References

- [AMDW13] Pablo Azar, Silvio Micali, Constantinos Daskalakis, and S Matthew Weinberg. Optimal and efficient parametric auctions. In *Proceedings of the twenty-fourth annual ACM-SIAM symposium on Discrete algorithms*, pages 596–604. SIAM, 2013.
- [ANSS19] Nima Anari, Rad Niazadeh, Amin Saberi, and Ali Shameli. Nearly optimal pricing algorithms for production constrained and laminar bayesian selection. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, pages 91–92, 2019.
- [BCD20] Johannes Brustle, Yang Cai, and Constantinos Daskalakis. Multi-item mechanisms without item-independence: Learnability via robustness. In *Proceedings of the 21st ACM Conference on Economics and Computation*, EC '20, page 715–761, New York, NY, USA, 2020. Association for Computing Machinery.
- [BCKW15] Patrick Briest, Shuchi Chawla, Robert Kleinberg, and S Matthew Weinberg. Pricing lotteries. *Journal of Economic Theory*, 156:144–174, 2015.
- [BGLT19] Xiaohui Bei, Nick Gravin, Pinyan Lu, and Zhihao Gavin Tang. Correlation-robust analysis of single item auction. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 193–208. SIAM, 2019.
 - [BH78] J. L. Bretagnolle and Catherine Huber. Estimation des densités: risque minimax. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, 47:119–137, 1978.
- [BILW20] Moshe Babaioff, Nicole Immorlica, Brendan Lucier, and S Matthew Weinberg. A simple and approximately optimal mechanism for an additive buyer. *Journal of the ACM (JACM)*, 67(4):1–40, 2020.
 - [BS11] Dirk Bergemann and Karl Schlag. Robust monopoly pricing. *Journal of Economic Theory*, 146(6):2527–2543, 2011.
 - [Car17] Gabriel Carroll. Robustness and separation in multidimensional screening. *Econometrica*, 85(2):453–488, 2017.
 - [CD17] Yang Cai and Constantinos Daskalakis. Learning multi-item auctions with (or without) samples. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 516–527. IEEE, 2017.
- [CDW16] Yang Cai, Nikhil R. Devanur, and S. Matthew Weinberg. A duality based unified approach to bayesian mechanism design. In *Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing*, STOC '16, page 926–939, New York, NY, USA, 2016. Association for Computing Machinery.
- [CHK07] Shuchi Chawla, Jason D. Hartline, and Robert Kleinberg. Algorithmic pricing via virtual valuations. In *Proceedings of the 8th ACM Conference on Electronic Commerce*, EC '07, pages 243–251, New York, NY, USA, 2007. ACM.
- [CHMS10] Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. Multiparameter mechanism design and sequential posted pricing. In *Proceedings of the* forty-second ACM symposium on Theory of computing, pages 311–320. ACM, 2010.
 - [CM16] Shuchi Chawla and J Benjamin Miller. Mechanism design for subadditive agents via an ex ante relaxation. In *Proceedings of the 2016 ACM Conference on Economics and Computation*, pages 579–596. ACM, 2016.
 - [CMS15] Shuchi Chawla, David Malec, and Balasubramanian Sivan. The power of randomness in bayesian optimal mechanism design. *Games and Economic Behavior*, 91:297–317, 2015.
 - [CO21] Yang Cai and Argyris Oikonomou. On simple mechanisms for dependent items. In *Proceedings of the 22nd ACM Conference on Economics and Computation*, pages 242–262, 2021.

- [COVZ21] Yang Cai, Argyris Oikonomou, Grigoris Velegkas, and Mingfei Zhao. An efficient ε-bic to bic transformation and its application to black-box reduction in revenue maximization. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1337–1356. SIAM, 2021.
 - [CR14] Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization. In *Proceedings of the forty-sixth annual ACM symposium on Theory of computing*, pages 243–252, 2014.
 - [CZ17] Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 170–183. ACM, 2017.
 - [Das15] Constantinos Daskalakis. Multi-item auctions defying intuition? *ACM SIGecom Exchanges*, 14(1):41–75, 2015.
 - [DFK11] Shahar Dobzinski, Hu Fu, and Robert D. Kleinberg. Optimal auctions with correlated bidders are easy. In *Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing*, STOC '11, page 129–138, New York, NY, USA, 2011. Association for Computing Machinery.
- [DFKL20] Paul Dutting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities made easy: Stochastic optimization by pricing nonstochastic inputs. *SIAM Journal on Computing*, 49(3):540–582, 2020.
 - [DG85] Luc Devroye and László Györfi. Nonparametric Density Estimation: The L₁ View. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, NY, USA, 1985.
 - [DHP16] Nikhil R Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complexity of auctions with side information. In *Proceedings of the forty-eighth annual ACM symposium on Theory of Computing*, pages 426–439, 2016.
 - [DK19] Paul Dütting and Thomas Kesselheim. Posted pricing and prophet inequalities with inaccurate priors. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, EC '19, page 111–129, New York, NY, USA, 2019. Association for Computing Machinery.
- [DKL20] Paul Dütting, Thomas Kesselheim, and Brendan Lucier. An o (log log m) prophet inequality for subadditive combinatorial auctions. *ACM SIGecom Exchanges*, 18(2):32–37, 2020.
- [Dob70] Roland L. Dobrushin. Prescribing a system of random variables by conditional distributions. *Theory of Probability and Its Applications*, 15(3):469–497, 1970.
- [Dob71] Roland L. Dobrushin. Markov processes with a large number of locally interacting components: Existence of a limit process and its ergodicity. *Problemy Peredachi Informatsii*, 7(2):70–87, 1971.
- [Doe38] Wolfgang Doeblin. Exposé de la théorie des chaînes simples constantes de Markov à un nombre fini d'états. *Revue Mathématique de l'Union Interbalkanique*, 2:77–105, 1938.
- [Dud68] Richard M. Dudley. Distances of probability measures and random variables. *The Annals of Mathematical Statistics*, 39(5):1563–1572, October 1968.
- [DW12] Constantinos Daskalakis and Seth Matthew Weinberg. Symmetries and optimal multidimensional mechanism design. In *Proceedings of the 13th ACM Conference on Electronic Commerce*, EC '12, page 370–387, New York, NY, USA, 2012. Association for Computing Machinery.
- [FGL14] Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices. In *Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms*, pages 123–135. SIAM, 2014.

- [GHZ19] Chenghao Guo, Zhiyi Huang, and Xinzhi Zhang. Settling the sample complexity of single-parameter revenue maximization. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*, pages 662–673, 2019.
 - [GL18] Nick Gravin and Pinyan Lu. Separation in correlation-robust monopolist problem with budget. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 2069–2080. SIAM, 2018.
- [GPTD23] Yiannis Giannakopoulos, Diogo Poças, and Alexandros Tsigonias-Dimitriadis. Robust revenue maximization under minimal statistical information. *ACM Transactions on Economics and Computation*, 10(3):1–34, 2023.
 - [Gri75] David Griffeath. A maximal coupling for markov chains. *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, 31:95–106, June 1975.
 - [GW21] Yannai A Gonczarowski and S Matthew Weinberg. The sample complexity of up-to- ε multi-dimensional revenue maximization. *Journal of the ACM (JACM)*, 68(3):1–28, 2021.
- [HJW15] Yanjun Han, Jiantao Jiao, and Tsachy Weissman. Minimax estimation of discrete distributions under ℓ_1 loss. *IEEE Transactions on Information Theory*, 61(11):6343–6354, November 2015.
- [HMR15] Zhiyi Huang, Yishay Mansour, and Tim Roughgarden. Making the most of your samples. In Proceedings of the Sixteenth ACM Conference on Economics and Computation, pages 45–60, 2015.
 - [HN13] Sergiu Hart and Noam Nisan. The menu-size complexity of auctions. *ACM Conference on Electronic Commerce*, 04 2013.
 - [HN19] Sergiu Hart and Noam Nisan. Selling multiple correlated goods: Revenue maximization and menu-size complexity. *Journal of Economic Theory*, 183:991–1029, 2019.
 - [Kal21] Olav Kallenberg. Foundations of Modern Probability, volume 99 of Probability Theory and Stochastic Modelling. Springer, New York, NY, USA, third edition, 2021.
- [Kan60] Leonid V. Kantorovich. Mathematical methods of organizing and planning production. *Management Science*, 6(4):366–422, July 1960.
- [KS80] Ross Kindermann and Laurie Snell. *Markov random fields and their applications*, volume 1. American Mathematical Society, 1980.
- [KW19] Robert Kleinberg and S Matthew Weinberg. Matroid prophet inequalities and applications to multi-dimensional mechanism design. *Games and Economic Behavior*, 113:97–115, 2019.
- [LLY19] Yingkai Li, Pinyan Lu, and Haoran Ye. Revenue maximization with imprecise distribution. In *Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems*, pages 1582–1590, 2019.
- [LPW09] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. *Markov Chains and Mixing Times*. American Mathematical Society, Providence, RI, USA, first edition, 2009.
- [Luc17] Brendan Lucier. An economic view of prophet inequalities. *ACM SIGecom Exchanges*, 16(1):24–47, 2017.
- [LY13] Xinye Li and Andrew Chi-Chih Yao. On revenue maximization for selling multiple independently distributed items. *Proceedings of the National Academy of Sciences*, 110(28):11232–11237, 2013.
- [Mak19] Anuran Makur. Information Contraction and Decomposition. Sc.D. thesis in Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, May 2019.

