a argmaxa2A

Pn
k=1

1
n⇡k(s, a))

and one where the preference ranking used as input to HERON is used to combine the ac-
tions (a argmaxa2A

Pn
k=1 �

k⇡k(s, a)). With the second variant, � is selected from
{0.25, 0.35, 0.45, · · · , 0.95, 0.99, 1}.

We also examine the performance of a reward engineering baseline where the reward is formulated
as

Pn
i=1 �

izi, where � is a hyperparameter selected from {0.3, 0.4, ..., 0.9, 1.0} and zi are the nor-
malized reward factors. The reward factors are ordered according to the HERON reward hierarchy,
making this a very realistic and competitive reward engineering baseline. However, we came across
a few challenges when trying to make this algorithm work. First, the reward factors all need to be
normalized, which either requires complex algorithms or multiple agent rollouts before training. In
addition, we find that this baseline is very sensitive to � and therefore has a higher tuning cost. In
addition, it can often not beat the performance of HERON. We plot the performance of the reward
engineering baseline in Figure 7. Note that this plot shows performance over all of training, and
HERON typically displays larger reward (comparatively) in the last stages of training.

As we can see from Figure 7, the reward engineering baseline requires extensive tuning to achieve
good performance. In addition, the choice of normalization strategy is very important (Figure 7f).
These results further show the benefits of HERON.

D ROBOTICS

All of our experiments are conducted with the PyBullet simulator (Coumans & Bai, 2016). The
reward factors in each environment are as follows: for Ant, it is whether the robot is alive, the
progress towards the goal state, whether the joints are at their limits, and whether the feet are collid-
ing. For HalfCheetah, the factors are the potential and the power cost. For Hopper, the factors are
the potential, an alive bonus, and the power cost.

E TRAFFIC LIGHT CONTROL

In our experiments we train four agents in a two by two grid. The length of each road segment is
400 meters and cars enter through each in-flowing lane at a rate of 700 car/hour. The traffic grid can
be seen in Figure 8. The control frequency is 1 Hz, i.e. we need to input an action every second.
The reward is based on the following attributes for each agent n:

• qn: The sum of queue length in all incoming lanes.
• wtn: Sum of vehicle waiting time in all incoming lanes.

13

Under review as a conference paper at ICLR 2024

(a) Ant (b) Half-Cheetah (c) Hopper

(d) Traffic Lights (e) Pendulum (f) Mountain Car

Figure 7: Ablation study of the reward engineering baseline.

• dln: The sum of the delay of all vehicles in the incoming lanes.
• emn: The number of emergency stops by vehicles in all incoming lanes.
• fln: A Boolean variable indicating whether or not the light phase changed.
• vln: The number of vehicles that passed through the intersection.

We can then define the reward-engineering reward as

Rn = �0.5qn � 0.5wtn � 0.5dln � 0.25emn � fln + vln.

All algorithms have the same training strategy. Each agent is trained for three episodes with 3000
SUMO time steps each. At the beginning of training the agent makes random decisions to populate
the road network before training begins. Each algorithm is evaluated for 5000 time steps, where the
first 1000 seconds are used to randomly populate the road. For adversarial regularization, we use
the `2 norm to bound the attacks �.

Figure 8: Traffic light control environment.

F RLHF COMPARISON

To explicitly compare RLHF with HERON, we compare the algorithms in the pendulum environ-
ment. To simulate human feedback, we rank one trajectory over another if the ground truth reward
achieved by that trajectory is higher than the ground truth reward achieved by the other trajectory.

14

Under review as a conference paper at ICLR 2024

We then evaluate the performance of this simulated RLHF algorithm when varying amounts of feed-
back are given. The results can be seen in Figure 9. In this table we vary the number of feedbacks
in RLHF, while keeping the number of feedbacks for HERON constant. In this setting HERON can
perform as well as RLHF, but such good performance is not guaranteed in every environment.