- [MR16] Jamie Morgenstern and Tim Roughgarden. Learning simple auctions. In *Conference on Learning Theory*, pages 1298–1318. PMLR, 2016.
- [PSCW22] Alexandros Psomas, Ariel Schvartzman Cohenca, and S Weinberg. On infinite separations between simple and optimal mechanisms. *Advances in Neural Information Processing Systems*, 35:4818–4829, 2022.
 - [PSW19] Alexandros Psomas, Ariel Schvartzman, and S Matthew Weinberg. Smoothed analysis of multi-item auctions with correlated values. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, pages 417–418. ACM, 2019.
 - [PW22] Yury Polyanskiy and Yihong Wu. *Information Theory: From Coding to Learning*. Cambridge University Press Preprint, New York, NY, USA, 2022.
 - [RS17] Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In *Proceedings* of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–1687. SIAM, 2017.
 - [RW15] Aviad Rubinstein and S Matthew Weinberg. Simple mechanisms for a subadditive buyer and applications to revenue monotonicity. In *Proceedings of the Sixteenth ACM Conference on Economics and Computation*, pages 377–394. ACM, 2015.
 - [RW18] Aviad Rubinstein and S. Matthew Weinberg. Simple mechanisms for a subadditive buyer and applications to revenue monotonicity. *ACM Trans. Econ. Comput.*, 6(3–4), oct 2018.
 - [SC84] Ester Samuel-Cahn. Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random Variables. *The Annals of Probability*, 12(4):1213 1216, 1984.
 - [SK75] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. *Phys. Rev. Lett.*, 35:1792–1796, Dec 1975.
 - [Sko56] Anatoliy V. Skorokhod. Limit theorems for stochastic processes. *Theory of Probability and Its Applications*, 1(3):261–290, 1956.
 - [ST04] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*, pages 81–90. ACM, 2004.
 - [Str65] Volker Strassen. The existence of probability measures with given marginals. *The Annals of Mathematical Statistics*, 36(2):423–439, April 1965.
 - [Tsy08] Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer Publishing Company, Incorporated, 1st edition, 2008.
 - [Vil09] Cédric Villani. *Optimal Transport: Old and New*, volume 338 of *Grundlehren der mathematischen Wissenschaften*. Springer, Berlin, Heidelberg, Germany, 2009.
 - [Wic70] Michael J. Wichura. On the construction of almost uniformly convergent random variables with given weakly convergent image laws. *The Annals of Mathematical Statistics*, 4141(1):284–291, February 1970.
 - [Yao15] Andrew Chi-Chih Yao. An n-to-1 bidder reduction for multi-item auctions and its applications. In *Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 92–109. Society for Industrial and Applied Mathematics, 2015.

A Proofs missing from Section 3

The following simple proposition will also be useful in multiple proofs throughout this appendix.

Proposition 5. Let \mathcal{M} be an ex-post IR mechanism. Then, $-H \leq u_i^{\mathcal{M}}(t_i \leftarrow t_i', t_{-i}) \leq 3H$, for all $i \in [n], t_i, t_i' \in \mathcal{T}_i, t_{-i} \in \mathcal{T}_{-i}$.

Proof of Proposition 5. Since \mathcal{M} is ex-post IR, we have that $t_i\left(\mathcal{M}(t_i,t_{-i})\right)\geq 0$, for all $i\in[n],t_i\in\mathcal{T}_i,t_{-i}\in\mathcal{T}_{-i}$. Furthermore, since payments are lower bounded by -H, and since the valuations are bounded and quasi-linear, we have that $t_i\left(\mathcal{M}(t_i',t_{-i})\right)\leq 2H$, for all $i\in[n],t_i,t_i'\in\mathcal{T}_i,t_{-i}\in\mathcal{T}_{-i}$. Since payments are also upper bounded by H (due to the ex-post IR constraint), and valuations are non-negative, we also have $t_i\left(\mathcal{M}(t_i',t_{-i})\right)\geq -H$, for all $i\in[n],t_i,t_i'\in\mathcal{T}_i,t_{-i}\in\mathcal{T}_{-i}$. Combining these inequalities we have $-H\leq u_i(t_i\leftarrow t_i',t_{-i})\leq 3H$, for all $i\in[n],t_i,t_i'\in\mathcal{T}_i,t_{-i}\in\mathcal{T}_{-i}$. \square

A.1 Relaxing the assumptions in Theorem 1

We start by showing that, in sharp contrast to BIC, the DSIC property is much easier to "propagate" from a small set of types to a larger set, using the following construction.

Definition 3 (DSIC extension of a mechanism). Let $\mathcal{T}_i^+ \subseteq \mathcal{T}_i$ be a subset of possible types for agent $i \in [n]$, such that $\bot \in \mathcal{T}_i^+$, and let $\mathcal{M} = (x,p)$ be a mechanism defined on types $\times_{i \in [n]} \mathcal{T}_i^+$. The extension of \mathcal{M} to \mathcal{T} is the mechanism $\widehat{\mathcal{M}} = (\widehat{x}, \widehat{p})$, where for reported types $t = (t_1, \dots, t_n)$:

- 1. If $\times_{i \in [n]} \mathcal{T}_i^+$, then $\widehat{x}(t) = x(t)$ and $\widehat{p}(t) = \widehat{p}(t)$.
- 2. If there exists i, such that $t_i \notin \mathcal{T}_i^+$ and $\forall j \in [n]/\{i\} : t_j \in \mathcal{T}_j^+$ then $\widehat{x}_i(t) = x_i(t_i', t_{-i})$ and $\widehat{p}_i(t) = \widehat{p}_i(t_i', t_{-i})$, where $t_i' = \arg\max_{z_i \in \mathcal{T}_i^+} t_i(\mathcal{M}(z_i, t_{-i}))$. For each $j \in [n]/\{i\}$ we have that $\widehat{x}_j(t) = 0$ and $\widehat{p}_j(t) = 0$ (They receive nothing, and pay nothing).
- 3. If there exist i, i' such that $i \neq i'$ and $t_i \notin \mathcal{T}_i^+$ and $t_{i'} \notin \mathcal{T}_{i'}^+$, then nobody receives and pays nothing (i.e. x(t) = 0, $\widehat{p}(t) = 0$).

A similar construction appears in [DFK11], in the context of implementing the solution of a linear program as a DSIC auction.

Lemma 6. Let $\mathcal{T}_i^+ \subseteq \mathcal{T}_i$ be a subset of possible types for agent $i \in [n]$, such that $\bot \in \mathcal{T}_i^+$, and let $\mathcal{M} = (x, p)$ be a DSIC and ex-post IR mechanism defined on types $\mathcal{T}^+ = \times_{i \in [n]} \mathcal{T}_i^+$. Then, the extension of \mathcal{M} to \mathcal{T} , $\widehat{\mathcal{M}} = (\widehat{x}, \widehat{p})$, is DSIC and ex-post IR.

Proof of Lemma 6. The fact that $\widehat{\mathcal{M}}$ is ex-post IR is trivial for cases 1 and 3 of Definition 3. For case 2, it is trivial that it is ex-post IR for all $j \in [n]/\{i\}$. Also since $\bot \in \mathcal{T}_i^+$ we have that $\max_{z_i \in \mathcal{T}_i^+} t_i(\mathcal{M}(z_i, t_{-i})) \ge t_i(\mathcal{M}(\bot, t_{-i})) \ge 0$, which implies that the mechanism is ex-post IR for agent i.

Next, we argue that $\widehat{\mathcal{M}}$ is DSIC. If $t \in \mathcal{T}^+$, then any misreport t_i' of agent i will also get mapped to a type in \mathcal{T}_i^+ ; since \mathcal{M} is DSIC, agent i cannot increase her utility by deviating. If t falls into the second case, an agent $j \in [n]/\{i\}$ receives nothing and pays nothing, no matter what she reports. If agent i misreports a type t_i' , she either receives utility $t_i(\mathcal{M}(t_i',t_{-i}))$, if $t_i' \in \mathcal{T}_i^+$, or $t_i(\mathcal{M}((t^*)',t_{-i}))$, where $(t^*)' = \arg\max_{z_i \in \mathcal{T}_i^+} t_i'(\mathcal{M}(z_i,t_{-i}))$, if $t_i' \notin \mathcal{T}_i^+$, both of which are (weakly) worse than $\max_{z_i \in \mathcal{T}_i^+} t_i(\mathcal{M}(z_i,t_{-i}))$, her utility when reporting t_i . Finally, in case 3, every agent i always receives nothing and pays nothing, even after unilaterally changing her report.

Thus without loss of generality, we can always assume that DSIC mechanism defined on a subset of the type space $\mathcal{T}^+ \subseteq \mathcal{T}$ is DSIC on all bids in \mathcal{T} .

A.2 Proofs missing from Section 3.2

Proof of Lemma 3.

$$\begin{split} &2\,d_{\mathsf{TV}}\left(P_{X,Y},Q_{X,Y}\right) = \sum_{x} \sum_{y} |P_{X,Y}(x,y) - Q_{X,Y}(x,y)| \\ &\geq \sum_{x:Q_{X}(x)>0} \sum_{y} |P_{X,Y}(x,y) - Q_{X,Y}(x,y)| \\ &= \sum_{x:Q_{X}(x)>0} Q_{X}(x) \sum_{y} \left| P_{Y|X=x}(y) \frac{P_{X}(x)}{Q_{X}(x)} - Q_{Y|X=x}(y) - P_{Y|X=x}(y) + P_{Y|X=x}(y) \right| \\ &\geq \sum_{x:Q_{X}(x)>0} Q_{X}(x) \sum_{y} \left(\left| P_{Y|X=x}(y) - Q_{Y|X=x}(y) \right| - P_{Y|X=x}(y) \left| 1 - \frac{P_{X}(x)}{Q_{X}(x)} \right| \right) \\ &= \sum_{x:Q_{X}(x)>0} Q_{X}(x) \left(2\,d_{\mathsf{TV}}\left(P_{Y|X=x}, Q_{Y|X=x} \right) - \frac{\left| Q_{X}(x) - P_{X}(x) \right|}{Q_{X}(x)} \right) \\ &\geq \left(2\sum_{x} Q_{X}(x)\,d_{\mathsf{TV}}\left(P_{Y|X=x}, Q_{Y|X=x} \right) \right) - 2\,d_{\mathsf{TV}}\left(Q_{X}, P_{X} \right). \end{split}$$

Re-arranging, we have that

$$\mathbb{E}_{x \sim Q_X} \left[\left. d_{\mathsf{TV}} \left(P_{Y|X=x}, Q_{Y|X=x} \right) \right] \leq d_{\mathsf{TV}} \left(P_{X,Y}, Q_{X,Y} \right) + \left. d_{\mathsf{TV}} \left(Q_X, P_X \right) \right.$$

The data processing inequality gives us that $d_{\mathsf{TV}}(Q_X, P_X) \leq d_{\mathsf{TV}}(P_{X,Y}, Q_{X,Y})$ [PW22, Theorem 7.4], and thus we have $\mathbb{E}_{x \sim Q_X} \left[d_{\mathsf{TV}} \left(P_{Y|X=x}, Q_{Y|X=x} \right) \right] \leq 2 \, d_{\mathsf{TV}} \left(P_{X,Y}, Q_{X,Y} \right)$, as desired. For distributions supported over continuous sets, the proof follows with similar arguments.

So far, we have established that $\mathbb{E}_{x \sim Q_X} \left[d_{\mathsf{TV}} \left(P_{Y|X=x}, Q_{Y|X=x} \right) \right] \leq d_{\mathsf{TV}} \left(P_{X,Y}, Q_{X,Y} \right) + d_{\mathsf{TV}} \left(Q_X, P_X \right)$. Using Markov's inequality completes the proof of Lemma 3.

Proof of Lemma 4. \mathcal{M} is ex-post IR for \mathcal{D}' , by definition. Let $\mathcal{D}_{-i|t_i}$ be the probability distribution for the valuations of every agent except i, conditioned on the event that the type of agent i is $t_i \in \mathcal{T}_i$. Proposition 5 implies that $u_i^{\mathcal{M}}(t_i \leftarrow w_i, t_{-i}) \in [-H, 3H]$, for all $i \in [n], t_i, w_i \in \mathcal{T}_i, t_{-i} \in \mathcal{T}_{-i}$, and therefore $u_i^{\mathcal{M}}(t_i \leftarrow w_i, t_{-i}) - u_i^{\mathcal{M}}(t_i \leftarrow w_i, t'_{-i}) \leq 4H \ \mathbb{1}\{t_{-i} \neq t'_{-i}\}$. Thus, for any coupling γ of $\mathcal{D}_{-i|t_i}$ and $\mathcal{D}'_{-i|t_i}$, and specifically for the optimal coupling γ^* between $\mathcal{D}_{-i|t_i}$ and $\mathcal{D}'_{-i|t_i}$ (see Definition 2), we have:

$$\begin{split} \mathbb{E}_{(t_{-i},t_{-i}')\sim\gamma^*} \left[u_i^{\mathcal{M}}(t_i \leftarrow w_i,t_{-i}) - u_i^{\mathcal{M}}(t_i \leftarrow w_i,t_{-i}') \right] \leq 4H \, \mathbb{E}_{(t_{-i},t_{-i}')\sim\gamma^*} \left[\mathbb{1}\{t_{-i} \neq t_{-i}'\} \right] \\ \leq 4H \, \, d_{\mathsf{TV}} \left(\mathcal{D}_{-i|t_i}, \mathcal{D}_{-i|t_i}' \right). \end{split}$$

Using linearity of expectation and re-arranging we have:

$$-\mathbb{E}_{t'_{-i} \sim \mathcal{D}'_{-i} \mid t_i} \left[u_i^{\mathcal{M}} (t_i \leftarrow w_i, t'_{-i}) \right] \leq 4H \ d_{\mathsf{TV}} \left(\mathcal{D}_{-i \mid t_i}, \mathcal{D}'_{-i \mid t_i} \right) - \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i} \mid t_i} \left[u_i^{\mathcal{M}} (t_i \leftarrow w_i, t_{-i}) \right].$$

By setting $Q_X = \mathcal{D}_i'$, $P_{Y|X=x} = \mathcal{D}_{-i|t_i}$, and $Q_{Y|X=x} = \mathcal{D}_{-i|t_i}'$ in Lemma 3 we have that, with probability at least 1-q, $d_{\mathsf{TV}}\left(\mathcal{D}_{-i|t_i}, \mathcal{D}_{-i|t_i}'\right) \leq \frac{2}{q} \, d_{\mathsf{TV}}\left(\mathcal{D}, \mathcal{D}'\right) \leq 2\frac{\delta}{q}$. Therefore, with probability at least 1-q:

$$\begin{split} -\mathbb{E}_{t'_{-i} \sim \mathcal{D}'_{-i} \mid t_i} \left[u_i^{\mathcal{M}}(t_i \leftarrow w_i, t'_{-i}) \right] &\leq 4H \ d_{\mathsf{TV}} \left(\mathcal{D}_{-i \mid t_i}, \mathcal{D}'_{-i \mid t_i} \right) - \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i} \mid t_i} \left[u_i^{\mathcal{M}}(t_i \leftarrow w_i, t_{-i}) \right] \\ &\leq 8H \frac{\delta}{q} - \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i} \mid t_i} \left[u_i^{\mathcal{M}}(t_i \leftarrow w_i, t_{-i}) \right] \\ &\leq \frac{8H\delta}{q}, \end{split}$$

where the last inequality uses the fact that \mathcal{M} is BIC. Replacing with the definition of $u_i^{\mathcal{M}}(t_i \leftarrow w_i, t'_{-i})$ we get $-\mathbb{E}_{t_{-i} \sim \mathcal{D}'_{-i} \mid t_i} \left[t_i \left(\mathcal{M}(t_i, t_{-i}) \right) \right] + \mathbb{E}_{t_{-i} \sim \mathcal{D}'_{-i} \mid t_i} \left[t_i \left(\mathcal{M}(w_i, t_{-i}) \right) \right] \leq \frac{8H\delta}{q}$, with probability at least 1 - q. Re-arranging we get the desired (ε, q) BIC constraint.

B Proofs missing from Section 4.1

In order to prove Lemma 5, it will be convenient to define the following notion of an extension of a BIC mechanism.

Definition 4 (BIC extension of a mechanism). Let $\mathcal{T}_i^+ \subseteq \mathcal{T}_i$ be a subset of types for agent $i \in [n]$ such that $\bot \in \mathcal{T}_i^+$, and let $\mathcal{M} = (x, p)$ be a mechanism defined on types in $\times_{i \in [n]} \mathcal{T}_i^+$. Let $\mathcal{T}_i^- = \mathcal{T}_i - \mathcal{T}_i^+$, and consider the mapping

$$\tau_i(t_i) = \begin{cases} t_i, & \text{if } t_i \in \mathcal{T}_i^+ \\ \arg\max_{z \in \mathcal{T}_i^+} \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[t_i(\mathcal{M}(z, t_{-i})) \right], & \text{if } t_i \in \mathcal{T}_i^- \end{cases}$$

The extension of \mathcal{M} to \mathcal{T} is the mechanism $\widehat{\mathcal{M}} = (\widehat{x}, \widehat{p})$, where $\widehat{x}(t) = x(\tau(t))$, and for all $i \in [n]$,

$$\widehat{p}_i(t_i, t_{-i}) = \begin{cases} p_i(t_i, t_{-i}), & \text{if } t_i \in \mathcal{T}_i^+ \\ v_i(\widehat{x}(t_i, t_{-i})) \frac{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[p_i(\tau_i(t_i), t_{-i})]}{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[v_i(x(\tau_i(t_i), t_{-i}))]}, & \text{if } t_i \in \mathcal{T}_i^- \end{cases}$$

We prove the following technical lemma.

Lemma 7. Let $\mathcal{T}_i^+ \subseteq \mathcal{T}_i$ be a subset of types for agent $i \in [n]$ such that $\bot \in \mathcal{T}_i^+$, and let $\mathcal{D} = \times_{i \in [n]} \mathcal{D}_i$ be a product distribution, where each \mathcal{D}_i is supported on \mathcal{T}_i . Let $\mathcal{M} = (x, p)$ be an ex-post IR mechanism which satisfies $\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[u_i^{\mathcal{M}} (t_i \leftarrow w_i, t_{-i}) \right] \ge -\varepsilon$, for all $t_i \in \mathcal{T}_i^+$, $w_i \in \mathcal{T}_i$.