Figure 9: RLHF comparison in the Pendulum Environment.

G HERON FLEXIBILITY

In this section we evaluate how the behavior of the policies trained by HERON change when we
change the reward hierarchy. We plot several hierarchies in Figure 10. The reward engineering is
the thick black line. We try three factors as the most important factor (num passed, wait time, and
delay). We notice that all these observations can outperform the reward engineering reward, even
though we measure the return with the reward engineering reward. One important deviation from
this good performance is when wait time is not ranked highly. The wait time is a very important
factor, and when we do not put this variable high up in the hierarchy, the performance becomes
unstable when measured according to the reward engineering reward. This is because if we ignore
the wait time of cars, the policy may make some cars wait for a long time, which is not ideal.
However, this can easily be accounted for in the reward design process.

Figure 10: Different reward hierarchies in HERON.

We also show the level the decision tree induced by HERON reaches in Figure 11. This may change
with different reward hierarchies (this one in particular priorities queue length, wait time, and delay),
but as we can see from the figure, a relatively similar proportion of decisions are made at each level
of the decision tree. We also remark different reward factors may be correlated (i.e. queue length
and number passed), so the second factor may not have many decisions made with it.

H CODE GENERATION

In this section we describe details for the code generation task.

H.1 BEHAVIOR CLONING

To train the initial behavior model we use behavior cloning (supervised fine-tuning) to adapt the pre-
trained CodeT5 to the APPS task. In particular, we use train with the cross-entropy loss for 12000
iterations, using a batch size of 64. We use the Adam optimizer with a learning rate of 2⇥ 10�5.

15

Under review as a conference paper at ICLR 2024

Figure 11: Different level reached by decision tree in HERON.

H.2 TEMPERATURE SELECTION

A hyperparameter that can have a large impact on generation quality is the temperature parameter,
which essentially alters how greedy we are in the next-token sampling step. In all settings we follow
the implementation of Le et al. (2022), using a temperature of 0.6 for APPS and 1.2 for MBPP. In
addition, we sample tokens greedily to construct a baseline sample for each problem.

H.3 REWARD MODEL

It has been noted that reward models often overfit to the dataset (Ouyang et al., 2022). Therefore
we use a smaller version of CodeT5 for our reward model with only 220 million parameters. We
train this model for around 40000 steps with a batch size of 64. This is roughly a single epoch on
the preference dataset, which is comprised of 20 samples per problem sampled from the behavior
model and some expert samples provided by the APPS dataset. We use the Adam optimizer with a
learning rate of 2⇥ 10�5.

H.4 REINFORCEMENT LEARNING

Once we have trained the reward model, we assign a reward to each program in our preference
dataset and train using reinforcement learning on this dataset. Similar to Le et al. (2022), we train
on the policy gradient loss and add the cross entropy loss as a regularization term. We compare our
method to two reward engineering rewards:

CodeRL reward. The first reward we compare HERON to is from CodeRL, which defines the
reward as

rCodeRL(s) =

8
>><

>>:

�1.0 if program s fails to compile
�0.6 if program s has a runtime error
�0.3 if program s fails a unit test
1.0 if program s passes all unit tests.

PPOCoder reward. The second reward we compare HERON to is based on PPOCoder, which has
the insight to include syntactic similarity to expert samples in the reward. This effectively smooths
the reward, and can therefore make the reward more informative. In particular, they compare the
abstract syntax trees of the generated programs with the expert example programs. This is computed
as

Rast(s, bs) = Count(ASTs, ASTbs)/Count(ASTs).

We then construct the final PPOCoder based reward as rPPOCoder(s) = rCodeRL(s) +
�MEANbs(rast(s, bs)), where MEAN is the mean operator. We tune � 2 {0.001, 0.01, 0.1, 1}.
We remark that the original PPOCoder reward contains more reward factors, but we do not use all
of them due to the large tuning cost required to tune the ourselves.