Then, for any product distribution $\widehat{\mathcal{D}} = \times_{i \in [n]} \widehat{\mathcal{D}}_i$ such that $d_{\mathsf{TV}} \left(\mathcal{D}, \widehat{\mathcal{D}} \right) \leq \delta$, the extension of \mathcal{M} to \mathcal{T} (as defined in Definition 4) is ex-post IR and $O\left(\varepsilon + (\beta n + \delta)H\right)$ -BIC with respect to $\widehat{\mathcal{D}}$, where $\beta = 1 - \Pr_{t_i \sim \widehat{\mathcal{D}}_i} \left[t_i \in \mathcal{T}_i^+ \right]$. Furthermore, $\operatorname{Rev}(\widehat{\mathcal{M}}, \widehat{\mathcal{D}}) \geq \operatorname{Rev}(\mathcal{M}, \mathcal{D}) - V\left(\beta n + \delta\right)$.

Proof of Lemma 7. Let $\widehat{\mathcal{M}}=(\widehat{x},\widehat{p})$ be the extension of \mathcal{M} to \mathcal{T} . First, we argue that $\widehat{\mathcal{M}}$ is ex-post IR. Since \mathcal{M} is ex-post IR, the ex-post IR condition for $\widehat{\mathcal{M}}$ is satisfied for all $t_i\in\mathcal{T}_i^+$, by construction. For a type $t_i\in\mathcal{T}_i^-$, since $\bot\in\mathcal{T}_i^+$ and $\tau_i(t_i)\in\mathcal{T}_i^+$, we have that $\mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[t_i(\mathcal{M}(\tau_i(t_i),t_{-i}))]\geq \mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[t_i(\mathcal{M}(\bot,t_{-i}))]=0$. Therefore, $\mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[p_i(\tau_i(t_i),t_{-i})]\leq \mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[v_i(x(\tau_i(t_i),t_{-i}))]$, which implies that $v_i(\widehat{x}(t))-\widehat{p}_i(t)=v_i(\widehat{x}(t))-v_i(\widehat{x}(t))\frac{\mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[p_i(\tau_i(t_i),t_{-i})]}{\mathbb{E}_{t_{-i}\sim\mathcal{D}_{-i}}[v_i(x(\tau_i(t_i),t_{-i}))]}\geq 0$.

Next, we prove the BIC guarantee of $\widehat{\mathcal{M}}$. Towards this, first define $\tau(\widehat{\mathcal{D}})$ as the distribution induced by first sampling from $\widehat{\mathcal{D}}$, and then apply mapping $\tau(.)$, as defined in Definition 4. The tensorization property of TV distance [LPW09, Chapter 4] implies that $d_{\mathsf{TV}}\left(\widehat{\mathcal{D}}, \tau(\widehat{\mathcal{D}})\right) \leq \beta n$, and thus from the triangle inequality, $d_{\mathsf{TV}}\left(\mathcal{D}, \tau(\widehat{\mathcal{D}})\right) \leq \delta + \beta n$. Our goal is to prove the following lower bound:

$$\mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[u_i^{\widehat{\mathcal{M}}} (t_i \leftarrow w_i, t_{-i}) \right] \geq - \left(4 \left(\frac{3}{2} \delta + \beta n \right) H + 4 \delta H + \varepsilon \right).$$

We first prove the following intermediate bound:

$$\mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[u_i^{\widehat{\mathcal{M}}} (t_i \leftarrow w_i, t_{-i}) \right] \ge \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[u_i^{\mathcal{M}} (\tau(t_i) \leftarrow \tau(w_i), t_{-i}) \right] - 4 \left(\frac{3}{2} \delta + \beta n \right) H$$

Generally, our bounds will be trivial when $t_i \in \mathcal{T}_i^+$ due to the nature of $\widehat{\mathcal{M}}$. So the main focus of the analysis is to prove those bounds for $t_i \in \mathcal{T}_i^-$.

First, we prove two inequalities that will be useful in our analysis.

$$\mathbb{E}_{t-i\sim\mathcal{D}_{-i}}\left[v_i(x_i(\tau(t_i),t_{-i}))\right] \le \mathbb{E}_{t-i\sim\mathcal{D}_{-i}}\left[\widehat{x}_i(t_i,t_{-i})\right] + H\,\beta n. \tag{2}$$

$$\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right] \ge \mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[\widehat{p}_i(t_i, t_{-i}) \right] - H \beta n. \tag{3}$$

For inequality (2), using Lemma 2 we can get:

$$\begin{split} \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right] &\leq \mathbb{E}_{t_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t_{-i})) \right] + H \ d_{\mathsf{TV}} \left(\mathcal{D}_{-i}, \tau\left(\mathcal{D}_{-i} \right) \right) \\ &\leq \mathbb{E}_{t_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t_{-i})) \right] + H \ d_{\mathsf{TV}} \left(\mathcal{D}, \tau\left(\mathcal{D} \right) \right) \\ &\leq \mathbb{E}_{t_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t_{-i})) \right] + H \ \beta n \\ &\leq \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[x_i(\tau(t_i), \tau(t_{-i})) \right] + H \ \beta n \\ &\leq \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[\widehat{x}_i(t_i, t_{-i}) \right] + H \ \beta n. \end{split}$$

Similarly, for inequality (3):

$$\begin{split} \underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[p_i(\tau(t_i), t_{-i}) \right] &= \underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[p_i(\tau(t_i), t_{-i}) \right] \frac{\underset{t'_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[v_i(x_i(\tau(t_i), t'_{-i})) \right]}{\mathbb{E}} \\ &= \underset{t'_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}} \right] \\ &= \underset{t'_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]}{\mathbb{E}} \right]. \end{split}$$

We've already shown, when arguing the ex-post IR property, that $\frac{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[p_i(\tau(t_i), t_{-i})]}{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[v_i(x_i(\tau(t_i), t_{-i}))]} \leq 1 \text{ and}$ thus $v_i(x_i(\tau(t_i), t'_{-i})) \frac{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[p_i(\tau(t_i), t_{-i})]}{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}[v_i(x_i(\tau(t_i), t_{-i}))]} \in [0, H]$. Therefore, we can use Lemma 2 for \mathcal{D}_{-i} and $\tau(\mathcal{D}_{-i})$ on this function (as the objective) to get:

$$\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right] = \mathbb{E}_{t'_{-i} \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]} \right] \\
\geq \mathbb{E}_{t'_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]} \right] - H \ d_{\mathsf{TV}} \left(\mathcal{D}_{-i}, \tau(\mathcal{D}_{-i}) \right) \\
\geq \mathbb{E}_{t'_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]} \right] - H \ d_{\mathsf{TV}} \left(\mathcal{D}, \tau(\mathcal{D}) \right) \\
\geq \mathbb{E}_{t'_{-i} \sim \tau(\mathcal{D}_{-i})} \left[v_i(x_i(\tau(t_i), t'_{-i})) \frac{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]} \right] - H \ \beta n \\
= \mathbb{E}_{t'_{-i} \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), \tau(t'_{-i}))) \frac{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[p_i(\tau(t_i), t_{-i}) \right]}{\mathbb{E}_{t-i \sim \mathcal{D}_{-i}} \left[v_i(x_i(\tau(t_i), t_{-i})) \right]} \right] - H \ \beta n \\
= \mathbb{E}_{t'_{-i} \sim \mathcal{D}_{-i}} \left[\widehat{p}_i(t_i, t'_{-i}) \right] - H \ \beta n.$$

With inequalities (2) and (3) at hand, we are ready to show the following, for all $t_i \in \mathcal{T}_i^-$:

$$\begin{split} & \underset{t_{-i} \sim \widehat{\mathcal{D}}_{-i}}{\mathbb{E}} \left[t_i \left(\mathcal{M}(\tau(t_i), t_{-i}) \right) \right] \leq^{(Lemma\ 2)} \underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[t_i \left(\mathcal{M}(\tau(t_i), t_{-i}) \right) \right] + 2\delta H \\ & = \underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[\left(v_i (x_i (\tau(t_i), t_{-i})) - p_i (\tau(t_i), t_{-i}) \right) \right] + 2\delta H \\ & \leq^{(Ineq.\ (2)and\ (3))} \underset{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}}{\mathbb{E}} \left[\widehat{x}_i (t_i, t_{-i}) \right] - \underset{\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}}}{\mathbb{E}} \left[\widehat{p}_i (t_i, t_{-i}) \right] + 2(\delta + \beta n) H \\ & = \underset{t_{-i} \sim \mathcal{D}_{-i}}{\mathbb{E}} \left[t_i \left(\widehat{\mathcal{M}}(t_i, t_{-i}) \right) \right] + 2(\delta + \beta n) H \\ & \leq^{(Lemma\ 2)} \underset{t_{-i} \sim \widehat{\mathcal{D}}_{-i}}{\mathbb{E}} \left[t_i \left(\widehat{\mathcal{M}}(t_i, t_{-i}) \right) \right] + 2\left(\frac{3}{2}\delta + \beta n \right) H. \end{split}$$

Whenever $t_i \in \mathcal{T}_i^+$ we can directly argue that:

$$\begin{split} \mathbb{E}_{y_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i \left(\mathcal{M}(\tau(t_i), t_{-i}) \right) \right] &\leq \mathbb{E}_{t_{-i} \sim \tau(\widehat{\mathcal{D}})_{-i}} \left[t_i \left(\mathcal{M}(\tau(t_i), t_{-i}) \right) \right] + \beta n H \\ &= \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i \left(\mathcal{M}(\tau(t_i), \tau(t_{-i})) \right) \right] + \beta n H \\ &= \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i \left(\widehat{\mathcal{M}}(t_i, t_{-i}) \right) \right] + \beta n H. \end{split}$$

Similarly, we get that $\mathbb{E}_{t_{-i}\sim\widehat{\mathcal{D}}_{-i}}\left[t_i\left(\mathcal{M}(\tau(w_i),t_{-i})\right)\right] \geq \mathbb{E}_{t_{-i}\sim\widehat{\mathcal{D}}_{-i}}\left[t_i\left(\widehat{\mathcal{M}}(w_i,t_{-i})\right)\right] - 2(\frac{3}{2}\delta + \beta n)H$ for all $w_i \in \mathcal{T}_i$. Combining we get that for $t_i \in \mathcal{T}_i^-$, $w_i \in \mathcal{T}_i$:

$$\mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i(\widehat{\mathcal{M}}(t_i, t_{-i})) - \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i(\widehat{\mathcal{M}}(w_i, t_{-i})) \right] \ge \\ \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i(\mathcal{M}(\tau(t_i), t_{-i})) - \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i(\mathcal{M}(\tau(w_i), t_{-i})) - 4 \left(\frac{3}{2} \delta + \beta n \right) H, \right] \right]$$

and for $t_i \in \mathcal{T}_i^+, w_i \in \mathcal{T}_i$ we can get that $\mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i \left(\mathcal{M}(\tau(t_i), t_{-i}) \right) \right] \geq \mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[t_i \left(\widehat{\mathcal{M}}(t_i, t_{-i}) \right) \right] - \beta n H.$

This concludes the proof of the intermediate bound. To conclude the proof for the BIC guarantee we need to show that:

$$\mathbb{E}_{t_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) \right] \ge -4H\delta - \varepsilon.$$

By Proposition 5, $u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) \in [-H, 3H]$, for all $i \in [n], t_i, w_i \in \mathcal{T}_i, t_{-i} \in \mathcal{T}_{-i}$, and hence $u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) - u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}') \leq 4H \, \mathbb{1}\{t_{-i} \neq t_{-i}'\}$. Thus, for any coupling γ of \mathcal{D}_{-i} and $\widehat{\mathcal{D}}_{-i}$, and thus for the optimal coupling γ^* between \mathcal{D}_{-i} and $\widehat{\mathcal{D}}_{-i}$, we get

$$\mathbb{E}_{(t_{-i},t'_{-i})\sim\gamma^*} \left[u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) - u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t'_{-i}) \right] \leq 4H \ d_{\mathsf{TV}} \left(\mathcal{D}_{-i}, \widehat{\mathcal{D}}_{-i} \right)$$

$$\leq 4H \ d_{\mathsf{TV}} \left(\mathcal{D}, \widehat{\mathcal{D}} \right)$$

$$\leq 3H \ \delta.$$

Using linearity of expectation and the fact that the chosen coupling maintains the marginals, by re-arranging we have:

$$-\mathbb{E}_{t'_{-i} \sim \widehat{\mathcal{D}}_{-i}} \left[u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t'_{-i}) \right] \leq 4H \, \delta - \mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) \right] \\ \leq 4H \, \delta + \varepsilon,$$

where in the last inequality we used the fact that, since $\tau(t_i) \in \mathcal{T}_i^+$, from the definition of \mathcal{M} , for all $w_i, t_i \in \mathcal{T}_i$, we have $\mathbb{E}_{t_{-i} \sim \mathcal{D}_{-i}} \left[u_i^{\mathcal{M}}(\tau(t_i) \leftarrow \tau(w_i), t_{-i}) \right] \geq -\varepsilon$.

We will now prove the revenue guarantee of the lemma. The tensorization property of TV distance [LPW09, Chapter 4] implies that $d_{\text{TV}}\left(\widehat{\mathcal{D}}, \tau(\widehat{\mathcal{D}})\right) \leq \beta n$, and thus from the triangle inequality, $d_{\text{TV}}\left(\mathcal{D}, \tau(\widehat{\mathcal{D}})\right) \leq \delta + \beta n$. Now notice from triangle inequality that $d_{\text{TV}}\left(\mathcal{D}, \tau(\widehat{\mathcal{D}})\right) \leq d_{\text{TV}}\left(\mathcal{D}, \widehat{\mathcal{D}}\right) + d_{\text{TV}}\left(\widehat{\mathcal{D}}, \tau(\widehat{\mathcal{D}})\right)$. Let $t \sim \mathcal{D}$ and $\widehat{t} \sim \tau(\widehat{\mathcal{D}})$. Since $d_{\text{TV}}\left(\mathcal{D}, \tau(\widehat{\mathcal{D}})\right) \leq \beta n + \delta$ there exists a coupling where $t \neq \widehat{t}$ with probability less than $\beta n + \delta$. Whenever $t = \widehat{t}$ the two mechanisms make exactly the same revenue. Whenever they are not, their difference is bounded by V. The desired inequality follows.

Lemma 5 is then a simple corollary of Lemma 7.

Proof of Lemma 5. For an (ε,q) -BIC mechanism \mathcal{M} , one can split the type space \mathcal{T}_i of each agent i into two disjoint sets, \mathcal{T}_i^G and \mathcal{T}_i^B , such that when $t_i \in \mathcal{T}_i^G$ agent i ε -maximizes her utility by reporting t_i , and $\Pr_{t_i \sim \mathcal{D}}\left[t_i \in \mathcal{T}_i^B\right] \leq q$. Noting that $\bot \in \mathcal{T}_i^G$, the corollary is an immediate implication of Lemma 7.

Proof of Theorem 3. The (ε, q) -BIC property is an immediate consequence of Lemma 4.

Applying Lemma 2, with \mathcal{O} as the revenue objective (which is lower bounded by -V/2 and upper bounded by V/2), and setting $P=\mathcal{D}^p, Q=\mathcal{D}$, and $\mathcal{M}=\mathcal{M}^a_{\mathcal{D}^p}$, we have that $Rev(\mathcal{M}^a_{\mathcal{D}^p},\mathcal{D})\geq Rev(\mathcal{M}^a_{\mathcal{D}^p},\mathcal{D}^p)-2V\delta\geq \alpha \, OPT(\mathcal{D}^p)-2V\delta$. Our main goal will be to lower bound $OPT(\mathcal{D}^p)$.

Let $\mathcal{M}_{\mathcal{D}}^*$ be the revenue optimal mechanism for \mathcal{D} . By Lemma 4, $\mathcal{M}_{\mathcal{D}}^*$ is an ex-post IR and $(\frac{8H\delta}{q},q)$ -BIC mechanism for \mathcal{D}^p (for all $q\in[0,1]$). Therefore, Lemma 5 implies that there exists a mechanism $\widehat{\mathcal{M}}$ that is ex-post IR and $O(\frac{H\delta}{q}+nqH)$ -BIC with respect to \mathcal{D}^p , such that $Rev(\widehat{\mathcal{M}},\mathcal{D}^p)\geq Rev(\mathcal{M}_{\mathcal{D}}^*,\mathcal{D}^p)-nqV$.

Next, we apply the ε -BIC to BIC reduction of [COVZ21], on the mechanism $\mathcal{M}_{\mathcal{D}}^*$. Specifically, we use the following lemma.

Lemma 8 ([DW12], [RW18], [COVZ21]). In any n agent setting where the valuations of agents are bounded by H, for any mechanism \mathcal{M} with payments in [-H, H], that is ex-post IR and ε -BIC with respect to some product distribution \mathcal{D} , there exists a mechanism \mathcal{M}' with payments in [-H, H], 1 that is ex-post IR and BIC with respect to \mathcal{D} , such that, assuming truthful bidding $Rev(\mathcal{M}', \mathcal{D}) \geq Rev(\mathcal{M}, \mathcal{D}) - O(n\sqrt{H\varepsilon})$.

So, Lemma 8 implies that there exists a mechanism \mathcal{M}' that is ex-post IR and BIC with respect to \mathcal{D}^p such that $Rev(\mathcal{M}', \mathcal{D}^p) \geq Rev(\widehat{\mathcal{M}}, \mathcal{D}^p) - O(n\sqrt{H(\frac{H\delta}{q} + nqH)})$. Combining all the ingredients so far, we have

$$Rev(\mathcal{M}_{\mathcal{D}^{p}}^{a}, \mathcal{D}) \geq Rev(\mathcal{M}_{\mathcal{D}^{p}}^{a}, \mathcal{D}^{p}) - V \delta$$

$$\geq \alpha OPT(\mathcal{D}^{p}) - V \delta$$

$$\geq \alpha Rev(\mathcal{M}', \mathcal{D}^{p}) - V \delta$$

$$\geq \alpha Rev(\widehat{\mathcal{M}}, \mathcal{D}^{p}) - O\left(\alpha n \sqrt{H(\frac{H\delta}{q} + nqH)} + V\delta\right)$$

$$\geq \alpha Rev(\mathcal{M}_{\mathcal{D}}^{*}, \mathcal{D}^{p}) - O\left(\alpha n \sqrt{H(\frac{H\delta}{q} + nqH)} + V(\delta + \alpha nq)\right)$$

$$= \alpha Rev(\mathcal{M}_{\mathcal{D}}^{*}, \mathcal{D}^{p}) - O\left(\alpha n H \sqrt{\frac{\delta}{q} + nq} + V(\delta + \alpha nq)\right)$$