For both of these rewards and the HERON reward we tune the learning rate in {3 ⇥ 10�6, 5 ⇥
10�6, 8⇥ 10�6}.

16

Under review as a conference paper at ICLR 2024

H.5 EXAMPLE PROGRAMS

To further analyze the performance of HERON, we examine some of the programs generated by
HERON. These programs are randomly selected. We display concatenated prompts and completions
in Figure 12.

I REWARD TRAINING

In this section we detail our reward model training. For the classic control tasks and the traffic light
control task we do not have a good initial behavior policy, so we must train our reward model in an
iterative manner. In these settings, we iteratively update the reward model using samples from the
current version of the policy. In this way the reward model is trained on samples generated from
progressively better policies.

As we mentioned in our discussion on the computational costs of HERON, the cost of reward model
training depends on the frequency at which the reward model is trained. For the classic control
environments we simply use a linear training schedule, in which the reward model is updated every
400 steps. For traffic light control we train the reward model with an annealed frequency, where the
reward model is trained every 100�t steps, where � is set 1.3 and t is the current time step.

We demonstrate the multi-step reward model training in Figure 13. The sharp drop in accuracy
occurs at time step 1000, where the behavior model changes from random to a trained policy. This
large change in accuracy indicates that multi-step reward model training is needed, as reward models
trained on random behavior do not perform as well when the behavior changes.

I.1 THE ↵ HYPERPARAMETER

Formal description of shaping factor: Given a trajectory ⌧ , let us compare it with n other tra-
jectories ⌧1, . . . , ⌧n. Let F (⌧) denote the average level of the decision tree ⌧ wins at. To allow us
to incorporate domain knowledge into HERON, we multiply the reward assigned to ⌧ by a factor
↵F (⌧), where ↵ is a hyperparameter. When the reward factors are categorical, F (⌧) can capture
which category ⌧ lies in, and multiplying the reward by ↵F (⌧) can control the reward separation
between different categories.

Visual description of shaping factor:As mentioned in the main text, the ↵ hyperparameter can be
used to control the shape of the rewards. In Figure 14, we show how changing ↵ changes the reward
shape in the code generation task.

J COMPUTATIONAL SETUP

For the classic control tasks and traffic light control experiment we run experiments on Intel Xeon
6154 CPUs. For the code generation task, we train with Tesla V100 32GB GPUs.

K ROBOTICS LEARNING CURVES

In Figure 15 we display the learning curves in the robotics environments.

L LIMITATIONS

The main limitation of HERON is that not every problem will contain an obvious ranking over the
reward factors, as some factors may be equally important. We propose to mitigate this limitation in
future works by allowing for ties or using a randomized decision tree in the preference elicitation
procedure.

17

Under review as a conference paper at ICLR 2024

Figure 12: Example programs generate by LLMs trained with HERON.

18

Under review as a conference paper at ICLR 2024

Figure 13: Reward model accuracy throughout training.

(a) ↵ = 1.0 (b) ↵ = 2.0

(c) ↵ = 3.0 (d) ↵ = 4.0

Figure 14: Reward shape with different values of ↵.

19

Under review as a conference paper at ICLR 2024

(a) Ant (b) Hopper

(c) HalfCheetah

Figure 15: Training curves in different robotics tasks.

20

	Introduction
	Related Work
	Method
	Problem Setup
	Algorithm

	Experiments
	Environments and Baselines
	Main Results
	Flexibility of Hierarchical Reward Modeling
	Robustness
	Analysis

	Discussion
	Appendix
	Classic Control Experiment Details
	Baselines
	Robotics
	Traffic Light Control
	RLHF Comparison
	HERON Flexibility
	Code Generation
	Behavior Cloning
	Temperature Selection
	Reward Model
	Reinforcement Learning
	Example Programs

	Reward Training
	The Hyperparameter

	Computational Setup
	Robotics Learning Curves
	Limitations