Applying Lemma 2 again, with $P=\mathcal{D},\ Q=\mathcal{D}^p,\ \text{and}\ \mathcal{M}=\mathcal{M}_{\mathcal{D}}^*$ we have $Rev(\mathcal{M}_{\mathcal{D}}^*,\mathcal{D}^p)\geq OPT(\mathcal{D})-V\delta.$ Combining with the previous inequality, we have $Rev(\mathcal{M}_{\mathcal{D}^p}^a,\mathcal{D})\geq \alpha OPT(\mathcal{D})-O\left(\alpha nH\sqrt{\frac{\delta}{q}+nq}+\alpha nqV+(1+\alpha)V\delta\right).$ Picking $q=\sqrt{\delta/n}$, and noting that $V\leq 2nH$, we have: $Rev(\mathcal{M}_{\mathcal{D}^p}^a,\mathcal{D})\geq \alpha OPT(\mathcal{D})-O\left(\alpha V(n\delta)^{1/4}+\alpha V(n\delta)^{1/2}+(1+\alpha)V\delta\right)\geq \alpha OPT(\mathcal{D})-O\left((1+\alpha)V\sqrt{n\sqrt{\delta}}\right).$

Proof of Proposition 1. The marginal distributions for \mathcal{D}^p and \mathcal{D} are close in total variation distance, and specifically, $d_{\mathsf{TV}}\left(\widehat{\mathcal{D}}_i, \mathcal{D}_i^p\right) \leq d_{\mathsf{TV}}\left(\widehat{\mathcal{D}}, \mathcal{D}^p\right) \leq \varepsilon$. Therefore, $d_{\mathsf{TV}}\left(\mathcal{D}_i, \mathcal{D}_i^p\right) \leq \varepsilon$, which implies that $d_{\mathsf{TV}}\left(\mathcal{D}, \mathcal{D}^p\right) \leq n\varepsilon$. Applying the triangle inequality completes the proof.

C Proofs missing from Section 4.2

Proof of Theorem 4. In order to prove this theorem we will first need to prove two intermediate lemmas. Recall that $\Pi(\mathcal{D}_1,\cdots,\mathcal{D}_n)=\{\mathcal{D}'|\Pr_{t_i\sim\mathcal{D}_i}[t_i=v_i]=\sum_{v_{-i}\in\mathcal{T}_{-i}}\Pr_{t\sim\mathcal{D}'}[t=(v_i,v_{-i})], \forall i\in[n], \forall t_i\in\mathcal{T}_i\}.$

Lemma 9. For any distribution $\mathcal{D} \in \Pi(\mathcal{D}_1, \dots, \mathcal{D}_n)$ there exists a distribution $\mathcal{D}' \in \Pi(\mathcal{D}'_1, \dots, \mathcal{D}'_n)$ such that $d_{\mathsf{TV}}(\mathcal{D}, \mathcal{D}') \leq n\varepsilon$, where for all $i, d_{\mathsf{TV}}(\mathcal{D}_i, \mathcal{D}'_i) \leq \varepsilon$.

¹In the reduction payments are only scaled by a value less than 1. Thus if \mathcal{M} had payments in [-H, H], then \mathcal{M}' also has payments in that range.

Proof. We will prove an intermediate step that will then immediately yield the desired outcomes. More precisely we will first show that for any distribution $\mathcal{D}^{(i-1)} \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_{i-1}, \mathcal{D}_i, \cdots \mathcal{D}_n)$ there exists a distribution $\mathcal{D}^{(i)} \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_{i-1}, \mathcal{D}'_i, \cdots \mathcal{D}_n)$ such that $d_{\mathsf{TV}}\left(\mathcal{D}^{(i-1)}, \mathcal{D}^{(i)}\right) \leq \varepsilon$, where $d_{\mathsf{TV}}\left(\mathcal{D}_i, \mathcal{D}'_i\right) \leq \varepsilon$. To prove this we will leverage the \mathcal{L}^1 -distance characterization of TV distance.

Our proof will be constructive through a simple "moving mass" argument. For simplicity let's assume that there exist $v_i, v_i' \in \mathcal{T}_i$ such that $\Pr_{t_i \sim \mathcal{D}_i} [t_i = v_i] = \Pr_{t_i' \sim \mathcal{D}_i'} [t_i' = v_i] + \varepsilon$ and $\Pr_{t_i \sim \mathcal{D}_i} [t_i = v_i'] = \Pr_{t_i' \sim \mathcal{D}_i'} [t_i' = v_i'] - \varepsilon$. Extending the following procedure for arbitrary \mathcal{D}_i , \mathcal{D}_i' such that $d_{\mathsf{TV}}(\mathcal{D}_i, \mathcal{D}_i') \leq \varepsilon$ will be immediate. Given $\mathcal{D}^{(i-1)}$, construct $\mathcal{D}^{(i)}$ as follows:

- 1. Set $\varepsilon_{cur} = \varepsilon$ and $\mathcal{D}^{(i-1)} = \mathcal{D}^{(i)}$.
- 2. As long as $\varepsilon_{cur} > 0$ do the following process:
 - (a) Find $v_{-i} \in \mathcal{T}_{-i}$ such that $\Pr_{t' \sim \mathcal{D}^{(i)}} \left[t' = (v_i, v_{-i}) \right] > 0$ and let γ be the minimum of $\Pr_{t' \sim \mathcal{D}^{(i)}} \left[t' = (v_i, v_{-i}) \right]$ and ε_{cur} .
 - (b) Change $\mathcal{D}^{(i)}$ such that $\Pr_{t' \sim \mathcal{D}^{(i)}} [t' = (v_i, v_{-i})] \gamma$ and $\Pr_{t' \sim \mathcal{D}^{(i)}} [t' = (v'_i, v_{-i})] + \gamma$.
 - (c) Set $\varepsilon_{cur} = \varepsilon_{cur} \gamma$
- 3. Output $\mathcal{D}^{(i)}$

From our construction of $\mathcal{D}^{(i)}$ it is immediate that $\mathcal{D}^{(i)} \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_{i-1}, \mathcal{D}'_i, \cdots \mathcal{D}_n)$ and $d_{\mathsf{TV}}\left(\mathcal{D}^{(i-1)}, \mathcal{D}^{(i)}\right) \leq \varepsilon$. Chaining up the resulting inequalities and using triangle inequality concludes the proof.

Leveraging the above we can prove the following:

Lemma 10. For any mechanism \mathcal{M} and sets of marginals $(\mathcal{D}_1, \dots, \mathcal{D}_n)$ and $(\mathcal{D}'_1, \dots, \mathcal{D}'_n)$ such that for all $i \in [n]$, $d_{\mathsf{TV}}(\mathcal{D}_i, \mathcal{D}'_i) \leq \varepsilon$ we have that:

$$\min_{\mathcal{D} \in \Pi(\mathcal{D}_1, \dots, \mathcal{D}_n)} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] \ge \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \dots, \mathcal{D}'_n)} \mathbb{E}_{t' \sim \mathcal{D}'} \left[\mathcal{O}(t', \mathcal{M}(t')) \right] - n\varepsilon V$$

Proof. We will prove this using a contradiction. Assume that

$$\min_{\mathcal{D} \in \Pi(\mathcal{D}_1, \cdots, \mathcal{D}_n)} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] < \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_n)} \mathbb{E}_{t' \sim \mathcal{D}'} \left[\mathcal{O}(t', \mathcal{M}(t')) \right] - n \varepsilon V.$$

Lets call $\mathcal{D}^* = \arg\min_{\mathcal{D} \in \Pi(\mathcal{D}_1, \cdots, \mathcal{D}_n)} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}(t)) \right]$. Now using Lemma 9 we have that there exists $\widehat{\mathcal{D}}^* \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_n)$ such that $d_{\mathsf{TV}} \left(\mathcal{D}^*, \widehat{\mathcal{D}}^* \right) \leq n \varepsilon$. Using Lemma 2 we have that $\mathbb{E}_{t \sim \mathcal{D}^*} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] \geq \mathbb{E}_{t \sim \widehat{\mathcal{D}}^*} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] - n \varepsilon V$. Chaining the above inequalities we get that:

$$\mathbb{E}_{t \sim \widehat{\mathcal{D}}^*} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] - n\varepsilon V \leq \mathbb{E}_{t \sim \mathcal{D}^*} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] < \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_t, \dots, \mathcal{D}'_t)} \mathbb{E}_{t' \sim \mathcal{D}'} \left[\mathcal{O}(t', \mathcal{M}(t')) \right] - n\varepsilon V$$

However, $\min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \dots, \mathcal{D}'_n)} \mathbb{E}_{t' \sim \mathcal{D}'} \left[\mathcal{O}(t', \mathcal{M}(t')) \right] - n\varepsilon V \leq \mathbb{E}_{t \sim \widehat{\mathcal{D}}^*} \left[\mathcal{O}(t, \mathcal{M}(t)) \right] - n\varepsilon V$ which concludes the contradiction.

Now we have all the components to prove the main theorem.

First by using Lemma 10 on \mathcal{M}^{α} we have that $\min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \dots, \mathcal{D}'_n)} \mathbb{E}_{t \sim \mathcal{D}'} \left[\mathcal{O}(t, \mathcal{M}^{\alpha}(t)) \right] \geq \min_{\mathcal{D} \in \Pi(\mathcal{D}_1, \dots, \mathcal{D}_n)} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}^{\alpha}(t)) \right] - n \varepsilon V.$

Now lets call $\mathcal{M}^* = \arg\max_{\mathcal{M}'} \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \cdots, \mathcal{D}'_n)} \mathbb{E}_{t \sim \mathcal{D}'} [\mathcal{O}(t, \mathcal{M}'(t))].$ By applying Lemma 10 on \mathcal{M}^* we have that $\min_{\mathcal{D} \in \Pi(\mathcal{D}_1, \cdots, \mathcal{D}_n)} \mathbb{E}_{t \sim \mathcal{D}} [\mathcal{O}(t, \mathcal{M}^*(t))] \geq$

 $\min_{\mathcal{D}' \in \Pi(\mathcal{D}'_1, \dots, \mathcal{D}'_n)} \mathbb{E}_{t \sim \mathcal{D}'}[\mathcal{O}(t, \mathcal{M}^*(t))]$. Chaining all of the above we have that:

$$\min_{\mathcal{D}' \in \Pi(\mathcal{D}'_{1}, \dots, \mathcal{D}'_{n})} \mathbb{E}_{t \sim \mathcal{D}'} \left[\mathcal{O}(t, \mathcal{M}^{\alpha}(t)) \right] \geq \min_{\mathcal{D} \in \Pi(\mathcal{D}_{1}, \dots, \mathcal{D}_{n})} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}^{\alpha}(t)) \right] - n\varepsilon V
\geq \alpha \max_{\mathcal{M}'} \max_{\mathcal{D} \in \Pi(\mathcal{D}_{1}, \dots, \mathcal{D}_{n})} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}'(t)) \right] - n\varepsilon V
\geq \alpha \min_{\mathcal{D} \in \Pi(\mathcal{D}_{1}, \dots, \mathcal{D}_{n})} \mathbb{E}_{t \sim \mathcal{D}} \left[\mathcal{O}(t, \mathcal{M}^{*}(t)) \right] - n\varepsilon V
\geq \alpha \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_{1}, \dots, \mathcal{D}'_{n})} \mathbb{E}_{t \sim \mathcal{D}'} \left[\mathcal{O}(t, \mathcal{M}^{*}(t)) \right] - (1 + \alpha) n\varepsilon V
= \alpha \max_{\mathcal{M}'} \min_{\mathcal{D}' \in \Pi(\mathcal{D}'_{1}, \dots, \mathcal{D}'_{n})} \mathbb{E}_{t \sim \mathcal{D}'} \left[\mathcal{O}(t, \mathcal{M}'(t)) \right] - (1 + \alpha) n\varepsilon V.$$

D Proofs missing from Section 4.4

Proof of Proposition 2. Let $S_{\mathcal{D}}$ be the mechanism that implements the better of bundling and selling separately, as computed on a prior \mathcal{D} . $S_{\mathcal{D}^p}$ is a DISC and ex-post IR mechanism, and $Rev(S_{\mathcal{D}^p},\mathcal{D}^p) \geq \frac{1}{6}Rev(\mathcal{D}^p)$. Thus, applying Theorem 1 we have that $Rev(S_{\mathcal{D}^p},\mathcal{D}) \geq \frac{1}{6}Rev(\mathcal{D}) - \frac{7}{6}H\delta$. The mechanism $S_{\mathcal{D}^p}$ is either selling each item separately, or it is setting a posted price for the grand bundle. If the former case occurs, then running $S_{\mathcal{D}^p}$ on \mathcal{D} makes (weakly) less revenue than $SRev(\mathcal{D})$; if the latter case occurs, running $S_{\mathcal{D}^p}$ on \mathcal{D} makes (weakly) less revenue than $Rev(\mathcal{D})$. Therefore, we overall have that $Rev(S_{\mathcal{D}},\mathcal{D}) \geq Rev(S_{\mathcal{D}^p},\mathcal{D})$. Combining with the previous inequality we get $Rev(S_{\mathcal{D}},\mathcal{D}) \geq \frac{1}{6}Rev(\mathcal{D}) - \frac{7}{6}H\delta$.

MRFs. We state some basic definitions for Markov Random Fields.

Definition 5 (Markov Random Field [SK75],[KS80],[CO21]). A Markov Random Field (MRF) is defined by a hypergraph G=(V,E). Associated with every vertex $v\in V$ is a random variable X_v taking values in some alphabet Σ_v , as well as a potential function $\psi_v:\Sigma_v\to\mathbb{R}$. Associated with every hyperedge $e\subseteq E$ is a potential function $\psi_e:\Sigma_e\to\mathbb{R}$. In terms of these potentials, we define a probability distribution \mathcal{D} associating to each vector $\mathbf{c}\in\times_{v\in V}\Sigma_v$ probability $\mathcal{D}(\mathbf{c})$ satisfying: $\mathcal{D}(\mathbf{c})\propto\prod_{v\in V}e^{\psi_v(c_v)}\prod_{e\in E}e^{\psi_e(\mathbf{c}_e)}$, where Σ_e denotes $\times_{v\in e}\Sigma_v$ and \mathbf{c}_e denotes $\{c_v\}_{v\in e}$.

Definition 6 ([CO21]). Given a random variable/type t generated by an MRF over a hypergraph G = ([m], E), we define weighted degree of item i as: $d_i := \max_{x \in \mathcal{T}} |\sum_{e \in E: i \in e} \psi_e(x_e)|$ and the maximum weighted degree as $\Delta := \max_{i \in [m]} d_i$.

Lemma 11 (Lemma 2[CO21]). *Let random variable* t *be generated by an MRF. For any* i *and any set* $\mathcal{E} \subseteq \mathcal{T}_i$ *and set* $\mathcal{E}' \subseteq \mathcal{T}_{-i}$:

$$\exp(-4\Delta) \le \frac{\Pr_{t \sim \mathcal{D}} \left[t_i \in \mathcal{E} \land t_{-i} \in \mathcal{E}' \right]}{\Pr_{t_i \sim \mathcal{D}_i} \left[t_i \in \mathcal{E} \right] \Pr_{t_{-i} \sim \mathcal{D}_{-i}} \left[t_{-i} \in \mathcal{E}' \right]}) \le \exp(4\Delta)$$

Proof of Proposition 3. Consider the case where m=2. Assume that for each item there exist two possible valuations A,B. Consider the following distribution $\mathcal D$ of possible valuations. $\Pr_{(t_1,t_2)\sim\mathcal D}\left[(t_1,t_2)=(A,A)\right]=1-2k+k^3, \ \Pr_{(t_1,t_2)\sim\mathcal D}\left[(t_1,t_2)=(A,B)\right]=\Pr_{(t_1,t_2)\sim\mathcal D}\left[(t_1,t_2)=(B,A)\right]=k-k^3, \ \Pr_{(t_1,t_2)\sim\mathcal D}\left[(t_1,t_2)=(B,B)\right]=k^3.$ Notice that for any 0< k<1/2 this is a valid distribution. Its TV distance from the product of its marginals is $2(k^2-k^3)\leq 2k^2.$ From Lemma 11 we have $\exp(-4\Delta)\leq \frac{\Pr_{(t_1,t_2)\sim\mathcal D}[t_1=B\wedge t_2=B]}{\Pr_{(t_1,t_2)\sim\mathcal D}[t_1=B\wedge t_2=B]}=\frac{k^3}{k\cdot k}=k,$ which implies that $\Delta\geq \frac{1}{4}log(\frac{1}{k}).$

We can prove the statement of Proposition 3 in a different way by constructing a distribution \mathcal{D} that is close to a product distribution but the parameter Δ is arbitrarily large.

Proof. Let \mathcal{D}^p be a product distribution such that $\mathcal{D}^p(t) = \frac{1}{Z} \prod_{v \in V} e^{\psi_v(t_v)}$ where Z (known as the partition function) normalizes the values to ensure that \mathcal{D}^p is a probability distribution. Consider the profile t^* that happens with the smallest probability. Let that probability be $0 < \delta \le \frac{1}{2}$. We have that

$$\mathcal{D}^p(t^*) = \frac{1}{Z} \prod_{v \in V} e^{\psi_v(t_v^*)} = \delta \tag{4}$$

We can construct a joint distribution \mathcal{D} that is produced by an MRF in a way that the TV distance between \mathcal{D}^p and \mathcal{D} is bounded by δ while the parameter Δ of the MRF grows to infinity.

Let $\mathcal{D}(t) \propto \prod_{v \in V} e^{\hat{\psi}_v(t_v)} \prod_{e \in E} e^{\psi_e(\mathbf{t}_e)}$ for some potential functions $\hat{\psi}_v(\cdot)$ and $\psi_e(\cdot)$. We can construct \mathcal{D} by selecting $\hat{\psi}_v(t_v) = \psi_v(t_v)$ for all $v \in V$. Consider hyperedge $e^* = V$ (i.e. e^* is the hyperedge that connects all nodes in V). For that hyperedge e^* and the profile t^* we choose $\psi_{e^*}(\mathbf{t}^*) \neq 0$, and for all other combinations of hyperedges e and profiles t_e we have that $\psi_e(\mathbf{t}_e) = 0$. We choose $\psi_{e^*}(\mathbf{t}^*)$ value such that $\mathcal{D}(t^*) = \epsilon$, for some $0 \leq \epsilon < \delta$. For ease of notation let $e^{\psi_{e^*}(\mathbf{t}^*)} = c(\epsilon)$. Let $Z'(\epsilon)$ be the partition function of \mathcal{D} , which depends on the choice of ϵ . From the above, it is not difficult to see that $\forall t \neq t^* : \mathcal{D}(t) = \frac{1}{Z'(\epsilon)} \prod_{v \in V} e^{\psi_v(t_v)}$, and $\mathcal{D}(t^*) = \frac{1}{Z'(\epsilon)} \prod_{v \in V} e^{\psi_v(t_v)} e^{\psi_{e^*}(\mathbf{t}^*)} = \frac{1}{Z'(\epsilon)} \prod_{v \in V} e^{\psi_v(t_v)} \cdot c(\epsilon)$. Using Equation (4), we can rewrite $\mathcal{D}(t^*)$ as

$$\mathcal{D}(t^*) = \frac{1}{Z'(\epsilon)} \prod_{v \in V} e^{\psi_v(t_v^*)} e^{\psi_{e^*}(\mathbf{t}^*)} = \frac{Z}{Z'(\epsilon)} \cdot \delta \cdot c(\epsilon) = \epsilon.$$
 (5)

By the definition of the partition function we have that $Z = \sum_{t \in \mathcal{T}} \prod_{v \in V} e^{\psi_v(t_v)}$, and $Z'(\epsilon) = \sum_{t \in \mathcal{T}} \prod_{v \in V} e^{\psi_v(t_v)} \prod_{e \in E} e^{\psi_e(\mathbf{t}_e)} = \sum_{t \in \mathcal{T}: t \neq t^*} \prod_{v \in V} e^{\psi_v(t_v)} + \prod_{v \in V} e^{\psi_v(t_v^*)} \cdot c(\epsilon)$. Since $\mathcal{D}^p(t^*) = \delta$ the remaining probability for all profiles is $(1 - \delta)$, so for the first part of the sum we have $\sum_{t \in \mathcal{T}: t \neq t^*} \prod_{v \in V} e^{\psi_v(t_v)} = Z(1 - \delta)$. We can use again Equation (4) to simplify the second part of $Z'(\epsilon)$. Therefore, we have

$$Z'(\epsilon) = Z(1 - \delta) + Z \cdot \delta \cdot c(\epsilon) \tag{6}$$

Rearranging Equation (5) we have $Z \cdot \delta \cdot c(\epsilon) = \epsilon \cdot Z'(\epsilon)$. Substituting that into Equation (6) we get that $Z'(\epsilon) = Z \frac{1-\delta}{1-\epsilon}$. Using the last formula back into Equation (5) we get that $c(\epsilon) = \frac{(1-\delta)\epsilon}{(1-\epsilon)\delta}$. As we take the probability $\mathcal{D}(t^*)$ to zero we have $\lim_{\epsilon \to 0} c(\epsilon) = \frac{(1-\delta)\epsilon}{(1-\epsilon)\delta} = 0$, and $\lim_{\epsilon \to 0} Z'(\epsilon) = \frac{Z(1-\delta)}{1-\epsilon} = Z(1-\delta)$. Therefore, the distribution \mathcal{D} behaves nicely as we take the probability of t^* to zero. By Definition 6, $\Delta(\epsilon) = |\psi_{e^*}(\mathbf{t}^*)|$ since it is the only non-zero value of the potential function $\psi_e(\cdot)$. By definition $e^{\psi_{e^*}(\mathbf{t}^*)} = c(\epsilon) \implies \psi_{e^*}(\mathbf{t}^*) = \ln(c(\epsilon))$. Taking again ϵ to zero we can show that $\Delta(\epsilon)$ goes to infinity, $\lim_{\epsilon \to 0} \Delta(\epsilon) = \lim_{\epsilon \to 0} \ln(c(\epsilon)) = -\infty$.

We can calculate the TV distance:

$$\begin{split} 2\,d_{\mathsf{TV}}(\mathcal{D},\mathcal{D}^p) &= \sum_{t \in T} |\mathcal{D}(t) - \mathcal{D}^p(t)| \\ &= \sum_{t \in T: t \neq t^*} |\mathcal{D}(t) - \mathcal{D}^p(t)| + |\mathcal{D}(t^*) - \mathcal{D}^p(t^*)| \\ &= \sum_{t \in T: t \neq t^*} \left| \frac{1}{Z} \prod_{v \in V} e^{\psi_v(t_v)} - \frac{1}{Z'(\epsilon)} \prod_{v \in V} e^{\psi_v(t_v)} \right| + \delta - \epsilon \\ &= \left| 1 - \frac{Z}{Z'(\epsilon)} \right| \sum_{t \in T: t \neq t^*} \left| \frac{1}{Z} \prod_{v \in V} e^{\psi_v(t_v)} \right| + \delta - \epsilon \\ &= \left| 1 - \frac{1 - \epsilon}{1 - \delta} \right| (1 - \delta) + \delta - \epsilon \end{split}$$

To go from line 5 to line 6 we use the fact that $Z'(\epsilon) = Z \frac{1-\delta}{1-\epsilon}$ and that the sum of the probabilities acording to \mathcal{D}^p of all the profiles except t^* is $1-\delta$.

That concludes the proof that there exists a distribution \mathcal{D} that is at most δ away in TV from a product distribution for which the parameter Δ is unbounded.

Proof of Proposition 4. As a first step, we are going to bound the Kullback-Leibler (KL) divergence between the distribution \mathcal{D} and a product distribution \mathcal{D}^p . Then we are going to use Pinsker's inequality [Tsy08] and the Bretagnolle-Huber inequality [Tsy08, BH78] to bound the TV distance using KL divergence.

Let $\mathcal{D}(t) = \frac{1}{Z_1} \prod_{v \in V} e^{\psi_v(t_v)} \prod_{e \in E} e^{\psi_e(t_e)}$, where Z_1 is the partition function. Let \mathcal{D}^p be product distribution such that $\mathcal{D}^p(t) = \frac{1}{Z_2} \prod_{v \in V} e^{\psi_v(t_v)}$, where Z_2 is the partition function.

The KL divergence is between \mathcal{D} and \mathcal{D}^p is:

$$D_{KL}(\mathcal{D}||\mathcal{D}^p) = \sum_{t \in \mathcal{T}} \mathcal{D}(t) \log \frac{\mathcal{D}(t)}{\mathcal{D}^p(t)}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \log \frac{Z_2 \prod_{v \in V} e^{\psi_v(t_v)} \prod_{e \in E} e^{\psi_e(t_e)}}{Z_1 \prod_{v \in V} e^{\psi_v(t_v)}}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \log \frac{Z_2}{Z_1} \prod_{e \in E} e^{\psi_e(t_e)}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \left(\log \frac{Z_2}{Z_1} + \sum_{e \in E} \psi_e(t_e) \right)$$

$$\leq \sum_{t \in \mathcal{T}} \mathcal{D}(t) \left(\log \frac{Z_2}{Z_1} + \frac{m}{2} \Delta \right)$$

$$= \frac{m}{2} \Delta + \log \frac{Z_2}{Z_1}$$

Since KL divergence is not symmetric, we can also compute: $D_{KL}(\mathcal{D}^p||\mathcal{D})$:

$$D_{KL}(\mathcal{D}^{p}||\mathcal{D}) = \sum_{t \in \mathcal{T}} \mathcal{D}^{p}(t) \log \frac{\mathcal{D}^{p}(t)}{\mathcal{D}(t)}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \log \frac{Z_{1} \prod_{v \in V} e^{\psi_{v}(t_{v})}}{Z_{2} \prod_{v \in V} e^{\psi_{v}(t_{v})} \prod_{e \in E} e^{\psi_{e}(t_{e})}}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \log \frac{Z_{1}}{Z_{2}} \prod_{e \in E} e^{-\psi_{e}(t_{e})}$$

$$= \sum_{t \in \mathcal{T}} \mathcal{D}(t) \left(\log \frac{Z_{1}}{Z_{2}} - \sum_{e \in E} \psi_{e}(t_{e})\right)$$

$$\leq \sum_{t \in \mathcal{T}} \mathcal{D}(t) \left(\log \frac{Z_{1}}{Z_{2}} + \frac{m}{2}\Delta\right)$$

$$= \frac{m}{2}\Delta - \log \frac{Z_{2}}{Z_{1}}$$

We can get that $\sum_{e \in E} \psi_e(t_e) \in \left[-\frac{m}{2}\Delta, \frac{m}{2}\Delta\right]$ as follows. $\sum_e \psi_e(t_e) = \frac{1}{2}\sum_{i \in [m]} \sum_{e \in E: i \in e} \psi_e(t_e) \le \frac{1}{2}\sum_{i \in [m]} d_i \le \frac{m\Delta}{2}$. Similarly, we can lower bound $\sum_{e \in E} \psi_e(t_e) \ge -\frac{m\Delta}{2}$ since the definition of d_i is $d_i := \max_{x \in \mathcal{T}} |\sum_{e \in E: i \in e} \psi_e(x_e)|$.

From the above inequalities we have that $\min\{D_{KL}(\mathcal{D}^p||\mathcal{D}), D_{KL}(\mathcal{D}||\mathcal{D}^p)\} \leq \frac{m}{2}\Delta$. From Pinsker's inequality we get $d_{\mathsf{TV}}(\mathcal{D},\mathcal{D}^p) \leq \sqrt{\frac{m\Delta}{4}}$, and from the Bretagnolle-Huber inequality we get $d_{\mathsf{TV}}(\mathcal{D},\mathcal{D}^p) \leq \sqrt{1-\exp(-m\Delta/2)}$. Combining these inequalities we have the desired bound on the TV distance.